metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­{μ-1-[(E)-(3-meth­­oxy­phen­yl)diazen­yl]naphthalen-2-olato-κ3N2,O:O}bis­­({1-[(E)-(3-meth­­oxy­phen­yl)diazen­yl]naphthalen-2-olato-κ2N2,O}copper(II))

aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, (CHEMS), Faculté des Sciences Exactes, Département de Chimie, Université Constantine 1, Constantine 25000, Algeria, bLaboratoire de Cristallographie, Département de Physique, Université Constantine 1, Constantine 25000, Algeria, cChemistry Department, University of Fribourg, Chemin du Musee 9, CH-1700 Fribourg, Switzerland, dLaboratoire de Chimie et Systémique Organométallique (LCSOM), Institut de Chimie, Université de Strasbourg, UMR 7177, F-67070 Strasbourg Cedex, France, and eService de Radiocristallographie, Institut de Chimie, Université de Strasbourg, UMR 7177, 67008 Strasbourg Cedex, France
*Correspondence e-mail: souheilachetioui@yahoo.fr

Edited by H. Ishida, Okayama University, Japan (Received 21 September 2015; accepted 3 November 2015; online 7 November 2015)

The title dinuclear CuII complex, [Cu2(C17H13N2O2)4], is located on an inversion centre. The CuII atoms are each five-coordinated in a distorted square-pyramidal geometry by two N atoms and two O atoms from two bidentate ligands and one bridging O atom from another ligand. In the dinuclear complex, the Cu⋯Cu separation is 3.366 (3) Å. In the crystal, complex mol­ecules are linked via weak C—H⋯O hydrogen bonds, forming a layer parallel to (-101).

1. Related literature

For general background to azo compounds and their use in dyes, pigments and advanced materials, see: Lee et al. (2004[Lee, S. H., Kim, J. Y., Ko, J., Lee, J. Y. & Kim, J. S. (2004). J. Org. Chem. 69, 2902-2905.]). For background to metal–azo complexes, see: Carella et al. (2007[Carella, A., Casalboni, M., Centore, R., Fusco, S., Noce, C., Quatela, A., Peluso, A. & Sirigu, A. (2007). Opt. Mater. 30, 473-477.]); Kulikovska et al. (2007[Kulikovska, O., Goldenberg, L. M. & Stumpe, J. (2007). Chem. Mater. 19, 3343-3348.]); Patnaik et al. (2007[Patnaik, S., Sharma, A. K., Garg, B. S., Gandhi, R. P. & Gupta, K. C. (2007). Int. J. Pharm. 342, 184-193.]); Leng et al. (2001[Leng, W. N., Zhou, Y. M., Xu, Q. H. & Liu, J. Z. (2001). Polymer, 42, 9253-9259.]). For related structures of azo compounds, see: Chetioui et al. (2013a[Chetioui, S., Boudraa, I., Bouacida, S., Bouchoul, A. & Bouaoud, S. E. (2013a). Acta Cryst. E69, o1250.],b[Chetioui, S., Boudraa, I., Bouacida, S., Bouchoul, A. & Bouaoud, S. E. (2013b). Acta Cryst. E69, o1322-o1323.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Cu2(C17H13N2O2)4]

  • Mr = 1236.26

  • Monoclinic, P 21 /n

  • a = 16.260 (5) Å

  • b = 7.707 (5) Å

  • c = 22.325 (5) Å

  • β = 104.268 (5)°

  • V = 2711 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.86 mm−1

  • T = 173 K

  • 0.45 × 0.10 × 0.04 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.855, Tmax = 0.966

  • 25289 measured reflections

  • 6516 independent reflections

  • 4941 reflections with I > 2σ(I)

  • Rint = 0.041

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.091

  • S = 1.02

  • 6516 reflections

  • 388 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C22—H22⋯O4i 0.93 2.45 3.267 (3) 146
C32—H32⋯O1ii 0.93 2.51 3.394 (4) 158
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Azo compounds are very important in the fields of dyes, pigments and advanced materials (Lee et al., 2004). Azo dyes are synthetic colours that contain an azo group, as part of the structure. They are characterized by the azo linkage (–N=N–). We are involved in the color generation mechanism of azo pigments typically characterized by the chromophore of the azo group (–N=N–) (Chetioui et al., 2013a,b) to synthesize new copper complex with Cu(OAc)2.H2O. Metal complexes with azo ligands show interesting chemical and physical properties and are of interest as new materials, for example in bioinorganic and coordination chemistry, as well as in biological systems which can lead to the development of new products with specific properties (Carella et al., 2007; Kulikovska et al., 2007; Patnaik et al., 2007; Leng et al., 2001). In this work the structure of the title molecule, Cu2(C17H13N2O2)4, is reported.

The title dicopper complex (Fig. 1) consists of two inversion related asymmetric units (Fig. 2), in which the CuII atoms are each coordinated by two N,O-bidentate phenylazo-naphtholate ligands. The two N atoms and two O atoms around the Cu atom are trans to each other with an O2—Cu—N1 bond angle of 86.83 (7)° and an O2—Cu—N3 angle of 96.06 (7)°. The inversion related asymmetric units are linked by one bridging O atom [O2i; symmetry code: (i) -x+1, -y, -z+2] with O2i—Cu—O4 and O2—Cu—O2i angles of 104.51 (6) and 81.69 (5)°, respectively, to form a distorted square-pyramidal geometry. In the crystal, molecules are linked via weak C—H···O hydrogen bonds (Table 1), forming a layer parallel to (101) (Fig. 3).

Related literature top

For general background to azo compounds and their use in dyes, pigments and advanced materials, see: Lee et al. (2004). For background to metal–azo complexes, see: Carella et al. (2007); Kulikovska et al. (2007); Patnaik et al. (2007); Leng et al. (2001). For related structures of azo compounds, see: Chetioui et al. (2013a,b).

Experimental top

The title compound was synthesized by the following procedures: (E)-1-[(3-methoxyphenyl)diazenyl]naphthalen-2-ol (0.55 g, 2.0 mmol) and Cu(OAc)2.H2O (0.20 g, 1.0 mmol) was stirred at 298 K in the methanol (10 ml) for 48 h. Volatile materials were removed under vacuum and the residue was washed twice from hexane solution to give red solids. The resulting solids were crystallized from CH2Cl2 to yield red crystals.

Refinement top

H atoms were included in calculated positions with C—H = 0.93 or 0.96 Å and were refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Structure description top

Azo compounds are very important in the fields of dyes, pigments and advanced materials (Lee et al., 2004). Azo dyes are synthetic colours that contain an azo group, as part of the structure. They are characterized by the azo linkage (–N=N–). We are involved in the color generation mechanism of azo pigments typically characterized by the chromophore of the azo group (–N=N–) (Chetioui et al., 2013a,b) to synthesize new copper complex with Cu(OAc)2.H2O. Metal complexes with azo ligands show interesting chemical and physical properties and are of interest as new materials, for example in bioinorganic and coordination chemistry, as well as in biological systems which can lead to the development of new products with specific properties (Carella et al., 2007; Kulikovska et al., 2007; Patnaik et al., 2007; Leng et al., 2001). In this work the structure of the title molecule, Cu2(C17H13N2O2)4, is reported.

The title dicopper complex (Fig. 1) consists of two inversion related asymmetric units (Fig. 2), in which the CuII atoms are each coordinated by two N,O-bidentate phenylazo-naphtholate ligands. The two N atoms and two O atoms around the Cu atom are trans to each other with an O2—Cu—N1 bond angle of 86.83 (7)° and an O2—Cu—N3 angle of 96.06 (7)°. The inversion related asymmetric units are linked by one bridging O atom [O2i; symmetry code: (i) -x+1, -y, -z+2] with O2i—Cu—O4 and O2—Cu—O2i angles of 104.51 (6) and 81.69 (5)°, respectively, to form a distorted square-pyramidal geometry. In the crystal, molecules are linked via weak C—H···O hydrogen bonds (Table 1), forming a layer parallel to (101) (Fig. 3).

For general background to azo compounds and their use in dyes, pigments and advanced materials, see: Lee et al. (2004). For background to metal–azo complexes, see: Carella et al. (2007); Kulikovska et al. (2007); Patnaik et al. (2007); Leng et al. (2001). For related structures of azo compounds, see: Chetioui et al. (2013a,b).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms. [Symmetry code: (i) -x+1, -y, -z+2.]
[Figure 2] Fig. 2. Asymmetric unit of the title compound.
[Figure 3] Fig. 3. A packing diagram of the title compound viewed along the a axis.
Bis{µ-1-[(E)-(3-methoxyphenyl)diazenyl]naphthalen-2-olato-κ3N2,O:O}bis({1-[(E)-(3-methoxyphenyl)diazenyl]naphthalen-2-olato-κ2N2,O}copper(II)) top
Crystal data top
[Cu2(C17H13N2O2)4]F(000) = 1276
Mr = 1236.26Dx = 1.514 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2052 reflections
a = 16.260 (5) Åθ = 3.1–28.6°
b = 7.707 (5) ŵ = 0.86 mm1
c = 22.325 (5) ÅT = 173 K
β = 104.268 (5)°Plate, red
V = 2711 (2) Å30.45 × 0.10 × 0.04 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
6516 independent reflections
Radiation source: fine-focus sealed tube4941 reflections with I > 2σ(I)
Triumph monochromatorRint = 0.041
φ and ω scansθmax = 28.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
h = 2121
Tmin = 0.855, Tmax = 0.966k = 410
25289 measured reflectionsl = 2829
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0392P)2 + 1.8473P]
where P = (Fo2 + 2Fc2)/3
6516 reflections(Δ/σ)max = 0.001
388 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.33 e Å3
0 constraints
Crystal data top
[Cu2(C17H13N2O2)4]V = 2711 (2) Å3
Mr = 1236.26Z = 2
Monoclinic, P21/nMo Kα radiation
a = 16.260 (5) ŵ = 0.86 mm1
b = 7.707 (5) ÅT = 173 K
c = 22.325 (5) Å0.45 × 0.10 × 0.04 mm
β = 104.268 (5)°
Data collection top
Bruker APEXII CCD
diffractometer
6516 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
4941 reflections with I > 2σ(I)
Tmin = 0.855, Tmax = 0.966Rint = 0.041
25289 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 1.02Δρmax = 0.46 e Å3
6516 reflectionsΔρmin = 0.33 e Å3
388 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.43895 (2)0.16467 (3)0.96464 (2)0.0168 (1)
O10.03530 (9)0.1354 (2)0.96483 (8)0.0327 (5)
O20.51647 (8)0.14161 (18)1.04496 (7)0.0179 (4)
O30.83178 (9)0.3080 (2)0.93754 (8)0.0298 (5)
O40.35788 (9)0.21050 (19)0.88861 (7)0.0197 (4)
N10.34448 (10)0.1210 (2)1.00735 (8)0.0168 (5)
N20.34504 (10)0.1706 (2)1.06202 (8)0.0184 (5)
N30.52791 (10)0.2345 (2)0.91924 (8)0.0164 (5)
N40.52351 (11)0.1912 (2)0.86321 (8)0.0177 (5)
C10.26175 (13)0.0628 (3)0.97394 (10)0.0180 (6)
C20.18925 (13)0.1284 (3)0.98921 (10)0.0198 (6)
C30.11017 (13)0.0752 (3)0.95503 (11)0.0255 (7)
C40.10379 (15)0.0434 (3)0.90725 (11)0.0312 (8)
C50.17587 (16)0.1075 (3)0.89314 (11)0.0298 (7)
C60.25590 (14)0.0540 (3)0.92616 (10)0.0224 (7)
C70.41663 (13)0.2373 (3)1.10110 (10)0.0181 (6)
C80.49944 (13)0.2220 (3)1.09202 (10)0.0169 (6)
C90.56755 (14)0.2969 (3)1.13794 (10)0.0219 (6)
C100.55333 (14)0.3848 (3)1.18703 (11)0.0246 (7)
C110.47097 (14)0.4023 (3)1.19736 (10)0.0227 (6)
C120.40167 (14)0.3241 (3)1.15493 (10)0.0216 (6)
C130.32039 (15)0.3378 (3)1.16662 (11)0.0301 (7)
C140.30890 (17)0.4270 (4)1.21729 (12)0.0378 (9)
C150.37733 (18)0.5083 (4)1.25783 (12)0.0382 (9)
C160.45651 (17)0.4960 (3)1.24817 (11)0.0326 (8)
C170.03923 (16)0.2459 (4)1.01626 (13)0.0375 (9)
C180.60985 (13)0.3057 (3)0.94875 (10)0.0169 (6)
C190.68012 (13)0.2692 (3)0.92585 (10)0.0191 (6)
C200.75860 (13)0.3374 (3)0.95597 (10)0.0209 (6)
C210.76648 (14)0.4400 (3)1.00807 (11)0.0223 (6)
C220.69622 (13)0.4775 (3)1.02969 (10)0.0218 (6)
C230.61679 (13)0.4110 (3)1.00022 (10)0.0185 (6)
C240.44976 (13)0.1318 (2)0.82480 (10)0.0168 (6)
C250.36914 (12)0.1495 (3)0.83733 (10)0.0174 (6)
C260.29605 (14)0.1012 (3)0.78953 (10)0.0235 (7)
C270.30412 (14)0.0283 (3)0.73592 (10)0.0245 (7)
C280.38469 (14)0.0045 (3)0.72267 (10)0.0215 (6)
C290.45840 (13)0.0612 (3)0.76664 (10)0.0187 (6)
C300.53741 (14)0.0439 (3)0.75208 (11)0.0269 (7)
C310.54277 (16)0.0265 (3)0.69672 (12)0.0343 (8)
C320.47031 (16)0.0870 (3)0.65411 (12)0.0339 (8)
C330.39286 (16)0.0727 (3)0.66692 (11)0.0294 (7)
C340.82769 (15)0.1918 (3)0.88753 (12)0.0325 (8)
H20.304500.096100.916300.0270*
H30.171000.187400.861200.0360*
H40.050600.079800.884700.0370*
H60.194100.206301.021700.0240*
H90.622900.284901.134000.0260*
H100.599100.435501.214900.0300*
H130.274100.285801.139700.0360*
H140.255100.433401.224600.0450*
H150.368700.570801.291400.0460*
H160.501800.550101.275400.0390*
H17A0.017200.278501.017800.0560*
H17B0.066400.186001.053600.0560*
H17C0.071200.348101.012200.0560*
H190.674700.200300.890900.0230*
H210.819300.483501.028400.0270*
H220.701800.548001.064300.0260*
H230.569300.436801.014800.0220*
H260.242100.120300.795400.0280*
H270.255600.007100.706900.0290*
H300.586500.080500.780300.0320*
H310.595300.034100.687400.0410*
H320.475000.136900.617200.0410*
H330.344900.114200.638700.0350*
H34A0.882700.182600.879200.0490*
H34B0.809800.079600.898100.0490*
H34C0.787800.234800.851500.0490*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.0133 (1)0.0211 (1)0.0158 (1)0.0002 (1)0.0031 (1)0.0003 (1)
O10.0145 (7)0.0488 (11)0.0344 (10)0.0003 (7)0.0051 (7)0.0115 (8)
O20.0150 (7)0.0213 (7)0.0169 (8)0.0020 (6)0.0028 (6)0.0012 (6)
O30.0157 (7)0.0429 (10)0.0325 (10)0.0056 (7)0.0090 (7)0.0074 (8)
O40.0156 (7)0.0272 (8)0.0155 (8)0.0031 (6)0.0026 (6)0.0003 (6)
N10.0142 (8)0.0169 (8)0.0185 (9)0.0008 (6)0.0025 (7)0.0013 (7)
N20.0163 (8)0.0208 (8)0.0178 (9)0.0007 (7)0.0038 (7)0.0028 (8)
N30.0134 (8)0.0183 (8)0.0168 (9)0.0015 (7)0.0026 (7)0.0004 (7)
N40.0174 (8)0.0179 (8)0.0168 (9)0.0006 (7)0.0026 (7)0.0006 (7)
C10.0170 (10)0.0188 (10)0.0172 (11)0.0033 (8)0.0023 (8)0.0042 (8)
C20.0176 (10)0.0217 (11)0.0204 (11)0.0010 (8)0.0051 (8)0.0049 (8)
C30.0163 (10)0.0344 (13)0.0246 (12)0.0020 (9)0.0030 (9)0.0127 (10)
C40.0235 (12)0.0421 (14)0.0236 (13)0.0137 (10)0.0024 (10)0.0079 (11)
C50.0353 (13)0.0297 (12)0.0221 (13)0.0104 (10)0.0028 (10)0.0024 (10)
C60.0235 (11)0.0231 (11)0.0206 (12)0.0024 (9)0.0053 (9)0.0016 (9)
C70.0173 (10)0.0184 (10)0.0178 (11)0.0014 (8)0.0028 (8)0.0015 (8)
C80.0189 (10)0.0164 (9)0.0150 (10)0.0002 (8)0.0033 (8)0.0033 (8)
C90.0186 (10)0.0252 (11)0.0200 (12)0.0002 (8)0.0014 (8)0.0003 (9)
C100.0244 (11)0.0270 (11)0.0192 (12)0.0046 (9)0.0007 (9)0.0018 (9)
C110.0301 (12)0.0215 (10)0.0166 (11)0.0021 (9)0.0057 (9)0.0018 (9)
C120.0248 (11)0.0221 (10)0.0178 (11)0.0050 (9)0.0053 (8)0.0044 (9)
C130.0279 (12)0.0411 (13)0.0218 (12)0.0042 (11)0.0073 (9)0.0011 (11)
C140.0353 (14)0.0505 (16)0.0321 (15)0.0114 (12)0.0169 (12)0.0013 (13)
C150.0564 (17)0.0413 (15)0.0209 (13)0.0058 (13)0.0173 (12)0.0045 (11)
C160.0444 (15)0.0321 (13)0.0208 (13)0.0015 (11)0.0069 (11)0.0040 (10)
C170.0221 (12)0.0458 (15)0.0481 (17)0.0037 (11)0.0155 (11)0.0111 (14)
C180.0152 (9)0.0163 (10)0.0183 (11)0.0017 (7)0.0022 (8)0.0019 (8)
C190.0180 (10)0.0204 (10)0.0186 (11)0.0027 (8)0.0042 (8)0.0009 (8)
C200.0154 (9)0.0231 (10)0.0247 (12)0.0011 (9)0.0057 (8)0.0040 (9)
C210.0182 (10)0.0207 (10)0.0249 (12)0.0056 (8)0.0004 (9)0.0017 (9)
C220.0256 (11)0.0165 (10)0.0219 (12)0.0016 (8)0.0033 (9)0.0024 (9)
C230.0171 (10)0.0174 (9)0.0201 (11)0.0008 (8)0.0031 (8)0.0009 (8)
C240.0168 (9)0.0158 (10)0.0166 (10)0.0001 (7)0.0019 (8)0.0004 (8)
C250.0169 (9)0.0162 (9)0.0177 (11)0.0016 (8)0.0018 (8)0.0039 (8)
C260.0161 (10)0.0305 (12)0.0219 (12)0.0017 (9)0.0007 (9)0.0022 (10)
C270.0191 (10)0.0291 (12)0.0209 (12)0.0008 (9)0.0037 (9)0.0015 (9)
C280.0253 (11)0.0206 (10)0.0162 (11)0.0013 (9)0.0008 (9)0.0024 (8)
C290.0209 (10)0.0177 (10)0.0170 (11)0.0014 (8)0.0035 (8)0.0015 (8)
C300.0231 (11)0.0330 (12)0.0243 (13)0.0026 (10)0.0054 (9)0.0060 (10)
C310.0297 (13)0.0430 (15)0.0323 (14)0.0017 (11)0.0119 (11)0.0098 (12)
C320.0402 (14)0.0423 (14)0.0193 (13)0.0058 (12)0.0073 (11)0.0092 (11)
C330.0326 (13)0.0314 (13)0.0197 (12)0.0021 (10)0.0022 (10)0.0031 (10)
C340.0233 (12)0.0455 (15)0.0313 (14)0.0008 (10)0.0119 (10)0.0005 (11)
Geometric parameters (Å, º) top
Cu—O21.929 (2)C22—C231.395 (3)
Cu—O41.908 (2)C24—C251.413 (3)
Cu—N12.026 (2)C24—C291.446 (3)
Cu—N32.033 (2)C25—C261.437 (3)
Cu—O2i2.494 (2)C26—C271.358 (3)
O1—C31.370 (3)C27—C281.424 (3)
O1—C171.418 (3)C28—C291.418 (3)
O2—C81.307 (3)C28—C331.415 (3)
O3—C201.370 (3)C29—C301.407 (3)
O3—C341.420 (3)C30—C311.372 (4)
O4—C251.292 (3)C31—C321.399 (4)
N1—N21.277 (3)C32—C331.363 (4)
N1—C11.440 (3)C2—H60.9300
N2—C71.371 (3)C4—H40.9300
N3—N41.280 (3)C5—H30.9300
N3—C181.441 (3)C6—H20.9300
N4—C241.370 (3)C9—H90.9300
C1—C21.400 (3)C10—H100.9300
C1—C61.381 (3)C13—H130.9300
C2—C31.386 (3)C14—H140.9300
C3—C41.389 (3)C15—H150.9300
C4—C51.378 (4)C16—H160.9300
C5—C61.391 (4)C17—H17A0.9600
C7—C81.415 (3)C17—H17B0.9600
C7—C121.447 (3)C17—H17C0.9600
C8—C91.432 (3)C19—H190.9300
C9—C101.356 (3)C21—H210.9300
C10—C111.420 (3)C22—H220.9300
C11—C121.416 (3)C23—H230.9300
C11—C161.412 (3)C26—H260.9300
C12—C131.413 (4)C27—H270.9300
C13—C141.375 (4)C30—H300.9300
C14—C151.398 (4)C31—H310.9300
C15—C161.360 (4)C32—H320.9300
C18—C191.391 (3)C33—H330.9300
C18—C231.388 (3)C34—H34A0.9600
C19—C201.391 (3)C34—H34B0.9600
C20—C211.386 (3)C34—H34C0.9600
C21—C221.376 (3)
O2—Cu—O4173.62 (6)O4—C25—C26118.72 (19)
O2—Cu—N186.83 (7)C24—C25—C26117.77 (19)
O2—Cu—N396.06 (7)C25—C26—C27121.3 (2)
O2—Cu—O2i81.69 (5)C26—C27—C28122.0 (2)
O4—Cu—N190.67 (7)C27—C28—C29118.7 (2)
O4—Cu—N385.87 (7)C27—C28—C33121.8 (2)
O2i—Cu—O4104.51 (6)C29—C28—C33119.5 (2)
N1—Cu—N3173.71 (6)C24—C29—C28119.0 (2)
O2i—Cu—N198.82 (6)C24—C29—C30122.6 (2)
O2i—Cu—N387.14 (6)C28—C29—C30118.4 (2)
C3—O1—C17117.92 (19)C29—C30—C31120.7 (2)
Cu—O2—C8118.96 (13)C30—C31—C32121.0 (2)
Cu—O2—Cui98.31 (6)C31—C32—C33119.8 (2)
Cui—O2—C8129.90 (13)C28—C33—C32120.7 (2)
C20—O3—C34117.68 (18)C1—C2—H6121.00
Cu—O4—C25120.22 (14)C3—C2—H6121.00
Cu—N1—N2124.93 (13)C3—C4—H4120.00
Cu—N1—C1121.87 (14)C5—C4—H4120.00
N2—N1—C1111.97 (17)C4—C5—H3120.00
N1—N2—C7121.70 (17)C6—C5—H3120.00
Cu—N3—N4122.90 (13)C1—C6—H2121.00
Cu—N3—C18124.34 (14)C5—C6—H2121.00
N4—N3—C18111.64 (17)C8—C9—H9119.00
N3—N4—C24121.91 (18)C10—C9—H9119.00
N1—C1—C2119.78 (19)C9—C10—H10119.00
N1—C1—C6118.75 (19)C11—C10—H10119.00
C2—C1—C6121.5 (2)C12—C13—H13120.00
C1—C2—C3118.8 (2)C14—C13—H13120.00
O1—C3—C2123.5 (2)C13—C14—H14120.00
O1—C3—C4116.4 (2)C15—C14—H14120.00
C2—C3—C4120.1 (2)C14—C15—H15120.00
C3—C4—C5120.3 (2)C16—C15—H15120.00
C4—C5—C6120.7 (2)C11—C16—H16119.00
C1—C6—C5118.7 (2)C15—C16—H16120.00
N2—C7—C8124.5 (2)O1—C17—H17A109.00
N2—C7—C12114.30 (19)O1—C17—H17B109.00
C8—C7—C12121.2 (2)O1—C17—H17C109.00
O2—C8—C7123.5 (2)H17A—C17—H17B110.00
O2—C8—C9119.14 (19)H17A—C17—H17C109.00
C7—C8—C9117.3 (2)H17B—C17—H17C109.00
C8—C9—C10121.6 (2)C18—C19—H19120.00
C9—C10—C11122.3 (2)C20—C19—H19120.00
C10—C11—C12118.5 (2)C20—C21—H21120.00
C10—C11—C16122.0 (2)C22—C21—H21120.00
C12—C11—C16119.5 (2)C21—C22—H22120.00
C7—C12—C11118.9 (2)C23—C22—H22120.00
C7—C12—C13123.0 (2)C18—C23—H23121.00
C11—C12—C13118.1 (2)C22—C23—H23121.00
C12—C13—C14120.8 (2)C25—C26—H26119.00
C13—C14—C15120.6 (3)C27—C26—H26119.00
C14—C15—C16120.0 (3)C26—C27—H27119.00
C11—C16—C15121.0 (2)C28—C27—H27119.00
N3—C18—C19120.37 (19)C29—C30—H30120.00
N3—C18—C23118.57 (19)C31—C30—H30120.00
C19—C18—C23121.1 (2)C30—C31—H31120.00
C18—C19—C20119.0 (2)C32—C31—H31120.00
O3—C20—C19123.6 (2)C31—C32—H32120.00
O3—C20—C21116.0 (2)C33—C32—H32120.00
C19—C20—C21120.4 (2)C28—C33—H33120.00
C20—C21—C22120.1 (2)C32—C33—H33120.00
C21—C22—C23120.7 (2)O3—C34—H34A109.00
C18—C23—C22118.8 (2)O3—C34—H34B109.00
N4—C24—C25123.76 (19)O3—C34—H34C109.00
N4—C24—C29115.09 (19)H34A—C34—H34B110.00
C25—C24—C29120.95 (19)H34A—C34—H34C109.00
O4—C25—C24123.49 (19)H34B—C34—H34C110.00
N1—Cu—O2—C845.86 (15)C2—C3—C4—C50.7 (4)
N1—Cu—O2—Cui99.40 (6)C3—C4—C5—C60.4 (4)
N3—Cu—O2—C8128.53 (15)C4—C5—C6—C10.9 (3)
N3—Cu—O2—Cui86.20 (6)N2—C7—C8—O20.1 (4)
O2i—Cu—O2—C8145.26 (15)N2—C7—C8—C9179.0 (2)
O2i—Cu—O2—Cui0.00 (5)C12—C7—C8—O2178.4 (2)
N1—Cu—O4—C25137.83 (16)C12—C7—C8—C90.5 (3)
N3—Cu—O4—C2547.43 (16)N2—C7—C12—C11178.1 (2)
O2i—Cu—O4—C2538.53 (16)N2—C7—C12—C130.5 (3)
O2—Cu—N1—N234.04 (15)C8—C7—C12—C113.2 (3)
O2—Cu—N1—C1159.66 (15)C8—C7—C12—C13178.1 (2)
O4—Cu—N1—N2140.09 (15)O2—C8—C9—C10178.6 (2)
O4—Cu—N1—C126.21 (15)C7—C8—C9—C102.4 (3)
O2i—Cu—N1—N2115.12 (15)C8—C9—C10—C112.6 (4)
O2i—Cu—N1—C178.58 (15)C9—C10—C11—C120.4 (3)
O2—Cu—N3—N4146.18 (15)C9—C10—C11—C16179.2 (2)
O2—Cu—N3—C1820.73 (16)C10—C11—C12—C73.2 (3)
O4—Cu—N3—N439.93 (15)C10—C11—C12—C13178.1 (2)
O4—Cu—N3—C18153.17 (16)C16—C11—C12—C7176.4 (2)
O2i—Cu—N3—N464.85 (15)C16—C11—C12—C132.3 (3)
O2i—Cu—N3—C18102.06 (16)C10—C11—C16—C15178.7 (2)
O2—Cu—O2i—Cui0.00 (6)C12—C11—C16—C151.8 (4)
O2—Cu—O2i—C8i139.47 (17)C7—C12—C13—C14177.6 (2)
O4—Cu—O2i—Cui178.46 (6)C11—C12—C13—C141.0 (4)
O4—Cu—O2i—C8i42.07 (17)C12—C13—C14—C151.0 (4)
N1—Cu—O2i—Cui85.46 (7)C13—C14—C15—C161.6 (4)
N1—Cu—O2i—C8i135.08 (17)C14—C15—C16—C110.2 (4)
N3—Cu—O2i—Cui96.56 (7)N3—C18—C19—C20178.9 (2)
N3—Cu—O2i—C8i42.91 (17)C23—C18—C19—C201.1 (3)
C17—O1—C3—C25.9 (3)N3—C18—C23—C22178.8 (2)
C17—O1—C3—C4175.1 (2)C19—C18—C23—C221.3 (3)
Cu—O2—C8—C738.8 (3)C18—C19—C20—O3179.4 (2)
Cu—O2—C8—C9142.38 (17)C18—C19—C20—C210.1 (3)
Cui—O2—C8—C793.9 (2)O3—C20—C21—C22179.5 (2)
Cui—O2—C8—C984.9 (2)C19—C20—C21—C221.1 (3)
C34—O3—C20—C194.5 (3)C20—C21—C22—C231.0 (3)
C34—O3—C20—C21174.8 (2)C21—C22—C23—C180.2 (3)
Cu—O4—C25—C2435.0 (3)N4—C24—C25—O46.0 (3)
Cu—O4—C25—C26146.85 (17)N4—C24—C25—C26172.24 (19)
Cu—N1—N2—C710.0 (3)C29—C24—C25—O4179.5 (2)
C1—N1—N2—C7177.49 (18)C29—C24—C25—C262.3 (3)
Cu—N1—C1—C2141.16 (17)N4—C24—C29—C28176.91 (19)
Cu—N1—C1—C637.2 (3)N4—C24—C29—C304.1 (3)
N2—N1—C1—C226.8 (3)C25—C24—C29—C281.9 (3)
N2—N1—C1—C6154.92 (19)C25—C24—C29—C30179.0 (2)
N1—N2—C7—C815.3 (3)O4—C25—C26—C27176.6 (2)
N1—N2—C7—C12166.09 (18)C24—C25—C26—C275.1 (3)
Cu—N3—N4—C2416.2 (2)C25—C26—C27—C283.5 (4)
C18—N3—N4—C24175.38 (17)C26—C27—C28—C290.9 (3)
Cu—N3—C18—C19146.59 (17)C26—C27—C28—C33179.5 (2)
Cu—N3—C18—C2333.5 (3)C27—C28—C29—C243.6 (3)
N4—N3—C18—C1921.6 (3)C27—C28—C29—C30177.4 (2)
N4—N3—C18—C23158.35 (19)C33—C28—C29—C24176.9 (2)
N3—N4—C24—C2515.1 (3)C33—C28—C29—C302.2 (3)
N3—N4—C24—C29170.09 (17)C27—C28—C33—C32177.1 (2)
N1—C1—C2—C3177.8 (2)C29—C28—C33—C322.5 (3)
C6—C1—C2—C30.5 (3)C24—C29—C30—C31178.9 (2)
N1—C1—C6—C5178.8 (2)C28—C29—C30—C310.1 (3)
C2—C1—C6—C50.5 (3)C29—C30—C31—C321.7 (4)
C1—C2—C3—O1177.9 (2)C30—C31—C32—C331.5 (4)
C1—C2—C3—C41.1 (3)C31—C32—C33—C280.7 (4)
O1—C3—C4—C5178.4 (2)
Symmetry code: (i) x+1, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C22—H22···O4ii0.932.453.267 (3)146
C32—H32···O1iii0.932.513.394 (4)158
Symmetry codes: (ii) x+1, y+1, z+2; (iii) x+1/2, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C22—H22···O4i0.932.453.267 (3)146
C32—H32···O1ii0.932.513.394 (4)158
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1/2, y1/2, z+3/2.
 

Acknowledgements

The authors acknowledge the Algerian Ministry of Higher Education and Scientific Research, the Algerian Directorate General for Scientific Research and Technological Development and the University of Constantine for financial support.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarella, A., Casalboni, M., Centore, R., Fusco, S., Noce, C., Quatela, A., Peluso, A. & Sirigu, A. (2007). Opt. Mater. 30, 473–477.  Web of Science CrossRef CAS Google Scholar
First citationChetioui, S., Boudraa, I., Bouacida, S., Bouchoul, A. & Bouaoud, S. E. (2013a). Acta Cryst. E69, o1250.  CSD CrossRef IUCr Journals Google Scholar
First citationChetioui, S., Boudraa, I., Bouacida, S., Bouchoul, A. & Bouaoud, S. E. (2013b). Acta Cryst. E69, o1322–o1323.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKulikovska, O., Goldenberg, L. M. & Stumpe, J. (2007). Chem. Mater. 19, 3343–3348.  Web of Science CrossRef CAS Google Scholar
First citationLee, S. H., Kim, J. Y., Ko, J., Lee, J. Y. & Kim, J. S. (2004). J. Org. Chem. 69, 2902–2905.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLeng, W. N., Zhou, Y. M., Xu, Q. H. & Liu, J. Z. (2001). Polymer, 42, 9253–9259.  Web of Science CrossRef CAS Google Scholar
First citationPatnaik, S., Sharma, A. K., Garg, B. S., Gandhi, R. P. & Gupta, K. C. (2007). Int. J. Pharm. 342, 184–193.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds