metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of trans-di­aqua­bis­­(1H-pyrazole-3-carboxyl­ato-κ2N,O)copper(II) dihydrate

aDepartamento de Química Inorgánica, Facultad de Ciencia y Tecnología, Universidad de País Vasco UPV/EHU, PO Box 644, E-48080 Bilbao, Spain
*Correspondence e-mail: juanma.zorrilla@ehu.es

Edited by W. Imhof, University Koblenz-Landau, Germany (Received 11 November 2015; accepted 14 November 2015; online 21 November 2015)

In the title compound, [Cu(C4H3N2O2)2(H2O)2]·2H2O, the CuII ion is located on an inversion centre and exhibits an axially elongated octa­hedral coordination geometry. The equatorial plane is formed by two N,O-bidentate 1H-pyrazole-3-carboxyl­ate ligands in a trans configuration. The axial positions are occupied by two water mol­ecules. The mononuclear complex mol­ecules are arranged in layers parallel to the ab plane. Each complex mol­ecule is linked to four adjacent species through inter­molecular O—H⋯O and N—H⋯O hydrogen bonds that are established between the coordinating water mol­ecules and carboxyl­ate O atoms or protonated N atoms of the organic ligands. These layers are further connected into a three-dimensional network by additional hydrogen bonds involving solvent water mol­ecules and non-coordinating carboxyl­ate O atoms.

1. Related literature

For mononuclear cobalt(II), nickel(II) and zinc complexes of the 1H-pyrazole-3-carboxyl­ate ligand, see: Artetxe et al. (2015[Artetxe, B., Reinoso, S., San Felices, L., Vitoria, P., Pache, A., Martín-Caballero, J. & Gutiérrez-Zorrilla, J. M. (2015). Inorg. Chem. 54, 241-252.]); López-Viseras et al. (2014[López-Viseras, M., Fernández, B., Hilfiker, S., González, C. S., González, J. L., Calahorro, A. J., Colacio, E. & Rodríguez-Diéguez, A. (2014). J. Inorg. Biochem. 131, 64-67.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Cu(C4H3N2O2)2(H2O)2]·2H2O

  • Mr = 357.77

  • Monoclinic, P 21 /c

  • a = 6.4780 (4) Å

  • b = 21.5757 (10) Å

  • c = 4.8937 (3) Å

  • β = 105.856 (7)°

  • V = 657.96 (6) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 2.83 mm−1

  • T = 100 K

  • 0.09 × 0.04 × 0.02 mm

2.2. Data collection

  • Agilent SuperNova Single source at offset diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.]) Tmin = 0.817, Tmax = 1

  • 4452 measured reflections

  • 1216 independent reflections

  • 1089 reflections with I > 2σ(I)

  • Rint = 0.031

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.074

  • S = 1.09

  • 1216 reflections

  • 109 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—N2 1.9808 (16)
Cu1—O7 1.9910 (14)
Cu1—O1W 2.4501 (15)
N2—Cu1—O7 81.30 (6)
N2—Cu1—O1W 92.08 (6)
O7—Cu1—O1W 89.43 (5)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1Wi 0.88 1.93 2.710 (2) 147
O1W—H1WA⋯O8ii 0.83 (2) 1.86 (2) 2.667 (2) 163 (3)
O1W—H1WB⋯O7iii 0.82 (2) 1.96 (2) 2.709 (2) 153 (3)
O2W—H2WA⋯O2Wiv 0.83 (2) 1.95 (2) 2.7792 (15) 178 (3)
O2W—H2WB⋯O8 0.81 (2) 2.04 (2) 2.854 (2) 175 (3)
Symmetry codes: (i) -x+1, -y+1, -z-1; (ii) -x, -y+1, -z; (iii) x, y, z-1; (iv) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Structural commentary top

The title compound, [Cu(C4H3N2O2)2(H2O)2] ·2H2O crystallizes in the monoclinic crystal system, space group P21/c. The equatorial Cu—O and Cu—N distances (Table 1) are similar to those observed for the corresponding Co(II), Ni(II) and Zn(II) analogues (Artetxe et al., 2015; López-Viseras et al., 2014). However, the axial bond lenghts are much longer due to the Jahn-Teller effect operating in Cu(II) centres. The mononuclear complexes arrange in layers parallel to the ab plane through inter­molecular O—H···O and N—H···O hydrogen bonds that are established between the coordinated water molecules (O1W) and carboxyl­ate O atoms (O7, O8) or protonated N atoms (N2) of the organic ligands. These layers are further connected into a three-dimensional network by additional hydrogen bonds involving solvent water molecules (O2W) and non-coordinating carboxyl­ate O atoms (O8). Table 2 summarizes the geometrical parameters of these O—H···O and N—H···O hydrogen bonding inter­actions.

Synthesis and crystallization top

To a solution of CuCl2 · 2 H2O (51 mg, 0.3 mmol) in hot water (15 ml) 1H-pyrazole-3-carb­oxy­lic acid (74 mg, 0.6 mmol) dissolved in hot water (10 ml) was added dropwise. After stirring for 30 min at 90 °C, the final solution was left undisturbed and prismatic blue crystals suitable for X-ray diffraction were obtained upon cooling to room temperature (Yield: 68 mg, 63%).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. All atoms except H were refined anisotropically. H atoms of the water molecules were located in a Fourier difference map and refined isotropically with O—H bond lenghts restrained to 0.84 (2) and with Uiso(H) = 1.5Ueq(O). All pyrazole H atoms were positioned geometrically and refined using a riding model with C—H = 0.95 Å, N—H = 0.88 Å and Uiso(H) = 1.2Ueq(C,N).

Related literature top

For mononuclear cobalt(II), nickel(II) and zinc(II) complexes of the 1H-pyrazole-3-carboxylate ligand, see: Artetxe et al. (2015); López-Viseras et al. (2014).

Structure description top

The title compound, [Cu(C4H3N2O2)2(H2O)2] ·2H2O crystallizes in the monoclinic crystal system, space group P21/c. The equatorial Cu—O and Cu—N distances (Table 1) are similar to those observed for the corresponding Co(II), Ni(II) and Zn(II) analogues (Artetxe et al., 2015; López-Viseras et al., 2014). However, the axial bond lenghts are much longer due to the Jahn-Teller effect operating in Cu(II) centres. The mononuclear complexes arrange in layers parallel to the ab plane through inter­molecular O—H···O and N—H···O hydrogen bonds that are established between the coordinated water molecules (O1W) and carboxyl­ate O atoms (O7, O8) or protonated N atoms (N2) of the organic ligands. These layers are further connected into a three-dimensional network by additional hydrogen bonds involving solvent water molecules (O2W) and non-coordinating carboxyl­ate O atoms (O8). Table 2 summarizes the geometrical parameters of these O—H···O and N—H···O hydrogen bonding inter­actions.

For mononuclear cobalt(II), nickel(II) and zinc(II) complexes of the 1H-pyrazole-3-carboxylate ligand, see: Artetxe et al. (2015); López-Viseras et al. (2014).

Synthesis and crystallization top

To a solution of CuCl2 · 2 H2O (51 mg, 0.3 mmol) in hot water (15 ml) 1H-pyrazole-3-carb­oxy­lic acid (74 mg, 0.6 mmol) dissolved in hot water (10 ml) was added dropwise. After stirring for 30 min at 90 °C, the final solution was left undisturbed and prismatic blue crystals suitable for X-ray diffraction were obtained upon cooling to room temperature (Yield: 68 mg, 63%).

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 1. All atoms except H were refined anisotropically. H atoms of the water molecules were located in a Fourier difference map and refined isotropically with O—H bond lenghts restrained to 0.84 (2) and with Uiso(H) = 1.5Ueq(O). All pyrazole H atoms were positioned geometrically and refined using a riding model with C—H = 0.95 Å, N—H = 0.88 Å and Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: OLEX2 (Dolomanov et al., 2009); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of [Cu(C4H3N2O2)2(H2O)2] ·2H2O showing the atom labelling for the asymmetric unit and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. View of the crystal packing along the crystallographic a axis (above). Projection of a layer of [Cu(C4H3N2O2)2(H2O)2] complexes along the [010] direction (below). Cu(II) centres are represented as translucent octahedra and the O—H···O and N—H···O hydrogen bonds are depicted as dashed red lines.
trans-Diaquabis(1H-pyrazole-3-carboxylato-κ2N,O)copper(II) dihydrate top
Crystal data top
[Cu(C4H3N2O2)2(H2O)2]·2H2OF(000) = 366
Mr = 357.77Dx = 1.806 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybcCell parameters from 1956 reflections
a = 6.4780 (4) Åθ = 4.1–73.7°
b = 21.5757 (10) ŵ = 2.83 mm1
c = 4.8937 (3) ÅT = 100 K
β = 105.856 (7)°Prism, blue
V = 657.96 (6) Å30.09 × 0.04 × 0.02 mm
Z = 2
Data collection top
Agilent SuperNova Single source at offset
diffractometer
1216 independent reflections
Radiation source: SuperNova (Cu) X-ray Source1089 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.031
Detector resolution: 5.2012 pixels mm-1θmax = 69°, θmin = 4.1°
ω scansh = 67
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 2326
Tmin = 0.817, Tmax = 1l = 55
4452 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0406P)2 + 0.2735P]
where P = (Fo2 + 2Fc2)/3
1216 reflections(Δ/σ)max < 0.001
109 parametersΔρmax = 0.36 e Å3
4 restraintsΔρmin = 0.35 e Å3
Crystal data top
[Cu(C4H3N2O2)2(H2O)2]·2H2OV = 657.96 (6) Å3
Mr = 357.77Z = 2
Monoclinic, P21/cCu Kα radiation
a = 6.4780 (4) ŵ = 2.83 mm1
b = 21.5757 (10) ÅT = 100 K
c = 4.8937 (3) Å0.09 × 0.04 × 0.02 mm
β = 105.856 (7)°
Data collection top
Agilent SuperNova Single source at offset
diffractometer
1216 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
1089 reflections with I > 2σ(I)
Tmin = 0.817, Tmax = 1Rint = 0.031
4452 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0284 restraints
wR(F2) = 0.074H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.36 e Å3
1216 reflectionsΔρmin = 0.35 e Å3
109 parameters
Special details top

Experimental. IR (KBr pellets, cm-1): 3487(s), 3340(s), 3140(s), 3075(s), 2854(s), 2795(s), 1695(s), 1501(m), 1451(w), 1358(s), 1263(w), 1132(w), 1069(w), 1015(w), 943(m), 899(m), 839(m), 785(m), 648(m), 615(w), 500(w).

TGA/DTA (synthetic air, 5°C min-1): The initial endothermic dehydration proccess (calcd/found for 4H2O: 20.1 /20.2%) is completed at c.a. 85°C and is followed by a thermal stability range for the anydrous phase that extends up to c.a. 210°C. The highly exothermic ligand combustion results in the final residue at 370°C (calcd/found for CuO: 22.1/21.8%).

CHN (%m, calcd/found): C (26.8/27.2), H (3.9/3.9), N(15.7/15.5).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50.500.01043 (15)
N10.5203 (3)0.37840 (7)0.3376 (4)0.0113 (4)
H10.62390.38770.41530.014*
N20.4416 (3)0.41696 (7)0.1769 (4)0.0111 (4)
C30.2890 (3)0.38581 (9)0.0975 (4)0.0105 (4)
C40.2691 (3)0.32597 (9)0.2127 (4)0.0124 (4)
H40.17320.29420.19090.015*
C50.4182 (3)0.32329 (9)0.3637 (4)0.0137 (4)
H50.44520.28860.46870.016*
C60.1815 (3)0.42089 (9)0.0858 (4)0.0107 (4)
O70.2562 (2)0.47569 (6)0.1520 (3)0.0118 (3)
O80.0330 (2)0.39735 (6)0.1641 (3)0.0144 (3)
O1W0.2455 (2)0.54965 (6)0.4047 (3)0.0134 (3)
O2W0.1631 (3)0.28054 (7)0.2052 (4)0.0219 (4)
H1WA0.140 (4)0.5615 (13)0.353 (6)0.033*
H1WB0.208 (5)0.5252 (12)0.536 (5)0.033*
H2WA0.167 (5)0.2621 (13)0.054 (5)0.033*
H2WB0.102 (4)0.3132 (10)0.201 (6)0.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0144 (2)0.0066 (2)0.0126 (2)0.00226 (14)0.00748 (17)0.00236 (15)
N10.0134 (8)0.0095 (8)0.0118 (8)0.0020 (6)0.0049 (7)0.0013 (6)
N20.0139 (8)0.0095 (8)0.0105 (8)0.0006 (6)0.0046 (7)0.0006 (6)
C30.0101 (9)0.0116 (9)0.0091 (9)0.0005 (7)0.0016 (7)0.0019 (7)
C40.0147 (10)0.0089 (9)0.0136 (10)0.0006 (8)0.0039 (8)0.0008 (7)
C50.0162 (10)0.0094 (9)0.0149 (10)0.0008 (7)0.0035 (8)0.0019 (7)
C60.0124 (9)0.0098 (9)0.0093 (10)0.0026 (7)0.0021 (8)0.0013 (7)
O70.0153 (7)0.0087 (6)0.0132 (7)0.0015 (5)0.0071 (5)0.0020 (5)
O80.0159 (7)0.0106 (7)0.0198 (8)0.0013 (5)0.0103 (6)0.0000 (6)
O1W0.0153 (7)0.0130 (7)0.0140 (7)0.0010 (6)0.0076 (6)0.0037 (6)
O2W0.0313 (9)0.0143 (7)0.0209 (9)0.0057 (7)0.0084 (7)0.0011 (7)
Geometric parameters (Å, º) top
Cu1—N21.9808 (16)C3—C61.484 (3)
Cu1—N2i1.9808 (16)C4—C51.369 (3)
Cu1—O7i1.9910 (14)C4—H40.95
Cu1—O71.9910 (14)C5—H50.95
Cu1—O1W2.4501 (15)C6—O81.238 (3)
Cu1—O1Wi2.4501 (15)C6—O71.285 (2)
N1—N21.338 (2)O1W—H1WA0.833 (18)
N1—C51.350 (3)O1W—H1WB0.817 (18)
N1—H10.88O2W—H2WA0.834 (18)
N2—C31.338 (3)O2W—H2WB0.813 (17)
C3—C41.401 (3)
N2—Cu1—N2i180.00 (4)N1—N2—Cu1139.59 (13)
N2—Cu1—O7i98.70 (6)N2—C3—C4109.90 (18)
N2i—Cu1—O7i81.30 (6)N2—C3—C6115.16 (17)
N2—Cu1—O781.30 (6)C4—C3—C6134.95 (18)
N2i—Cu1—O798.70 (6)C4—C3—Cu1150.27 (15)
O7i—Cu1—O7180C6—C3—Cu174.67 (11)
N2—Cu1—O1W92.08 (6)C5—C4—C3104.79 (17)
N2i—Cu1—O1W87.92 (6)C5—C4—H4127.6
O7i—Cu1—O1W90.57 (5)C3—C4—H4127.6
O7—Cu1—O1W89.43 (5)N1—C5—C4108.16 (18)
N2—Cu1—O1Wi87.92 (6)N1—C5—H5125.9
N2i—Cu1—O1Wi92.08 (6)C4—C5—H5125.9
O7i—Cu1—O1Wi89.43 (5)O8—C6—O7124.79 (19)
O7—Cu1—O1Wi90.57 (5)O8—C6—C3120.69 (17)
O1W—Cu1—O1Wi180.00 (6)O7—C6—C3114.52 (17)
N2—N1—C5110.36 (17)O8—C6—Cu1164.75 (15)
C5—N1—Cu1134.42 (13)C3—C6—Cu174.54 (11)
N2—N1—H1124.8C6—O7—Cu1115.51 (13)
C5—N1—H1124.8Cu1—O1W—H1WA108 (2)
Cu1—N1—H1100.7Cu1—O1W—H1WB110 (2)
C3—N2—N1106.79 (16)H1WA—O1W—H1WB110 (3)
C3—N2—Cu1113.30 (14)H2WA—O2W—H2WB107 (3)
N2i—Cu1—N1—N2180O7—Cu1—C3—C60.48 (10)
O7i—Cu1—N1—N2176.5 (2)O1W—Cu1—C3—C687.49 (11)
O7—Cu1—N1—N23.5 (2)O1Wi—Cu1—C3—C692.51 (11)
O1W—Cu1—N1—N286.4 (2)N2—C3—C4—C50.2 (2)
O1Wi—Cu1—N1—N293.6 (2)C6—C3—C4—C5180.0 (2)
N2—Cu1—N1—C58.9 (2)Cu1—C3—C4—C56.1 (3)
N2i—Cu1—N1—C5171.1 (2)N2—N1—C5—C40.5 (2)
O7i—Cu1—N1—C5174.58 (18)Cu1—N1—C5—C43.4 (3)
O7—Cu1—N1—C55.42 (18)C3—C4—C5—N10.2 (2)
O1W—Cu1—N1—C595.26 (18)N2—C3—C6—O8177.59 (17)
O1Wi—Cu1—N1—C584.74 (18)C4—C3—C6—O82.3 (3)
C5—N1—N2—C30.6 (2)Cu1—C3—C6—O8179.15 (18)
Cu1—N1—N2—C3172.7 (3)N2—C3—C6—O72.6 (3)
C5—N1—N2—Cu1173.24 (16)C4—C3—C6—O7177.6 (2)
O7i—Cu1—N2—C3175.82 (13)Cu1—C3—C6—O70.68 (14)
O7—Cu1—N2—C34.18 (13)N2—C3—C6—Cu13.26 (14)
O1W—Cu1—N2—C393.28 (14)C4—C3—C6—Cu1176.9 (2)
O1Wi—Cu1—N2—C386.72 (14)N2—Cu1—C6—O8179.6 (6)
O7i—Cu1—N2—N13.5 (2)N2i—Cu1—C6—O80.4 (6)
O7—Cu1—N2—N1176.5 (2)O7i—Cu1—C6—O8176.3 (5)
O1W—Cu1—N2—N194.4 (2)O7—Cu1—C6—O83.7 (5)
O1Wi—Cu1—N2—N185.6 (2)O1W—Cu1—C6—O888.9 (5)
N1—N2—C3—C40.4 (2)O1Wi—Cu1—C6—O891.1 (5)
Cu1—N2—C3—C4175.27 (13)N2—Cu1—C6—O7176.66 (15)
N1—N2—C3—C6179.66 (15)N2i—Cu1—C6—O73.34 (15)
Cu1—N2—C3—C64.8 (2)O7i—Cu1—C6—O7180
N1—N2—C3—Cu1174.8 (2)O1W—Cu1—C6—O785.20 (13)
N2i—Cu1—C3—N2180O1Wi—Cu1—C6—O794.80 (13)
O7i—Cu1—C3—N25.02 (16)N2—Cu1—C6—C32.38 (10)
O7—Cu1—C3—N2174.98 (16)N2i—Cu1—C6—C3177.62 (10)
O1W—Cu1—C3—N287.97 (14)O7i—Cu1—C6—C30.96 (19)
O1Wi—Cu1—C3—N292.03 (14)O7—Cu1—C6—C3179.04 (19)
N2—Cu1—C3—C49.0 (2)O1W—Cu1—C6—C393.84 (10)
N2i—Cu1—C3—C4171.0 (2)O1Wi—Cu1—C6—C386.16 (10)
O7i—Cu1—C3—C44.0 (3)O8—C6—O7—Cu1178.80 (15)
O7—Cu1—C3—C4176.0 (3)C3—C6—O7—Cu11.0 (2)
O1W—Cu1—C3—C497.0 (3)N2—Cu1—O7—C62.83 (13)
O1Wi—Cu1—C3—C483.0 (3)N2i—Cu1—O7—C6177.17 (13)
N2—Cu1—C3—C6175.5 (2)O1W—Cu1—O7—C695.02 (13)
N2i—Cu1—C3—C64.5 (2)O1Wi—Cu1—O7—C684.98 (13)
O7i—Cu1—C3—C6179.52 (10)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1Wii0.881.932.710 (2)147
O1W—H1WA···O8iii0.83 (2)1.86 (2)2.667 (2)163 (3)
O1W—H1WB···O7iv0.82 (2)1.96 (2)2.709 (2)153 (3)
O2W—H2WA···O2Wv0.83 (2)1.95 (2)2.7792 (15)178 (3)
O2W—H2WB···O80.81 (2)2.04 (2)2.854 (2)175 (3)
Symmetry codes: (ii) x+1, y+1, z1; (iii) x, y+1, z; (iv) x, y, z1; (v) x, y+1/2, z1/2.
Selected geometric parameters (Å, º) top
Cu1—N21.9808 (16)Cu1—O1W2.4501 (15)
Cu1—O71.9910 (14)
N2—Cu1—O781.30 (6)O7—Cu1—O1W89.43 (5)
N2—Cu1—O1W92.08 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1Wi0.881.932.710 (2)146.8
O1W—H1WA···O8ii0.833 (18)1.860 (19)2.667 (2)163 (3)
O1W—H1WB···O7iii0.817 (18)1.96 (2)2.709 (2)153 (3)
O2W—H2WA···O2Wiv0.834 (18)1.946 (18)2.7792 (15)178 (3)
O2W—H2WB···O80.813 (17)2.043 (18)2.854 (2)175 (3)
Symmetry codes: (i) x+1, y+1, z1; (ii) x, y+1, z; (iii) x, y, z1; (iv) x, y+1/2, z1/2.
 

Acknowledgements

This work was supported financially by Eusko Jaurlaritza/Gobierno Vasco (IT477-10), MINECO (MAT2013-48366-C2-1P) and the Universidad de País Vasco UPV/EHU (UFI11/53). The authors thank SGIker (UPV/EHU) for technical and human support.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.  Google Scholar
First citationArtetxe, B., Reinoso, S., San Felices, L., Vitoria, P., Pache, A., Martín-Caballero, J. & Gutiérrez-Zorrilla, J. M. (2015). Inorg. Chem. 54, 241–252.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLópez-Viseras, M., Fernández, B., Hilfiker, S., González, C. S., González, J. L., Calahorro, A. J., Colacio, E. & Rodríguez-Diéguez, A. (2014). J. Inorg. Biochem. 131, 64–67.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds