organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (tert-butyl­di­methyl­sil­yl)tri­phenyl­germane, Ph3Ge-SiMe2(t-Bu)

aDepartment of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russian Federation, and bA.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova St. 28, 119991 Moscow, Russian Federation
*Correspondence e-mail: sergej@org.chem.msu.ru

Edited by W. Imhof, University Koblenz-Landau, Germany (Received 20 November 2015; accepted 30 November 2015; online 6 December 2015)

In the title compound, Ph3Ge-SiMe2(t-Bu) or C24H30GeSi, the Si and Ge atoms both possess a tetra­hedral coordination environment with C—E—C (E = Si, Ge) angles in the range 104.47 (5)–114.67 (5)°. The mol­ecule adopts an eclipsed conformation, with three torsion angles less than 29.5°. In the crystal, neighbouring mol­ecules are combined to dimers by six T-shaped C—H⋯π inter­actions, forming sixfold phenyl embraces (6PE).

1. Related literature

For general background to the chemistry of Group 14 element catenated compounds, see: Marschner & Hlina (2013[Marschner, C. & Hlina, J. (2013). Comprehensive Inorganic Chemistry II, 2nd ed., edited by J. Reedijk & K. Poeppelmeier, pp. 83-117. Amsterdam: Elsevier.]); Amadoruge & Weinert (2008[Amadoruge, M. L. & Weinert, C. S. (2008). Chem. Rev. 108, 4253-4294.]); Párkányi et al. (1986[Párkányi, L., Hernandez, C. & Pannell, K. H. (1986). J. Organomet. Chem. 301, 145-151.]); Leigh et al. (1997[Leigh, W. J., Kroll, E. C., Toltl, N. P. & Britten, J. F. (1997). Acta Cryst. C53, IUC9700006.]). As apart of our studies of the chemistry of oligogermanium compounds (Zaitsev et al. 2012[Zaitsev, K. V., Kapranov, A. A., Oprunenko, Y. F., Churakov, A. V., Howard, J. A. K., Tarasevich, B. N., Karlov, S. S. & Zaitseva, G. S. (2012). J. Organomet. Chem. 700, 207-213.], 2013[Zaitsev, K. V., Kapranov, A. A., Churakov, A. V., Poleshchuk, O. K., Oprunenko, Yu. F., Tarasevich, B. N., Zaitseva, G. S. & Karlov, S. S. (2013). Organometallics, 32, 6500-6510.], 2014a[Zaitsev, K. V., Churakov, A. V., Poleshchuk, O. K., Oprunenko, Yu. F., Zaitseva, G. S. & Karlov, S. S. (2014a). Dalton Trans. 43, 6605-6609.],b[Zaitsev, K. V., Oprunenko, Y. F., Churakov, A. V., Zaitseva, G. S. & Karlov, S. S. (2014b). Main Group Met. Chem. 37, 67-74.]), the title compound was obtained and studied. For related crystal structures of silagermanes, see: Zaitsev et al. (2015[Zaitsev, K. V., Lermontova, E. K., Churakov, A. V., Tafeenko, V. A., Tarasevich, B. N., Poleshchuk, O. K., Kharcheva, A. V., Magdesieva, T. V., Nikitin, O. M., Zaitseva, G. S. & Karlov, S. S. (2015). Organometallics, 34, 2765-2774.]). The 6PE inter­actions are intensively discussed in Scudder & Dance (2000[Scudder, M. & Dance, I. (2000). J. Chem. Soc. Dalton Trans. pp. 2909-2915.]); Steiner (2000[Steiner, T. (2000). New J. Chem. 24, 137-142.]); Churakov et al. (2005[Churakov, A. V., Prikhodchenko, P. V. & Howard, J. A. K. (2005). CrystEngComm, 7, 664-669.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C24H30GeSi

  • Mr = 419.16

  • Monoclinic, C 2/c

  • a = 13.5332 (6) Å

  • b = 14.9825 (7) Å

  • c = 22.7179 (13) Å

  • β = 106.2048 (10)°

  • V = 4423.3 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.44 mm−1

  • T = 120 K

  • 0.32 × 0.29 × 0.24 mm

2.2. Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.720, Tmax = 0.862

  • 32242 measured reflections

  • 7990 independent reflections

  • 6137 reflections with I > 2σ(I)

  • Rint = 0.043

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.071

  • S = 1.01

  • 7990 reflections

  • 240 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.37 e Å−3

Data collection: APEX2 (Bruker, 2013[Bruker (2013). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2013[Bruker (2013). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Structural commentary top

In the title compound, Ph3Ge-SiMe2(t-Bu), both Si and Ge atoms possess tetra­hedral coordination environments with C—E—C angles ranging within 104.47 (5)- 114.67 (5) °. The Ge—Si bond length (2.4026 (4) Å) is slightly longer than in the closely related compound Ph3Ge-SiMe3 (2.384 (1) Å (Párkányi et al., 1986). The molecule adopts an eclipsed conformation with three torsion angles less than 29.5°.

In the crystal, neighbouring molecules are combined to dimers by six T-shaped C—H···π inter­actions forming six-fold phenyl embraces (6PE, Steiner, 2000; Churakov et al., 2005). As expected for 6PE-bonded molecules, the Cax—Ge···Ge angle is almost linear - 175.9° (Fig. 2; Scudder & Dance, 2000).

The title compound is isostructural with the corresponding silicon complex Ph3Si-SiMe2(t-Bu) (Leigh et al., 1997).

Synthesis and crystallization top

The synthetic procedure leading to the title compound was reported by us earlier (Zaitsev et al., 2014b) to give a white crystalline material in good yield (86 %) by the reaction of Ph3GeLi (generated in situ from equimolar amounts of Ph3GeH and n-BuLi at room temperature in Et2O) with t-BuMe2SiCl in di­ethyl ether. Solvent-free crystals of the title compound suitable for X-Ray analysis were obtained after recrystallization from n-hexane at room temperature.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. All non-hydrogen atoms were refined with anisotropic thermal parameters.

All hydrogen atoms were placed in calculated positions and refined using a riding model, with C—H = 0.93–0.96 Å, and with Uiso(H) = 1.2 Ueq(C) for aromatic hydrogens or 1.5 Ueq(C) for methyl H atoms. A rotating model was applied to the methyl groups.

Related literature top

For general background to the chemistry of Group 14 element catenated compounds, see: Marschner & Hlina (2013); Amadoruge & Weinert (2008); Párkányi et al. (1986); Leigh et al. (1997). As apart of our studies of the chemistry of oligogermanium compounds (Zaitsev et al. 2012, 2013, 2014a,b), the title compound was obtained and studied. For related crystal structures of silagermanes, see: Zaitsev et al. (2015). The 6PE interactions are intensively discussed in Scudder & Dance (2000); Steiner (2000); Churakov et al. (2005).

Structure description top

In the title compound, Ph3Ge-SiMe2(t-Bu), both Si and Ge atoms possess tetra­hedral coordination environments with C—E—C angles ranging within 104.47 (5)- 114.67 (5) °. The Ge—Si bond length (2.4026 (4) Å) is slightly longer than in the closely related compound Ph3Ge-SiMe3 (2.384 (1) Å (Párkányi et al., 1986). The molecule adopts an eclipsed conformation with three torsion angles less than 29.5°.

In the crystal, neighbouring molecules are combined to dimers by six T-shaped C—H···π inter­actions forming six-fold phenyl embraces (6PE, Steiner, 2000; Churakov et al., 2005). As expected for 6PE-bonded molecules, the Cax—Ge···Ge angle is almost linear - 175.9° (Fig. 2; Scudder & Dance, 2000).

The title compound is isostructural with the corresponding silicon complex Ph3Si-SiMe2(t-Bu) (Leigh et al., 1997).

For general background to the chemistry of Group 14 element catenated compounds, see: Marschner & Hlina (2013); Amadoruge & Weinert (2008); Párkányi et al. (1986); Leigh et al. (1997). As apart of our studies of the chemistry of oligogermanium compounds (Zaitsev et al. 2012, 2013, 2014a,b), the title compound was obtained and studied. For related crystal structures of silagermanes, see: Zaitsev et al. (2015). The 6PE interactions are intensively discussed in Scudder & Dance (2000); Steiner (2000); Churakov et al. (2005).

Synthesis and crystallization top

The synthetic procedure leading to the title compound was reported by us earlier (Zaitsev et al., 2014b) to give a white crystalline material in good yield (86 %) by the reaction of Ph3GeLi (generated in situ from equimolar amounts of Ph3GeH and n-BuLi at room temperature in Et2O) with t-BuMe2SiCl in di­ethyl ether. Solvent-free crystals of the title compound suitable for X-Ray analysis were obtained after recrystallization from n-hexane at room temperature.

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 1. All non-hydrogen atoms were refined with anisotropic thermal parameters.

All hydrogen atoms were placed in calculated positions and refined using a riding model, with C—H = 0.93–0.96 Å, and with Uiso(H) = 1.2 Ueq(C) for aromatic hydrogens or 1.5 Ueq(C) for methyl H atoms. A rotating model was applied to the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, with displacement ellipsoids shown at the 50% probability level.
[Figure 2] Fig. 2. Dimers formed by 6PE interactions between adjacent molecules.
(tert-Butyldimethylsilyl)triphenylgermane top
Crystal data top
C24H30GeSiF(000) = 1760
Mr = 419.16Dx = 1.259 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 13.5332 (6) ÅCell parameters from 8565 reflections
b = 14.9825 (7) Åθ = 2.5–31.7°
c = 22.7179 (13) ŵ = 1.44 mm1
β = 106.2048 (10)°T = 120 K
V = 4423.3 (4) Å3Irregular, colourless
Z = 80.32 × 0.29 × 0.24 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
7990 independent reflections
Radiation source: sealed tube6137 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
Detector resolution: 8 pixels mm-1θmax = 32.6°, θmin = 1.9°
ω and φ scansh = 1920
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 2222
Tmin = 0.720, Tmax = 0.862l = 3334
32242 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.071 w = 1/[σ2(Fo2) + (0.0303P)2 + 1.8636P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.002
7990 reflectionsΔρmax = 0.43 e Å3
240 parametersΔρmin = 0.37 e Å3
Crystal data top
C24H30GeSiV = 4423.3 (4) Å3
Mr = 419.16Z = 8
Monoclinic, C2/cMo Kα radiation
a = 13.5332 (6) ŵ = 1.44 mm1
b = 14.9825 (7) ÅT = 120 K
c = 22.7179 (13) Å0.32 × 0.29 × 0.24 mm
β = 106.2048 (10)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
7990 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
6137 reflections with I > 2σ(I)
Tmin = 0.720, Tmax = 0.862Rint = 0.043
32242 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.071H-atom parameters constrained
S = 1.01Δρmax = 0.43 e Å3
7990 reflectionsΔρmin = 0.37 e Å3
240 parameters
Special details top

Experimental. Absorption correctgion: SADABS-2008/1 (Bruker,2008) was used for absorption correction. wR2(int) was 0.0820 before and 0.0431 after correction. The Ratio of minimum to maximum transmission is 0.8344. The λ/2 correction factor is 0.0015.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ge10.36354 (2)0.03558 (2)0.37248 (2)0.01369 (4)
Si10.26294 (3)0.07258 (3)0.27044 (2)0.01566 (8)
C10.19468 (11)0.02626 (9)0.22333 (7)0.0193 (3)
C20.14760 (13)0.08808 (11)0.26222 (8)0.0280 (3)
H2A0.20150.11350.29470.042*
H2B0.10990.13500.23690.042*
H2C0.10200.05440.27940.042*
C30.10842 (13)0.00982 (12)0.16951 (8)0.0286 (4)
H3A0.05820.03990.18490.043*
H3B0.07630.03880.14370.043*
H3C0.13680.05090.14620.043*
C40.26903 (13)0.08070 (11)0.19725 (8)0.0293 (4)
H4A0.29670.04320.17150.044*
H4B0.23270.12980.17370.044*
H4C0.32410.10320.23030.044*
C50.16501 (12)0.15374 (11)0.28177 (8)0.0288 (4)
H5A0.11520.12290.29710.043*
H5B0.13110.18140.24330.043*
H5C0.19840.19860.31070.043*
C60.34687 (14)0.13018 (13)0.22957 (8)0.0340 (4)
H6A0.38060.17980.25360.051*
H6B0.30560.15120.19050.051*
H6C0.39760.08910.22350.051*
C70.48101 (10)0.11767 (9)0.39511 (6)0.0160 (3)
C80.46614 (12)0.20997 (10)0.38666 (7)0.0244 (3)
H80.39970.23220.37130.029*
C90.54855 (13)0.26859 (11)0.40074 (8)0.0287 (4)
H90.53710.32950.39480.034*
C100.64792 (12)0.23684 (11)0.42370 (7)0.0258 (3)
H100.70320.27630.43320.031*
C110.66436 (11)0.14632 (11)0.43231 (7)0.0223 (3)
H110.73100.12470.44750.027*
C120.58171 (11)0.08718 (10)0.41835 (6)0.0185 (3)
H120.59390.02640.42460.022*
C130.28202 (11)0.05273 (9)0.43088 (6)0.0159 (3)
C140.19262 (11)0.00334 (10)0.42642 (7)0.0210 (3)
H140.17190.03910.39560.025*
C150.13399 (12)0.01638 (11)0.46710 (7)0.0254 (3)
H150.07500.01740.46350.031*
C160.16361 (12)0.07993 (11)0.51311 (7)0.0252 (3)
H160.12420.08910.54020.030*
C170.25164 (12)0.12936 (11)0.51847 (7)0.0251 (3)
H170.27170.17190.54940.030*
C180.31062 (11)0.11602 (10)0.47793 (7)0.0203 (3)
H180.37000.14970.48210.024*
C190.41975 (10)0.08517 (9)0.38053 (6)0.0151 (3)
C200.47948 (11)0.11181 (10)0.34217 (7)0.0192 (3)
H200.49070.07190.31340.023*
C210.52196 (12)0.19630 (10)0.34629 (7)0.0238 (3)
H210.56110.21280.32030.029*
C220.50633 (12)0.25642 (10)0.38912 (7)0.0250 (3)
H220.53510.31320.39210.030*
C230.44760 (12)0.23154 (10)0.42747 (7)0.0247 (3)
H230.43660.27180.45610.030*
C240.40487 (11)0.14636 (10)0.42328 (7)0.0194 (3)
H240.36590.13020.44940.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ge10.01210 (7)0.01250 (7)0.01693 (7)0.00005 (6)0.00481 (5)0.00168 (6)
Si10.01585 (18)0.01453 (18)0.01666 (18)0.00156 (14)0.00463 (14)0.00171 (14)
C10.0175 (6)0.0189 (7)0.0196 (7)0.0025 (5)0.0021 (5)0.0043 (5)
C20.0260 (8)0.0266 (8)0.0293 (8)0.0083 (7)0.0042 (7)0.0038 (7)
C30.0249 (8)0.0306 (9)0.0245 (8)0.0037 (7)0.0025 (6)0.0045 (7)
C40.0281 (8)0.0279 (8)0.0297 (9)0.0060 (7)0.0044 (7)0.0127 (7)
C50.0269 (8)0.0245 (8)0.0309 (9)0.0112 (7)0.0013 (7)0.0060 (7)
C60.0410 (10)0.0391 (10)0.0243 (8)0.0134 (8)0.0132 (7)0.0001 (7)
C70.0152 (6)0.0170 (6)0.0161 (6)0.0019 (5)0.0050 (5)0.0015 (5)
C80.0198 (7)0.0182 (7)0.0322 (8)0.0008 (6)0.0024 (6)0.0008 (6)
C90.0291 (8)0.0182 (7)0.0356 (9)0.0064 (6)0.0039 (7)0.0003 (7)
C100.0231 (7)0.0305 (8)0.0225 (7)0.0123 (6)0.0040 (6)0.0018 (6)
C110.0148 (6)0.0328 (8)0.0178 (7)0.0026 (6)0.0021 (5)0.0009 (6)
C120.0176 (7)0.0208 (7)0.0168 (6)0.0004 (5)0.0044 (5)0.0014 (5)
C130.0151 (6)0.0158 (6)0.0167 (6)0.0016 (5)0.0044 (5)0.0001 (5)
C140.0220 (7)0.0226 (7)0.0199 (7)0.0051 (6)0.0082 (6)0.0044 (6)
C150.0220 (7)0.0318 (9)0.0251 (8)0.0066 (6)0.0108 (6)0.0023 (6)
C160.0249 (8)0.0334 (9)0.0206 (7)0.0041 (7)0.0117 (6)0.0005 (6)
C170.0277 (8)0.0277 (8)0.0200 (7)0.0009 (6)0.0069 (6)0.0073 (6)
C180.0189 (7)0.0209 (7)0.0209 (7)0.0017 (6)0.0051 (6)0.0037 (6)
C190.0135 (6)0.0123 (6)0.0189 (6)0.0003 (5)0.0034 (5)0.0023 (5)
C200.0184 (7)0.0187 (7)0.0215 (7)0.0019 (5)0.0073 (5)0.0006 (6)
C210.0216 (7)0.0216 (7)0.0290 (8)0.0051 (6)0.0083 (6)0.0045 (6)
C220.0256 (8)0.0124 (6)0.0327 (8)0.0033 (6)0.0010 (6)0.0025 (6)
C230.0306 (8)0.0173 (7)0.0239 (8)0.0016 (6)0.0038 (6)0.0047 (6)
C240.0201 (7)0.0183 (7)0.0201 (7)0.0017 (6)0.0060 (5)0.0009 (6)
Geometric parameters (Å, º) top
Ge1—Si12.4026 (4)C9—H90.9300
Ge1—C71.9618 (14)C9—C101.384 (2)
Ge1—C131.9648 (14)C10—H100.9300
Ge1—C191.9512 (13)C10—C111.379 (2)
Si1—C11.9078 (15)C11—H110.9300
Si1—C51.8687 (15)C11—C121.393 (2)
Si1—C61.8670 (17)C12—H120.9300
C1—C21.536 (2)C13—C141.398 (2)
C1—C31.534 (2)C13—C181.400 (2)
C1—C41.537 (2)C14—H140.9300
C2—H2A0.9600C14—C151.389 (2)
C2—H2B0.9600C15—H150.9300
C2—H2C0.9600C15—C161.388 (2)
C3—H3A0.9600C16—H160.9300
C3—H3B0.9600C16—C171.379 (2)
C3—H3C0.9600C17—H170.9300
C4—H4A0.9600C17—C181.391 (2)
C4—H4B0.9600C18—H180.9300
C4—H4C0.9600C19—C201.4019 (19)
C5—H5A0.9600C19—C241.390 (2)
C5—H5B0.9600C20—H200.9300
C5—H5C0.9600C20—C211.383 (2)
C6—H6A0.9600C21—H210.9300
C6—H6B0.9600C21—C221.385 (2)
C6—H6C0.9600C22—H220.9300
C7—C81.403 (2)C22—C231.384 (2)
C7—C121.3939 (19)C23—H230.9300
C8—H80.9300C23—C241.393 (2)
C8—C91.385 (2)C24—H240.9300
C7—Ge1—Si1107.93 (4)C7—C8—H8119.4
C7—Ge1—C13107.92 (6)C9—C8—C7121.19 (15)
C13—Ge1—Si1110.34 (4)C9—C8—H8119.4
C19—Ge1—Si1113.92 (4)C8—C9—H9119.9
C19—Ge1—C7106.89 (6)C10—C9—C8120.28 (15)
C19—Ge1—C13109.61 (6)C10—C9—H9119.9
C1—Si1—Ge1114.67 (5)C9—C10—H10120.2
C5—Si1—Ge1104.47 (5)C11—C10—C9119.52 (14)
C5—Si1—C1109.35 (7)C11—C10—H10120.2
C6—Si1—Ge1109.08 (6)C10—C11—H11119.8
C6—Si1—C1110.26 (7)C10—C11—C12120.39 (14)
C6—Si1—C5108.72 (9)C12—C11—H11119.8
C2—C1—Si1111.05 (10)C7—C12—H12119.5
C2—C1—C4108.84 (13)C11—C12—C7121.06 (14)
C3—C1—Si1108.38 (10)C11—C12—H12119.5
C3—C1—C2109.00 (13)C14—C13—Ge1121.31 (10)
C3—C1—C4108.31 (13)C14—C13—C18117.60 (13)
C4—C1—Si1111.20 (10)C18—C13—Ge1121.09 (11)
C1—C2—H2A109.5C13—C14—H14119.3
C1—C2—H2B109.5C15—C14—C13121.38 (14)
C1—C2—H2C109.5C15—C14—H14119.3
H2A—C2—H2B109.5C14—C15—H15120.0
H2A—C2—H2C109.5C16—C15—C14119.93 (15)
H2B—C2—H2C109.5C16—C15—H15120.0
C1—C3—H3A109.5C15—C16—H16120.1
C1—C3—H3B109.5C17—C16—C15119.72 (14)
C1—C3—H3C109.5C17—C16—H16120.1
H3A—C3—H3B109.5C16—C17—H17119.8
H3A—C3—H3C109.5C16—C17—C18120.36 (14)
H3B—C3—H3C109.5C18—C17—H17119.8
C1—C4—H4A109.5C13—C18—H18119.5
C1—C4—H4B109.5C17—C18—C13121.01 (14)
C1—C4—H4C109.5C17—C18—H18119.5
H4A—C4—H4B109.5C20—C19—Ge1118.88 (10)
H4A—C4—H4C109.5C24—C19—Ge1123.24 (10)
H4B—C4—H4C109.5C24—C19—C20117.87 (13)
Si1—C5—H5A109.5C19—C20—H20119.3
Si1—C5—H5B109.5C21—C20—C19121.30 (14)
Si1—C5—H5C109.5C21—C20—H20119.3
H5A—C5—H5B109.5C20—C21—H21120.0
H5A—C5—H5C109.5C20—C21—C22120.06 (14)
H5B—C5—H5C109.5C22—C21—H21120.0
Si1—C6—H6A109.5C21—C22—H22120.2
Si1—C6—H6B109.5C23—C22—C21119.62 (14)
Si1—C6—H6C109.5C23—C22—H22120.2
H6A—C6—H6B109.5C22—C23—H23119.9
H6A—C6—H6C109.5C22—C23—C24120.25 (14)
H6B—C6—H6C109.5C24—C23—H23119.9
C8—C7—Ge1120.48 (11)C19—C24—C23120.90 (14)
C12—C7—Ge1121.93 (11)C19—C24—H24119.6
C12—C7—C8117.57 (13)C23—C24—H24119.6
Ge1—C7—C8—C9178.11 (13)C13—C14—C15—C160.4 (2)
Ge1—C7—C12—C11177.92 (11)C14—C13—C18—C170.3 (2)
Ge1—C13—C14—C15178.96 (12)C14—C15—C16—C170.5 (3)
Ge1—C13—C18—C17178.66 (12)C15—C16—C17—C180.2 (2)
Ge1—C19—C20—C21179.40 (11)C16—C17—C18—C130.2 (2)
Ge1—C19—C24—C23179.38 (11)C18—C13—C14—C150.0 (2)
C7—C8—C9—C100.1 (3)C19—C20—C21—C220.3 (2)
C8—C7—C12—C110.3 (2)C20—C19—C24—C230.4 (2)
C8—C9—C10—C110.2 (2)C20—C21—C22—C230.3 (2)
C9—C10—C11—C120.3 (2)C21—C22—C23—C240.3 (2)
C10—C11—C12—C70.4 (2)C22—C23—C24—C190.4 (2)
C12—C7—C8—C90.2 (2)C24—C19—C20—C210.3 (2)

Experimental details

Crystal data
Chemical formulaC24H30GeSi
Mr419.16
Crystal system, space groupMonoclinic, C2/c
Temperature (K)120
a, b, c (Å)13.5332 (6), 14.9825 (7), 22.7179 (13)
β (°) 106.2048 (10)
V3)4423.3 (4)
Z8
Radiation typeMo Kα
µ (mm1)1.44
Crystal size (mm)0.32 × 0.29 × 0.24
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2013)
Tmin, Tmax0.720, 0.862
No. of measured, independent and
observed [I > 2σ(I)] reflections
32242, 7990, 6137
Rint0.043
(sin θ/λ)max1)0.759
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.071, 1.01
No. of reflections7990
No. of parameters240
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.37

Computer programs: APEX2 (Bruker, 2013), SAINT (Bruker, 2013), SHELXS2014 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), OLEX2 (Dolomanov et al., 2009).

 

Acknowledgements

This work was supported financially by the Russian President Grant for Young Russian Scientists (MK-1790.2014.3)

References

First citationAmadoruge, M. L. & Weinert, C. S. (2008). Chem. Rev. 108, 4253–4294.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2013). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChurakov, A. V., Prikhodchenko, P. V. & Howard, J. A. K. (2005). CrystEngComm, 7, 664–669.  Web of Science CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLeigh, W. J., Kroll, E. C., Toltl, N. P. & Britten, J. F. (1997). Acta Cryst. C53, IUC9700006.  CSD CrossRef IUCr Journals Google Scholar
First citationMarschner, C. & Hlina, J. (2013). Comprehensive Inorganic Chemistry II, 2nd ed., edited by J. Reedijk & K. Poeppelmeier, pp. 83–117. Amsterdam: Elsevier.  Google Scholar
First citationPárkányi, L., Hernandez, C. & Pannell, K. H. (1986). J. Organomet. Chem. 301, 145–151.  CSD CrossRef CAS Web of Science Google Scholar
First citationScudder, M. & Dance, I. (2000). J. Chem. Soc. Dalton Trans. pp. 2909–2915.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSteiner, T. (2000). New J. Chem. 24, 137–142.  Web of Science CrossRef CAS Google Scholar
First citationZaitsev, K. V., Churakov, A. V., Poleshchuk, O. K., Oprunenko, Yu. F., Zaitseva, G. S. & Karlov, S. S. (2014a). Dalton Trans. 43, 6605–6609.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZaitsev, K. V., Kapranov, A. A., Churakov, A. V., Poleshchuk, O. K., Oprunenko, Yu. F., Tarasevich, B. N., Zaitseva, G. S. & Karlov, S. S. (2013). Organometallics, 32, 6500–6510.  Web of Science CSD CrossRef CAS Google Scholar
First citationZaitsev, K. V., Kapranov, A. A., Oprunenko, Y. F., Churakov, A. V., Howard, J. A. K., Tarasevich, B. N., Karlov, S. S. & Zaitseva, G. S. (2012). J. Organomet. Chem. 700, 207–213.  Web of Science CSD CrossRef CAS Google Scholar
First citationZaitsev, K. V., Lermontova, E. K., Churakov, A. V., Tafeenko, V. A., Tarasevich, B. N., Poleshchuk, O. K., Kharcheva, A. V., Magdesieva, T. V., Nikitin, O. M., Zaitseva, G. S. & Karlov, S. S. (2015). Organometallics, 34, 2765–2774.  Web of Science CSD CrossRef CAS Google Scholar
First citationZaitsev, K. V., Oprunenko, Y. F., Churakov, A. V., Zaitseva, G. S. & Karlov, S. S. (2014b). Main Group Met. Chem. 37, 67–74.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds