metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of {bis­­[(1H-benzimid­azol-2-yl-κN3)meth­yl]sulfane}di­chloridomercury(II)

aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale CHEMS, Université Frères Montouri, Constantine 25000, Algeria, bLaboratoire de Synthèse des Molécules d'Intérêts Biologiques, Université des Frères Mentouri, Constantine 25000, Algeria, cLaboratoire des Produits Naturels d'Origine Végétale et de Synthèse Organique, PHYSYNOR, Université Frères Montouri, Constantine 25000, Algeria, and dDépartement Sciences de la Matière, Faculté des Sciences Exactes et Sciences de la Nature et de la Vie, Université Oum El Bouaghi, Algeria
*Correspondence e-mail: bouacida_sofiane@yahoo.fr

Edited by W. Imhof, University Koblenz-Landau, Germany (Received 2 December 2015; accepted 7 December 2015; online 12 December 2015)

In the asymmetric unit of the title compound, [HgCl2(C16H14N4S)], the HgII cation is linked to two Cl atoms and two imidazole N atoms of the chelating bis­[(1H-benzimidazol-2-yl)meth­yl]sulfane ligand, forming a slightly distorted tetra­hedral environment. The substitued imidazole rings of the ligand are almost perfectly planar [with maximum deviations of 0.017 (3) and 0.012 (3) Å] and form a dihedral angle of 42.51 (5)°. The crystal packing can be described as alternating layers parallel to (010). In this arrangement, N—H⋯Cl hydrogen bonds between the N—H groups of the benzimidazole moieties and chloride ligands are responsible for the formation of the chain-like packing pattern along [010] exhibiting a C(6) graph-set motif.

1. Related literature

For the synthesis and applications of benzimiazole derivatives, see: Tiwari et al. (2007[Tiwari, A. K., Mishra, A. K., Bajpai, A., Mishra, P., Singh, S., Sinha, D. & Singh, V. K. (2007). Bioorg. Med. Chem. Lett. 17, 2749-2755.]); Gowda et al. (2009[Gowda, N. R. T., Kavitha, C. V., Chiruvella, K. K., Joy, O., Rangappa, K. S. & Raghavan, S. C. (2009). Bioorg. Med. Chem. Lett. 19, 4594-4600.]); Sondhi et al., (2010[Sondhi, S. M., Rani, R., Singh, J., Roy, P., Agrawal, S. K. & Saxena, A. K. (2010). Bioorg. Med. Chem. Lett. 20, 2306-2310.]). For the coordination of benzimiazole derivatives, see: Téllez et al. (2008[Téllez, F., López-Sandoval, H., Castillo-Blum, S. E. & Barba-Behrens, N. (2008). ARKIVOC, (v), 245-275.]); Sundberg & Martin (1974[Sundberg, R. J. & Martin, R. B. (1974). Chem. Rev. 74, 471-517.]); Reedijk (1987[Reedijk, J. (1987). Comprehensive Coordination Chemistry, Vol. 2, edited by G. Wilkinson, ch. 13. Oxford: Pergamon.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [HgCl2(C16H14N4S)]

  • Mr = 565.86

  • Orthorhombic, P b c a

  • a = 13.8558 (3) Å

  • b = 15.4983 (4) Å

  • c = 16.1108 (4) Å

  • V = 3459.66 (14) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 9.33 mm−1

  • T = 295 K

  • 0.16 × 0.11 × 0.09 mm

2.2. Data collection

  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002[Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.]) Tmin = 0.646, Tmax = 0.746

  • 78309 measured reflections

  • 5594 independent reflections

  • 4351 reflections with I > 2σ(I)

  • Rint = 0.035

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.020

  • wR(F2) = 0.046

  • S = 1.01

  • 5594 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.86 e Å−3

  • Δρmin = −0.93 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3N⋯Cl1i 0.86 2.35 3.178 (2) 163
N4—H4N⋯Cl2ii 0.86 2.76 3.508 (2) 147
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2011[Bruker (2011). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2011[Bruker (2011). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXT (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg & Berndt, 2001[Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and CRYSCAL (T. Roisnel, local program).

