metal-organic compounds
H-benzimidazol-2-yl-κN3)methyl]sulfane}dichloridomercury(II)
of {bis[(1aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale CHEMS, Université Frères Montouri, Constantine 25000, Algeria, bLaboratoire de Synthèse des Molécules d'Intérêts Biologiques, Université des Frères Mentouri, Constantine 25000, Algeria, cLaboratoire des Produits Naturels d'Origine Végétale et de Synthèse Organique, PHYSYNOR, Université Frères Montouri, Constantine 25000, Algeria, and dDépartement Sciences de la Matière, Faculté des Sciences Exactes et Sciences de la Nature et de la Vie, Université Oum El Bouaghi, Algeria
*Correspondence e-mail: bouacida_sofiane@yahoo.fr
In the 2(C16H14N4S)], the HgII cation is linked to two Cl atoms and two imidazole N atoms of the chelating bis[(1H-benzimidazol-2-yl)methyl]sulfane ligand, forming a slightly distorted tetrahedral environment. The substitued imidazole rings of the ligand are almost perfectly planar [with maximum deviations of 0.017 (3) and 0.012 (3) Å] and form a dihedral angle of 42.51 (5)°. The crystal packing can be described as alternating layers parallel to (010). In this arrangement, N—H⋯Cl hydrogen bonds between the N—H groups of the benzimidazole moieties and chloride ligands are responsible for the formation of the chain-like packing pattern along [010] exhibiting a C(6) graph-set motif.
of the title compound, [HgClCCDC reference: 1440754
1. Related literature
For the synthesis and applications of benzimiazole derivatives, see: Tiwari et al. (2007); Gowda et al. (2009); Sondhi et al., (2010). For the coordination of benzimiazole derivatives, see: Téllez et al. (2008); Sundberg & Martin (1974); Reedijk (1987).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
|
Data collection: APEX2 (Bruker, 2011); cell SAINT (Bruker, 2011); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXT (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012) and CRYSCAL (T. Roisnel, local program).
Supporting information
CCDC reference: 1440754
https://doi.org/10.1107/S205698901502349X/im2475sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698901502349X/im2475Isup2.hkl
Benzimidazole derivatives are reported to be physiologically and pharmacologically active (Tiwari, et al., 2007) and have shown different therapeutic properties such as antihypertensive, anticoagulant, antiallergic, analgesic, anti-inflammatory, antimicrobial, antiparasitic and antioxidant (Thimme Gowda, et al., 2009). Because of their significant medicinal importance, the synthesis of substituted benzimidazoles has become a focus of synthetic organic chemistry (Sondhi, et al., 2010). Benzimidazoles act as good ligands towards transition metal ions and give place to a variety of metal-ligand coordination modes. Their reactions with metal salts have played a significant role in the development of coordination chemistry of this class of ligands (Téllez, et al., 2008). Several research groups have investigated the coordination behavior of benzimidazole derivatives towards transition metal ions (Sundberg & Martin 1974; Reedijk, 1987) and numerous studies concerned with the biological activity of coordination compounds containing benzimidazole derivatives are also in progress.
Herein, we report the synthesis and
of a new complex based on mercury and a chelating bis-benzimidazole ligand. The molecular structure of (I) together with the atomic numbering scheme is illustrated in Fig. 1.In the
of [HgCl2(C16H14N4S)], (I), the HgII cation is linked to two chlorine atoms and two imidazole N atoms of the chelating ligand bis((1H-benzo[d]imidazol-2-yl)methyl)sulfane forming a slightly distorted tetrahedral environment [Hg—N = 2.2991 (19) and 2.2471 (19)Å; Hg—Cl = 2.4459 (7) and 2.4554 (7)Å].Substitued imidazole rings of the ligand are almost perfectly planar [with maximum deviation of 0.0170 (26) Å at C13 and 0.0121 (28) Å at C5] and form a dihedral angle of 42.51 (5)°.
The crystal packing can be described by alternating layers parallel to (010) (Figure 2). In this arragement N—H···Cl hydrogen bonds between amine moities and chloride ligands are responsible for the formation of the one-dimensional chain-like packing pattern exhibiting a C11(6) graph set motif (Etter et al., 1990; Bernstein et al., 1995). Additional hydrogen-bonding parameters are listed in Table 1. The packing is consolidated by π-π stacking interactions with centroid to centroid distances of 3.5525 (14) to 3.6963 (14)Å between benzimidazole rings. These interactions link the molecules within the layers and also link the layers together reinforcing the cohesion of the complex structure.
Complex I was prepared by stirring 294 mg (1 mmol) of bis((1H-benzo[d]imidazol-2-yl)methyl)sulfane and 271 mg (1 mmol) HgCl2 in 20 mL of methanol for 24 h. The obtained solid was filtered and recrystallized by diffusion of diethyl ether into a DMF solution of the title compound at room temperature. Colorless crystals (yield: 83%) suitable for the X-ray diffraction study were obtained by this procedure.
Crystal data, data collection and structure
details are summarized in Table 1. H atoms were localized on Fourier maps but introduced into calculated positions and treated as riding on their parent atom (C or N) with C—H = 0.93 Å (aromatic), C—H = 0.97 Å (methylene) and N—H = 0.86 Å (amine) with Uiso(H) = 1.2Ueq (C or N).Benzimidazole derivatives are reported to be physiologically and pharmacologically active (Tiwari, et al., 2007) and have shown different therapeutic properties such as antihypertensive, anticoagulant, antiallergic, analgesic, anti-inflammatory, antimicrobial, antiparasitic and antioxidant (Thimme Gowda, et al., 2009). Because of their significant medicinal importance, the synthesis of substituted benzimidazoles has become a focus of synthetic organic chemistry (Sondhi, et al., 2010). Benzimidazoles act as good ligands towards transition metal ions and give place to a variety of metal-ligand coordination modes. Their reactions with metal salts have played a significant role in the development of coordination chemistry of this class of ligands (Téllez, et al., 2008). Several research groups have investigated the coordination behavior of benzimidazole derivatives towards transition metal ions (Sundberg & Martin 1974; Reedijk, 1987) and numerous studies concerned with the biological activity of coordination compounds containing benzimidazole derivatives are also in progress.
Herein, we report the synthesis and
of a new complex based on mercury and a chelating bis-benzimidazole ligand. The molecular structure of (I) together with the atomic numbering scheme is illustrated in Fig. 1.In the
of [HgCl2(C16H14N4S)], (I), the HgII cation is linked to two chlorine atoms and two imidazole N atoms of the chelating ligand bis((1H-benzo[d]imidazol-2-yl)methyl)sulfane forming a slightly distorted tetrahedral environment [Hg—N = 2.2991 (19) and 2.2471 (19)Å; Hg—Cl = 2.4459 (7) and 2.4554 (7)Å].Substitued imidazole rings of the ligand are almost perfectly planar [with maximum deviation of 0.0170 (26) Å at C13 and 0.0121 (28) Å at C5] and form a dihedral angle of 42.51 (5)°.
The crystal packing can be described by alternating layers parallel to (010) (Figure 2). In this arragement N—H···Cl hydrogen bonds between amine moities and chloride ligands are responsible for the formation of the one-dimensional chain-like packing pattern exhibiting a C11(6) graph set motif (Etter et al., 1990; Bernstein et al., 1995). Additional hydrogen-bonding parameters are listed in Table 1. The packing is consolidated by π-π stacking interactions with centroid to centroid distances of 3.5525 (14) to 3.6963 (14)Å between benzimidazole rings. These interactions link the molecules within the layers and also link the layers together reinforcing the cohesion of the complex structure.
For the synthesis and applications of benzimiazole derivatives, see: Tiwari et al. (2007); Gowda et al. (2009); Sondhi et al., (2010). For the coordination of benzimiazole derivatives, see: Téllez et al. (2008); Sundberg & Martin (1974); Reedijk (1987).
Complex I was prepared by stirring 294 mg (1 mmol) of bis((1H-benzo[d]imidazol-2-yl)methyl)sulfane and 271 mg (1 mmol) HgCl2 in 20 mL of methanol for 24 h. The obtained solid was filtered and recrystallized by diffusion of diethyl ether into a DMF solution of the title compound at room temperature. Colorless crystals (yield: 83%) suitable for the X-ray diffraction study were obtained by this procedure.
detailsCrystal data, data collection and structure
details are summarized in Table 1. H atoms were localized on Fourier maps but introduced into calculated positions and treated as riding on their parent atom (C or N) with C—H = 0.93 Å (aromatic), C—H = 0.97 Å (methylene) and N—H = 0.86 Å (amine) with Uiso(H) = 1.2Ueq (C or N).Data collection: APEX2 (Bruker, 2011); cell
SAINT (Bruker, 2011); data reduction: SAINT (Bruker, 2011); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXT (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012) and CRYSCAL (T. Roisnel, local program).[HgCl2(C16H14N4S)] | Dx = 2.173 Mg m−3 |
Mr = 565.86 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbca | Cell parameters from 9958 reflections |
a = 13.8558 (3) Å | θ = 2.3–29.6° |
b = 15.4983 (4) Å | µ = 9.33 mm−1 |
c = 16.1108 (4) Å | T = 295 K |
V = 3459.66 (14) Å3 | Prism, colorless |
Z = 8 | 0.16 × 0.11 × 0.09 mm |
F(000) = 2144 |
Bruker APEXII diffractometer | 5594 independent reflections |
Radiation source: Enraf Nonius FR590 | 4351 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.035 |
CCD rotation images, thick slices scans | θmax = 31.2°, θmin = 2.5° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) | h = −20→20 |
Tmin = 0.646, Tmax = 0.746 | k = −22→22 |
78309 measured reflections | l = −22→23 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.020 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.046 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0162P)2 + 4.119P] where P = (Fo2 + 2Fc2)/3 |
5594 reflections | (Δ/σ)max = 0.001 |
217 parameters | Δρmax = 0.86 e Å−3 |
0 restraints | Δρmin = −0.93 e Å−3 |
[HgCl2(C16H14N4S)] | V = 3459.66 (14) Å3 |
Mr = 565.86 | Z = 8 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 13.8558 (3) Å | µ = 9.33 mm−1 |
b = 15.4983 (4) Å | T = 295 K |
c = 16.1108 (4) Å | 0.16 × 0.11 × 0.09 mm |
Bruker APEXII diffractometer | 5594 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) | 4351 reflections with I > 2σ(I) |
Tmin = 0.646, Tmax = 0.746 | Rint = 0.035 |
78309 measured reflections |
R[F2 > 2σ(F2)] = 0.020 | 0 restraints |
wR(F2) = 0.046 | H-atom parameters constrained |
S = 1.01 | Δρmax = 0.86 e Å−3 |
5594 reflections | Δρmin = −0.93 e Å−3 |
217 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | −0.02521 (16) | 0.28013 (15) | 0.20752 (14) | 0.0275 (5) | |
C2 | −0.08439 (18) | 0.21383 (18) | 0.17932 (16) | 0.0350 (5) | |
H2 | −0.0882 | 0.1613 | 0.207 | 0.042* | |
C3 | −0.13721 (19) | 0.2296 (2) | 0.10828 (17) | 0.0425 (7) | |
H3 | −0.1779 | 0.1868 | 0.088 | 0.051* | |
C4 | −0.1311 (2) | 0.3079 (2) | 0.06612 (17) | 0.0447 (7) | |
H4 | −0.1673 | 0.3155 | 0.0181 | 0.054* | |
C5 | −0.07323 (19) | 0.3743 (2) | 0.09337 (17) | 0.0404 (6) | |
H5 | −0.0696 | 0.4266 | 0.0652 | 0.048* | |
C6 | −0.02053 (17) | 0.35897 (16) | 0.16529 (15) | 0.0289 (5) | |
C7 | 0.07692 (16) | 0.36125 (15) | 0.27412 (15) | 0.0272 (5) | |
C8 | 0.14891 (18) | 0.39298 (16) | 0.33483 (16) | 0.0332 (5) | |
H8A | 0.193 | 0.4319 | 0.3068 | 0.04* | |
H8B | 0.1862 | 0.3444 | 0.3551 | 0.04* | |
C9 | 0.0330 (2) | 0.36181 (17) | 0.47575 (17) | 0.0355 (5) | |
H9A | −0.0062 | 0.3861 | 0.5198 | 0.043* | |
H9B | −0.0101 | 0.3339 | 0.4366 | 0.043* | |
C10 | 0.09852 (17) | 0.29578 (15) | 0.51189 (14) | 0.0272 (4) | |
C11 | 0.17866 (16) | 0.17664 (14) | 0.53263 (14) | 0.0247 (4) | |
C12 | 0.21845 (18) | 0.09428 (16) | 0.52899 (16) | 0.0321 (5) | |
H12 | 0.2047 | 0.0568 | 0.4855 | 0.039* | |
C13 | 0.27933 (19) | 0.07089 (18) | 0.59296 (17) | 0.0388 (6) | |
H13 | 0.3068 | 0.0161 | 0.5925 | 0.047* | |
C14 | 0.30100 (19) | 0.12684 (19) | 0.65845 (17) | 0.0394 (6) | |
H14 | 0.3426 | 0.1085 | 0.7001 | 0.047* | |
C15 | 0.26224 (19) | 0.20829 (18) | 0.66267 (16) | 0.0362 (6) | |
H15 | 0.277 | 0.2458 | 0.7059 | 0.043* | |
C16 | 0.19957 (16) | 0.23173 (15) | 0.59886 (14) | 0.0274 (5) | |
N1 | 0.03651 (14) | 0.28386 (12) | 0.27585 (12) | 0.0272 (4) | |
N2 | 0.11618 (14) | 0.21920 (12) | 0.47882 (12) | 0.0268 (4) | |
N3 | 0.04426 (15) | 0.40839 (13) | 0.20965 (13) | 0.0311 (4) | |
H3N | 0.061 | 0.4605 | 0.1981 | 0.037* | |
N4 | 0.14764 (15) | 0.30614 (13) | 0.58354 (12) | 0.0310 (4) | |
H4N | 0.1468 | 0.3514 | 0.6144 | 0.037* | |
S1 | 0.09600 (6) | 0.44882 (4) | 0.42297 (4) | 0.04249 (16) | |
Cl1 | −0.09138 (5) | 0.08943 (4) | 0.37366 (4) | 0.04179 (15) | |
Cl2 | 0.17398 (6) | 0.08112 (5) | 0.27101 (5) | 0.0583 (2) | |
Hg1 | 0.063397 (7) | 0.164790 (6) | 0.357762 (6) | 0.03372 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0263 (10) | 0.0325 (12) | 0.0237 (11) | 0.0028 (9) | 0.0011 (9) | −0.0008 (9) |
C2 | 0.0365 (13) | 0.0382 (14) | 0.0305 (13) | −0.0066 (10) | −0.0014 (10) | −0.0039 (11) |
C3 | 0.0328 (13) | 0.0611 (19) | 0.0336 (14) | −0.0083 (12) | −0.0045 (11) | −0.0068 (13) |
C4 | 0.0345 (13) | 0.072 (2) | 0.0279 (13) | 0.0039 (13) | −0.0069 (11) | 0.0007 (13) |
C5 | 0.0421 (14) | 0.0491 (16) | 0.0301 (13) | 0.0088 (12) | 0.0002 (11) | 0.0075 (12) |
C6 | 0.0299 (11) | 0.0332 (12) | 0.0236 (11) | 0.0046 (9) | 0.0023 (9) | 0.0005 (9) |
C7 | 0.0309 (11) | 0.0238 (10) | 0.0268 (11) | 0.0003 (8) | 0.0015 (9) | 0.0001 (9) |
C8 | 0.0380 (12) | 0.0284 (12) | 0.0331 (13) | −0.0074 (10) | −0.0037 (10) | −0.0004 (10) |
C9 | 0.0421 (13) | 0.0332 (12) | 0.0311 (13) | 0.0104 (11) | 0.0032 (11) | −0.0015 (10) |
C10 | 0.0309 (11) | 0.0270 (11) | 0.0238 (11) | 0.0008 (9) | 0.0030 (9) | −0.0001 (9) |
C11 | 0.0265 (10) | 0.0259 (11) | 0.0216 (10) | −0.0032 (8) | 0.0019 (8) | 0.0019 (8) |
C12 | 0.0374 (12) | 0.0281 (11) | 0.0309 (13) | 0.0009 (10) | 0.0024 (10) | −0.0010 (10) |
C13 | 0.0382 (13) | 0.0357 (13) | 0.0426 (15) | 0.0062 (11) | 0.0017 (11) | 0.0098 (11) |
C14 | 0.0355 (13) | 0.0461 (15) | 0.0366 (15) | −0.0004 (12) | −0.0050 (11) | 0.0117 (12) |
C15 | 0.0407 (14) | 0.0405 (14) | 0.0274 (12) | −0.0082 (11) | −0.0055 (10) | 0.0009 (10) |
C16 | 0.0299 (11) | 0.0272 (11) | 0.0250 (11) | −0.0042 (9) | 0.0020 (9) | 0.0019 (9) |
N1 | 0.0315 (9) | 0.0242 (9) | 0.0259 (10) | −0.0014 (7) | −0.0034 (8) | 0.0016 (8) |
N2 | 0.0299 (9) | 0.0253 (9) | 0.0252 (10) | −0.0001 (7) | 0.0000 (8) | −0.0015 (8) |
N3 | 0.0395 (11) | 0.0247 (9) | 0.0291 (10) | −0.0005 (8) | −0.0004 (8) | 0.0045 (8) |
N4 | 0.0426 (11) | 0.0249 (9) | 0.0254 (10) | −0.0004 (8) | 0.0015 (9) | −0.0043 (8) |
S1 | 0.0708 (5) | 0.0221 (3) | 0.0345 (3) | 0.0013 (3) | −0.0047 (3) | −0.0040 (3) |
Cl1 | 0.0454 (3) | 0.0340 (3) | 0.0460 (4) | −0.0095 (3) | 0.0061 (3) | −0.0095 (3) |
Cl2 | 0.0735 (5) | 0.0413 (4) | 0.0601 (5) | 0.0137 (4) | 0.0196 (4) | −0.0056 (3) |
Hg1 | 0.04398 (6) | 0.02599 (5) | 0.03120 (5) | −0.00193 (4) | −0.00583 (4) | −0.00131 (4) |
C1—C2 | 1.391 (3) | C9—H9B | 0.97 |
C1—N1 | 1.395 (3) | C10—N2 | 1.324 (3) |
C1—C6 | 1.400 (3) | C10—N4 | 1.350 (3) |
C2—C3 | 1.380 (4) | C11—N2 | 1.391 (3) |
C2—H2 | 0.93 | C11—C12 | 1.392 (3) |
C3—C4 | 1.393 (4) | C11—C16 | 1.397 (3) |
C3—H3 | 0.93 | C12—C13 | 1.380 (4) |
C4—C5 | 1.378 (4) | C12—H12 | 0.93 |
C4—H4 | 0.93 | C13—C14 | 1.398 (4) |
C5—C6 | 1.390 (4) | C13—H13 | 0.93 |
C5—H5 | 0.93 | C14—C15 | 1.373 (4) |
C6—N3 | 1.380 (3) | C14—H14 | 0.93 |
C7—N1 | 1.324 (3) | C15—C16 | 1.394 (3) |
C7—N3 | 1.348 (3) | C15—H15 | 0.93 |
C7—C8 | 1.481 (3) | C16—N4 | 1.382 (3) |
C8—S1 | 1.817 (3) | N1—Hg1 | 2.2991 (19) |
C8—H8A | 0.97 | N2—Hg1 | 2.2471 (19) |
C8—H8B | 0.97 | N3—H3N | 0.86 |
C9—C10 | 1.487 (3) | N4—H4N | 0.86 |
C9—S1 | 1.818 (3) | Cl1—Hg1 | 2.4554 (7) |
C9—H9A | 0.97 | Cl2—Hg1 | 2.4459 (7) |
C2—C1—N1 | 130.5 (2) | N2—C11—C16 | 108.38 (19) |
C2—C1—C6 | 120.9 (2) | C12—C11—C16 | 120.7 (2) |
N1—C1—C6 | 108.6 (2) | C13—C12—C11 | 116.8 (2) |
C3—C2—C1 | 116.9 (3) | C13—C12—H12 | 121.6 |
C3—C2—H2 | 121.5 | C11—C12—H12 | 121.6 |
C1—C2—H2 | 121.5 | C12—C13—C14 | 122.1 (3) |
C2—C3—C4 | 121.8 (3) | C12—C13—H13 | 118.9 |
C2—C3—H3 | 119.1 | C14—C13—H13 | 118.9 |
C4—C3—H3 | 119.1 | C15—C14—C13 | 121.6 (2) |
C5—C4—C3 | 122.1 (3) | C15—C14—H14 | 119.2 |
C5—C4—H4 | 119 | C13—C14—H14 | 119.2 |
C3—C4—H4 | 119 | C14—C15—C16 | 116.5 (2) |
C4—C5—C6 | 116.3 (3) | C14—C15—H15 | 121.7 |
C4—C5—H5 | 121.8 | C16—C15—H15 | 121.7 |
C6—C5—H5 | 121.8 | N4—C16—C15 | 132.4 (2) |
N3—C6—C5 | 132.7 (2) | N4—C16—C11 | 105.41 (19) |
N3—C6—C1 | 105.2 (2) | C15—C16—C11 | 122.2 (2) |
C5—C6—C1 | 122.0 (2) | C7—N1—C1 | 106.27 (19) |
N1—C7—N3 | 111.4 (2) | C7—N1—Hg1 | 132.12 (16) |
N1—C7—C8 | 124.9 (2) | C1—N1—Hg1 | 121.26 (15) |
N3—C7—C8 | 123.7 (2) | C10—N2—C11 | 106.81 (19) |
C7—C8—S1 | 113.73 (18) | C10—N2—Hg1 | 128.73 (16) |
C7—C8—H8A | 108.8 | C11—N2—Hg1 | 124.43 (14) |
S1—C8—H8A | 108.8 | C7—N3—C6 | 108.5 (2) |
C7—C8—H8B | 108.8 | C7—N3—H3N | 125.8 |
S1—C8—H8B | 108.8 | C6—N3—H3N | 125.8 |
H8A—C8—H8B | 107.7 | C10—N4—C16 | 108.43 (19) |
C10—C9—S1 | 113.62 (19) | C10—N4—H4N | 125.8 |
C10—C9—H9A | 108.8 | C16—N4—H4N | 125.8 |
S1—C9—H9A | 108.8 | C8—S1—C9 | 101.89 (12) |
C10—C9—H9B | 108.8 | N2—Hg1—N1 | 104.46 (7) |
S1—C9—H9B | 108.8 | N2—Hg1—Cl2 | 119.40 (5) |
H9A—C9—H9B | 107.7 | N1—Hg1—Cl2 | 101.48 (5) |
N2—C10—N4 | 111.0 (2) | N2—Hg1—Cl1 | 111.85 (5) |
N2—C10—C9 | 124.9 (2) | N1—Hg1—Cl1 | 107.47 (5) |
N4—C10—C9 | 124.1 (2) | Cl2—Hg1—Cl1 | 110.77 (3) |
N2—C11—C12 | 130.9 (2) | ||
N1—C1—C2—C3 | −179.5 (2) | C2—C1—N1—Hg1 | 5.2 (3) |
C6—C1—C2—C3 | 0.3 (4) | C6—C1—N1—Hg1 | −174.53 (15) |
C1—C2—C3—C4 | 0.6 (4) | N4—C10—N2—C11 | 1.2 (3) |
C2—C3—C4—C5 | −0.9 (5) | C9—C10—N2—C11 | −178.4 (2) |
C3—C4—C5—C6 | 0.3 (4) | N4—C10—N2—Hg1 | −176.69 (15) |
C4—C5—C6—N3 | 179.2 (3) | C9—C10—N2—Hg1 | 3.7 (3) |
C4—C5—C6—C1 | 0.5 (4) | C12—C11—N2—C10 | 178.5 (2) |
C2—C1—C6—N3 | −179.8 (2) | C16—C11—N2—C10 | −1.2 (2) |
N1—C1—C6—N3 | 0.0 (3) | C12—C11—N2—Hg1 | −3.4 (3) |
C2—C1—C6—C5 | −0.8 (4) | C16—C11—N2—Hg1 | 176.80 (14) |
N1—C1—C6—C5 | 178.9 (2) | N1—C7—N3—C6 | −0.9 (3) |
N1—C7—C8—S1 | −91.1 (3) | C8—C7—N3—C6 | 179.1 (2) |
N3—C7—C8—S1 | 88.9 (3) | C5—C6—N3—C7 | −178.3 (3) |
S1—C9—C10—N2 | −102.2 (3) | C1—C6—N3—C7 | 0.6 (3) |
S1—C9—C10—N4 | 78.2 (3) | N2—C10—N4—C16 | −0.8 (3) |
N2—C11—C12—C13 | 179.7 (2) | C9—C10—N4—C16 | 178.9 (2) |
C16—C11—C12—C13 | −0.6 (3) | C15—C16—N4—C10 | 179.2 (3) |
C11—C12—C13—C14 | −0.3 (4) | C11—C16—N4—C10 | 0.0 (3) |
C12—C13—C14—C15 | 0.3 (4) | C7—C8—S1—C9 | 67.4 (2) |
C13—C14—C15—C16 | 0.7 (4) | C10—C9—S1—C8 | 67.0 (2) |
C14—C15—C16—N4 | 179.2 (2) | C10—N2—Hg1—N1 | 26.7 (2) |
C14—C15—C16—C11 | −1.6 (4) | C11—N2—Hg1—N1 | −150.88 (17) |
N2—C11—C16—N4 | 0.8 (2) | C10—N2—Hg1—Cl2 | 139.14 (18) |
C12—C11—C16—N4 | −179.0 (2) | C11—N2—Hg1—Cl2 | −38.46 (19) |
N2—C11—C16—C15 | −178.6 (2) | C10—N2—Hg1—Cl1 | −89.2 (2) |
C12—C11—C16—C15 | 1.6 (3) | C11—N2—Hg1—Cl1 | 93.18 (17) |
N3—C7—N1—C1 | 0.9 (3) | C7—N1—Hg1—N2 | 29.2 (2) |
C8—C7—N1—C1 | −179.1 (2) | C1—N1—Hg1—N2 | −158.52 (16) |
N3—C7—N1—Hg1 | 173.99 (16) | C7—N1—Hg1—Cl2 | −95.5 (2) |
C8—C7—N1—Hg1 | −6.0 (4) | C1—N1—Hg1—Cl2 | 76.74 (17) |
C2—C1—N1—C7 | 179.2 (3) | C7—N1—Hg1—Cl1 | 148.2 (2) |
C6—C1—N1—C7 | −0.5 (3) | C1—N1—Hg1—Cl1 | −39.57 (18) |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3N···Cl1i | 0.86 | 2.35 | 3.178 (2) | 163 |
N4—H4N···Cl2ii | 0.86 | 2.76 | 3.508 (2) | 147 |
Symmetry codes: (i) −x, y+1/2, −z+1/2; (ii) x, −y+1/2, z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3N···Cl1i | 0.8600 | 2.3500 | 3.178 (2) | 163.00 |
N4—H4N···Cl2ii | 0.8600 | 2.7600 | 3.508 (2) | 147.00 |
Symmetry codes: (i) −x, y+1/2, −z+1/2; (ii) x, −y+1/2, z+1/2. |
Acknowledgements
Thanks are due to MESRS and DG–RSDT (Ministére de l'Enseignement Supérieur et de la Recherche Scientifique et la Direction Générale de la Recherche – Algérie) for financial support.
References
Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany. Google Scholar
Bruker (2011). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gowda, N. R. T., Kavitha, C. V., Chiruvella, K. K., Joy, O., Rangappa, K. S. & Raghavan, S. C. (2009). Bioorg. Med. Chem. Lett. 19, 4594–4600. Web of Science CrossRef PubMed CAS Google Scholar
Reedijk, J. (1987). Comprehensive Coordination Chemistry, Vol. 2, edited by G. Wilkinson, ch. 13. Oxford: Pergamon. Google Scholar
Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sondhi, S. M., Rani, R., Singh, J., Roy, P., Agrawal, S. K. & Saxena, A. K. (2010). Bioorg. Med. Chem. Lett. 20, 2306–2310. Web of Science CrossRef CAS PubMed Google Scholar
Sundberg, R. J. & Martin, R. B. (1974). Chem. Rev. 74, 471–517. CrossRef CAS Web of Science Google Scholar
Téllez, F., López-Sandoval, H., Castillo-Blum, S. E. & Barba-Behrens, N. (2008). ARKIVOC, (v), 245–275. Google Scholar
Tiwari, A. K., Mishra, A. K., Bajpai, A., Mishra, P., Singh, S., Sinha, D. & Singh, V. K. (2007). Bioorg. Med. Chem. Lett. 17, 2749–2755. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.