Supporting information


Chemical context top

Benzimidazole derivatives are reported to be physiologically and pharmacologically active (Tiwari, et al., 2007) and have shown different therapeutic properties such as anti­hypertensive, anti­coagulant, anti­allergic, analgesic, anti-inflammatory, anti­microbial, anti­parasitic and anti­oxidant (Thimme Gowda, et al., 2009). Because of their significant medicinal importance, the synthesis of substituted benzimidazoles has become a focus of synthetic organic chemistry (Sondhi, et al., 2010). Benzimidazoles act as good ligands towards transition metal ions and give place to a variety of metal-ligand coordination modes. Their reactions with metal salts have played a significant role in the development of coordination chemistry of this class of ligands (Téllez, et al., 2008). Several research groups have investigated the coordination behavior of benzimidazole derivatives towards transition metal ions (Sundberg & Martin 1974; Reedijk, 1987) and numerous studies concerned with the biological activity of coordination compounds containing benzimidazole derivatives are also in progress.

Structural commentary top

Herein, we report the synthesis and structure determination of a new complex based on mercury and a chelating bis-benzimidazole ligand. The molecular structure of (I) together with the atomic numbering scheme is illustrated in Fig. 1.

In the asymmetric unit of [HgCl2(C16H14N4S)], (I), the HgII cation is linked to two chlorine atoms and two imidazole N atoms of the chelating ligand bis­((1H-benzo[d]imidazol-2-yl)methyl)­sulfane forming a slightly distorted tetra­hedral environment [Hg—N = 2.2991 (19) and 2.2471 (19)Å; Hg—Cl = 2.4459 (7) and 2.4554 (7)Å].

Substitued imidazole rings of the ligand are almost perfectly planar [with maximum deviation of 0.0170 (26) Å at C13 and 0.0121 (28) Å at C5] and form a dihedral angle of 42.51 (5)°.

Supra­molecular features top

The crystal packing can be described by alternating layers parallel to (010) (Figure 2). In this arragement N—H···Cl hydrogen bonds between amine moities and chloride ligands are responsible for the formation of the one-dimensional chain-like packing pattern exhibiting a C11(6) graph set motif (Etter et al., 1990; Bernstein et al., 1995). Additional hydrogen-bonding parameters are listed in Table 1. The packing is consolidated by π-π stacking inter­actions with centroid to centroid distances of 3.5525 (14) to 3.6963 (14)Å between benzimidazole rings. These inter­actions link the molecules within the layers and also link the layers together reinforcing the cohesion of the complex structure.

Synthesis and crystallization top

Complex I was prepared by stirring 294 mg (1 mmol) of bis­((1H-benzo[d]imidazol-2-yl)methyl)­sulfane and 271 mg (1 mmol) HgCl2 in 20 mL of methanol for 24 h. The obtained solid was filtered and recrystallized by diffusion of di­ethyl ether into a DMF solution of the title compound at room temperature. Colorless crystals (yield: 83%) suitable for the X-ray diffraction study were obtained by this procedure.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. H atoms were localized on Fourier maps but introduced into calculated positions and treated as riding on their parent atom (C or N) with C—H = 0.93 Å (aromatic), C—H = 0.97 Å (methyl­ene) and N—H = 0.86 Å (amine) with Uiso(H) = 1.2Ueq (C or N).

Related literature top

For the synthesis and applications of benzimiazole derivatives, see: Tiwari et al. (2007); Gowda et al. (2009); Sondhi et al., (2010). For the coordination of benzimiazole derivatives, see: Téllez et al. (2008); Sundberg & Martin (1974); Reedijk (1987).

Structure description top

Benzimidazole derivatives are reported to be physiologically and pharmacologically active (Tiwari, et al., 2007) and have shown different therapeutic properties such as anti­hypertensive, anti­coagulant, anti­allergic, analgesic, anti-inflammatory, anti­microbial, anti­parasitic and anti­oxidant (Thimme Gowda, et al., 2009). Because of their significant medicinal importance, the synthesis of substituted benzimidazoles has become a focus of synthetic organic chemistry (Sondhi, et al., 2010). Benzimidazoles act as good ligands towards transition metal ions and give place to a variety of metal-ligand coordination modes. Their reactions with metal salts have played a significant role in the development of coordination chemistry of this class of ligands (Téllez, et al., 2008). Several research groups have investigated the coordination behavior of benzimidazole derivatives towards transition metal ions (Sundberg & Martin 1974; Reedijk, 1987) and numerous studies concerned with the biological activity of coordination compounds containing benzimidazole derivatives are also in progress.

Herein, we report the synthesis and structure determination of a new complex based on mercury and a chelating bis-benzimidazole ligand. The molecular structure of (I) together with the atomic numbering scheme is illustrated in Fig. 1.

In the asymmetric unit of [HgCl2(C16H14N4S)], (I), the HgII cation is linked to two chlorine atoms and two imidazole N atoms of the chelating ligand bis­((1H-benzo[d]imidazol-2-yl)methyl)­sulfane forming a slightly distorted tetra­hedral environment [Hg—N = 2.2991 (19) and 2.2471 (19)Å; Hg—Cl = 2.4459 (7) and 2.4554 (7)Å].

Substitued imidazole rings of the ligand are almost perfectly planar [with maximum deviation of 0.0170 (26) Å at C13 and 0.0121 (28) Å at C5] and form a dihedral angle of 42.51 (5)°.

The crystal packing can be described by alternating layers parallel to (010) (Figure 2). In this arragement N—H···Cl hydrogen bonds between amine moities and chloride ligands are responsible for the formation of the one-dimensional chain-like packing pattern exhibiting a C11(6) graph set motif (Etter et al., 1990; Bernstein et al., 1995). Additional hydrogen-bonding parameters are listed in Table 1. The packing is consolidated by π-π stacking inter­actions with centroid to centroid distances of 3.5525 (14) to 3.6963 (14)Å between benzimidazole rings. These inter­actions link the molecules within the layers and also link the layers together reinforcing the cohesion of the complex structure.

For the synthesis and applications of benzimiazole derivatives, see: Tiwari et al. (2007); Gowda et al. (2009); Sondhi et al., (2010). For the coordination of benzimiazole derivatives, see: Téllez et al. (2008); Sundberg & Martin (1974); Reedijk (1987).

Synthesis and crystallization top

Complex I was prepared by stirring 294 mg (1 mmol) of bis­((1H-benzo[d]imidazol-2-yl)methyl)­sulfane and 271 mg (1 mmol) HgCl2 in 20 mL of methanol for 24 h. The obtained solid was filtered and recrystallized by diffusion of di­ethyl ether into a DMF solution of the title compound at room temperature. Colorless crystals (yield: 83%) suitable for the X-ray diffraction study were obtained by this procedure.

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 1. H atoms were localized on Fourier maps but introduced into calculated positions and treated as riding on their parent atom (C or N) with C—H = 0.93 Å (aromatic), C—H = 0.97 Å (methyl­ene) and N—H = 0.86 Å (amine) with Uiso(H) = 1.2Ueq (C or N).

Computing details top

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2011); data reduction: SAINT (Bruker, 2011); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXT (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012) and CRYSCAL (T. Roisnel, local program).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atomic labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Alternating layers parallel to (010) plane of (I) at b = 1/4 and b = 3/4, viewed down the a axis.
{Bis[(1H-benzimidazol-2-yl-κN3)methyl]sulfane}dichloridomercury(II) top
Crystal data top
[HgCl2(C16H14N4S)]Dx = 2.173 Mg m3
Mr = 565.86Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 9958 reflections
a = 13.8558 (3) Åθ = 2.3–29.6°
b = 15.4983 (4) ŵ = 9.33 mm1
c = 16.1108 (4) ÅT = 295 K
V = 3459.66 (14) Å3Prism, colorless
Z = 80.16 × 0.11 × 0.09 mm
F(000) = 2144
Data collection top
Bruker APEXII
diffractometer
5594 independent reflections
Radiation source: Enraf Nonius FR5904351 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
CCD rotation images, thick slices scansθmax = 31.2°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 2020
Tmin = 0.646, Tmax = 0.746k = 2222
78309 measured reflectionsl = 2223
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.046H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0162P)2 + 4.119P]
where P = (Fo2 + 2Fc2)/3
5594 reflections(Δ/σ)max = 0.001
217 parametersΔρmax = 0.86 e Å3
0 restraintsΔρmin = 0.93 e Å3
Crystal data top
[HgCl2(C16H14N4S)]V = 3459.66 (14) Å3
Mr = 565.86Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 13.8558 (3) ŵ = 9.33 mm1
b = 15.4983 (4) ÅT = 295 K
c = 16.1108 (4) Å0.16 × 0.11 × 0.09 mm
Data collection top
Bruker APEXII
diffractometer
5594 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
4351 reflections with I > 2σ(I)
Tmin = 0.646, Tmax = 0.746Rint = 0.035
78309 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0200 restraints
wR(F2) = 0.046H-atom parameters constrained
S = 1.01Δρmax = 0.86 e Å3
5594 reflectionsΔρmin = 0.93 e Å3
217 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.02521 (16)0.28013 (15)0.20752 (14)0.0275 (5)
C20.08439 (18)0.21383 (18)0.17932 (16)0.0350 (5)
H20.08820.16130.2070.042*
C30.13721 (19)0.2296 (2)0.10828 (17)0.0425 (7)
H30.17790.18680.0880.051*
C40.1311 (2)0.3079 (2)0.06612 (17)0.0447 (7)
H40.16730.31550.01810.054*
C50.07323 (19)0.3743 (2)0.09337 (17)0.0404 (6)
H50.06960.42660.06520.048*
C60.02053 (17)0.35897 (16)0.16529 (15)0.0289 (5)
C70.07692 (16)0.36125 (15)0.27412 (15)0.0272 (5)
C80.14891 (18)0.39298 (16)0.33483 (16)0.0332 (5)
H8A0.1930.43190.30680.04*
H8B0.18620.34440.35510.04*
C90.0330 (2)0.36181 (17)0.47575 (17)0.0355 (5)
H9A0.00620.38610.51980.043*
H9B0.01010.33390.43660.043*
C100.09852 (17)0.29578 (15)0.51189 (14)0.0272 (4)
C110.17866 (16)0.17664 (14)0.53263 (14)0.0247 (4)
C120.21845 (18)0.09428 (16)0.52899 (16)0.0321 (5)
H120.20470.05680.48550.039*
C130.27933 (19)0.07089 (18)0.59296 (17)0.0388 (6)
H130.30680.01610.59250.047*
C140.30100 (19)0.12684 (19)0.65845 (17)0.0394 (6)
H140.34260.10850.70010.047*
C150.26224 (19)0.20829 (18)0.66267 (16)0.0362 (6)
H150.2770.24580.70590.043*
C160.19957 (16)0.23173 (15)0.59886 (14)0.0274 (5)
N10.03651 (14)0.28386 (12)0.27585 (12)0.0272 (4)
N20.11618 (14)0.21920 (12)0.47882 (12)0.0268 (4)
N30.04426 (15)0.40839 (13)0.20965 (13)0.0311 (4)
H3N0.0610.46050.19810.037*
N40.14764 (15)0.30614 (13)0.58354 (12)0.0310 (4)
H4N0.14680.35140.61440.037*
S10.09600 (6)0.44882 (4)0.42297 (4)0.04249 (16)
Cl10.09138 (5)0.08943 (4)0.37366 (4)0.04179 (15)
Cl20.17398 (6)0.08112 (5)0.27101 (5)0.0583 (2)
Hg10.063397 (7)0.164790 (6)0.357762 (6)0.03372 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0263 (10)0.0325 (12)0.0237 (11)0.0028 (9)0.0011 (9)0.0008 (9)
C20.0365 (13)0.0382 (14)0.0305 (13)0.0066 (10)0.0014 (10)0.0039 (11)
C30.0328 (13)0.0611 (19)0.0336 (14)0.0083 (12)0.0045 (11)0.0068 (13)
C40.0345 (13)0.072 (2)0.0279 (13)0.0039 (13)0.0069 (11)0.0007 (13)
C50.0421 (14)0.0491 (16)0.0301 (13)0.0088 (12)0.0002 (11)0.0075 (12)
C60.0299 (11)0.0332 (12)0.0236 (11)0.0046 (9)0.0023 (9)0.0005 (9)
C70.0309 (11)0.0238 (10)0.0268 (11)0.0003 (8)0.0015 (9)0.0001 (9)
C80.0380 (12)0.0284 (12)0.0331 (13)0.0074 (10)0.0037 (10)0.0004 (10)
C90.0421 (13)0.0332 (12)0.0311 (13)0.0104 (11)0.0032 (11)0.0015 (10)
C100.0309 (11)0.0270 (11)0.0238 (11)0.0008 (9)0.0030 (9)0.0001 (9)
C110.0265 (10)0.0259 (11)0.0216 (10)0.0032 (8)0.0019 (8)0.0019 (8)
C120.0374 (12)0.0281 (11)0.0309 (13)0.0009 (10)0.0024 (10)0.0010 (10)
C130.0382 (13)0.0357 (13)0.0426 (15)0.0062 (11)0.0017 (11)0.0098 (11)
C140.0355 (13)0.0461 (15)0.0366 (15)0.0004 (12)0.0050 (11)0.0117 (12)
C150.0407 (14)0.0405 (14)0.0274 (12)0.0082 (11)0.0055 (10)0.0009 (10)
C160.0299 (11)0.0272 (11)0.0250 (11)0.0042 (9)0.0020 (9)0.0019 (9)
N10.0315 (9)0.0242 (9)0.0259 (10)0.0014 (7)0.0034 (8)0.0016 (8)
N20.0299 (9)0.0253 (9)0.0252 (10)0.0001 (7)0.0000 (8)0.0015 (8)
N30.0395 (11)0.0247 (9)0.0291 (10)0.0005 (8)0.0004 (8)0.0045 (8)
N40.0426 (11)0.0249 (9)0.0254 (10)0.0004 (8)0.0015 (9)0.0043 (8)
S10.0708 (5)0.0221 (3)0.0345 (3)0.0013 (3)0.0047 (3)0.0040 (3)
Cl10.0454 (3)0.0340 (3)0.0460 (4)0.0095 (3)0.0061 (3)0.0095 (3)
Cl20.0735 (5)0.0413 (4)0.0601 (5)0.0137 (4)0.0196 (4)0.0056 (3)
Hg10.04398 (6)0.02599 (5)0.03120 (5)0.00193 (4)0.00583 (4)0.00131 (4)
Geometric parameters (Å, º) top
C1—C21.391 (3)C9—H9B0.97
C1—N11.395 (3)C10—N21.324 (3)
C1—C61.400 (3)C10—N41.350 (3)
C2—C31.380 (4)C11—N21.391 (3)
C2—H20.93C11—C121.392 (3)
C3—C41.393 (4)C11—C161.397 (3)
C3—H30.93C12—C131.380 (4)
C4—C51.378 (4)C12—H120.93
C4—H40.93C13—C141.398 (4)
C5—C61.390 (4)C13—H130.93
C5—H50.93C14—C151.373 (4)
C6—N31.380 (3)C14—H140.93
C7—N11.324 (3)C15—C161.394 (3)
C7—N31.348 (3)C15—H150.93
C7—C81.481 (3)C16—N41.382 (3)
C8—S11.817 (3)N1—Hg12.2991 (19)
C8—H8A0.97N2—Hg12.2471 (19)
C8—H8B0.97N3—H3N0.86
C9—C101.487 (3)N4—H4N0.86
C9—S11.818 (3)Cl1—Hg12.4554 (7)
C9—H9A0.97Cl2—Hg12.4459 (7)
C2—C1—N1130.5 (2)N2—C11—C16108.38 (19)
C2—C1—C6120.9 (2)C12—C11—C16120.7 (2)
N1—C1—C6108.6 (2)C13—C12—C11116.8 (2)
C3—C2—C1116.9 (3)C13—C12—H12121.6
C3—C2—H2121.5C11—C12—H12121.6
C1—C2—H2121.5C12—C13—C14122.1 (3)
C2—C3—C4121.8 (3)C12—C13—H13118.9
C2—C3—H3119.1C14—C13—H13118.9
C4—C3—H3119.1C15—C14—C13121.6 (2)
C5—C4—C3122.1 (3)C15—C14—H14119.2
C5—C4—H4119C13—C14—H14119.2
C3—C4—H4119C14—C15—C16116.5 (2)
C4—C5—C6116.3 (3)C14—C15—H15121.7
C4—C5—H5121.8C16—C15—H15121.7
C6—C5—H5121.8N4—C16—C15132.4 (2)
N3—C6—C5132.7 (2)N4—C16—C11105.41 (19)
N3—C6—C1105.2 (2)C15—C16—C11122.2 (2)
C5—C6—C1122.0 (2)C7—N1—C1106.27 (19)
N1—C7—N3111.4 (2)C7—N1—Hg1132.12 (16)
N1—C7—C8124.9 (2)C1—N1—Hg1121.26 (15)
N3—C7—C8123.7 (2)C10—N2—C11106.81 (19)
C7—C8—S1113.73 (18)C10—N2—Hg1128.73 (16)
C7—C8—H8A108.8C11—N2—Hg1124.43 (14)
S1—C8—H8A108.8C7—N3—C6108.5 (2)
C7—C8—H8B108.8C7—N3—H3N125.8
S1—C8—H8B108.8C6—N3—H3N125.8
H8A—C8—H8B107.7C10—N4—C16108.43 (19)
C10—C9—S1113.62 (19)C10—N4—H4N125.8
C10—C9—H9A108.8C16—N4—H4N125.8
S1—C9—H9A108.8C8—S1—C9101.89 (12)
C10—C9—H9B108.8N2—Hg1—N1104.46 (7)
S1—C9—H9B108.8N2—Hg1—Cl2119.40 (5)
H9A—C9—H9B107.7N1—Hg1—Cl2101.48 (5)
N2—C10—N4111.0 (2)N2—Hg1—Cl1111.85 (5)
N2—C10—C9124.9 (2)N1—Hg1—Cl1107.47 (5)
N4—C10—C9124.1 (2)Cl2—Hg1—Cl1110.77 (3)
N2—C11—C12130.9 (2)
N1—C1—C2—C3179.5 (2)C2—C1—N1—Hg15.2 (3)
C6—C1—C2—C30.3 (4)C6—C1—N1—Hg1174.53 (15)
C1—C2—C3—C40.6 (4)N4—C10—N2—C111.2 (3)
C2—C3—C4—C50.9 (5)C9—C10—N2—C11178.4 (2)
C3—C4—C5—C60.3 (4)N4—C10—N2—Hg1176.69 (15)
C4—C5—C6—N3179.2 (3)C9—C10—N2—Hg13.7 (3)
C4—C5—C6—C10.5 (4)C12—C11—N2—C10178.5 (2)
C2—C1—C6—N3179.8 (2)C16—C11—N2—C101.2 (2)
N1—C1—C6—N30.0 (3)C12—C11—N2—Hg13.4 (3)
C2—C1—C6—C50.8 (4)C16—C11—N2—Hg1176.80 (14)
N1—C1—C6—C5178.9 (2)N1—C7—N3—C60.9 (3)
N1—C7—C8—S191.1 (3)C8—C7—N3—C6179.1 (2)
N3—C7—C8—S188.9 (3)C5—C6—N3—C7178.3 (3)
S1—C9—C10—N2102.2 (3)C1—C6—N3—C70.6 (3)
S1—C9—C10—N478.2 (3)N2—C10—N4—C160.8 (3)
N2—C11—C12—C13179.7 (2)C9—C10—N4—C16178.9 (2)
C16—C11—C12—C130.6 (3)C15—C16—N4—C10179.2 (3)
C11—C12—C13—C140.3 (4)C11—C16—N4—C100.0 (3)
C12—C13—C14—C150.3 (4)C7—C8—S1—C967.4 (2)
C13—C14—C15—C160.7 (4)C10—C9—S1—C867.0 (2)
C14—C15—C16—N4179.2 (2)C10—N2—Hg1—N126.7 (2)
C14—C15—C16—C111.6 (4)C11—N2—Hg1—N1150.88 (17)
N2—C11—C16—N40.8 (2)C10—N2—Hg1—Cl2139.14 (18)
C12—C11—C16—N4179.0 (2)C11—N2—Hg1—Cl238.46 (19)
N2—C11—C16—C15178.6 (2)C10—N2—Hg1—Cl189.2 (2)
C12—C11—C16—C151.6 (3)C11—N2—Hg1—Cl193.18 (17)
N3—C7—N1—C10.9 (3)C7—N1—Hg1—N229.2 (2)
C8—C7—N1—C1179.1 (2)C1—N1—Hg1—N2158.52 (16)
N3—C7—N1—Hg1173.99 (16)C7—N1—Hg1—Cl295.5 (2)
C8—C7—N1—Hg16.0 (4)C1—N1—Hg1—Cl276.74 (17)
C2—C1—N1—C7179.2 (3)C7—N1—Hg1—Cl1148.2 (2)
C6—C1—N1—C70.5 (3)C1—N1—Hg1—Cl139.57 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···Cl1i0.862.353.178 (2)163
N4—H4N···Cl2ii0.862.763.508 (2)147
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···Cl1i0.86002.35003.178 (2)163.00
N4—H4N···Cl2ii0.86002.76003.508 (2)147.00
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z+1/2.
 

Acknowledgements

Thanks are due to MESRS and DG–RSDT (Ministére de l'Enseignement Supérieur et de la Recherche Scientifique et la Direction Générale de la Recherche – Algérie) for financial support.

References

First citationBrandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationBruker (2011). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGowda, N. R. T., Kavitha, C. V., Chiruvella, K. K., Joy, O., Rangappa, K. S. & Raghavan, S. C. (2009). Bioorg. Med. Chem. Lett. 19, 4594–4600.  Web of Science CrossRef PubMed CAS Google Scholar
First citationReedijk, J. (1987). Comprehensive Coordination Chemistry, Vol. 2, edited by G. Wilkinson, ch. 13. Oxford: Pergamon.  Google Scholar
First citationSheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSondhi, S. M., Rani, R., Singh, J., Roy, P., Agrawal, S. K. & Saxena, A. K. (2010). Bioorg. Med. Chem. Lett. 20, 2306–2310.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSundberg, R. J. & Martin, R. B. (1974). Chem. Rev. 74, 471–517.  CrossRef CAS Web of Science Google Scholar
First citationTéllez, F., López-Sandoval, H., Castillo-Blum, S. E. & Barba-Behrens, N. (2008). ARKIVOC, (v), 245–275.  Google Scholar
First citationTiwari, A. K., Mishra, A. K., Bajpai, A., Mishra, P., Singh, S., Sinha, D. & Singh, V. K. (2007). Bioorg. Med. Chem. Lett. 17, 2749–2755.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds