research communications
SR,6SR)-6-ethenyl-1-[(RS)-1-phenylethoxy]-1-azaspiro[4.5]decan-2-one
of (±)-(5aSchool of Medicine, Keio University, Hiyoshi 4-1-1, Kohoku-ku, Yokohama 223-8521, Japan, and bDepartment of Applied Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama 223-8522, Japan
*Correspondence e-mail: oec@keio.jp
In the title compound, C19H25NO2, the pyrrolidine ring adopts an envelope form, with the spiro C atom as the flap, while the cyclohexane ring shows a chair form. A weak intramolecular C—H⋯O interaction supports the molecular conformation, generating an S(6) ring motif. In the crystal, pairs of C—H⋯O interactions connect the molecules into inversion dimers with an R22(16) ring motif. The dimers are linked by a second pair of C—H⋯O interactions, enclosing an R42(12) ring motif, into a tape structure along the b axis.
CCDC reference: 1435676
1. Chemical context
A number of compounds containing an N-hydroxy or N-alkoxy substituent have been widely explored in organic synthesis. These substances show specific and intriguing reactivity caused by a between the electronegative heteroatoms. Among these compounds, for example, the N-alkoxyamines are known to be initiators for stable polymerization (Hawker et al., 2001), and the N-alkoxyamides are utilized for mild and effective acylating agents (cf. Weinreb amide; Nahm & Weinreb, 1981). We noticed this stable but contributable functionality, and have developed a new synthetic pathway to synthesize the natural (Sato & Chida, 2014).
2. Structural commentary
The molecular structure of the title compound is shown in Fig. 1. The pyrrolidine ring (N1/C2–C5) adopts an envelope form, with puckering parameters of Q(2) = 0.1965 (16) Å and φ(2) = 151.8 (5)°. The flap atom C5 deviates from the mean plane of other four atoms by 0.314 (2) Å. For the N-alkoxy-N-alkylamide moiety, the geometry around atom N1 is a little deformed from a planar to a pyramidal configuration. The shift of atom N1 from the C2/C5/O14 plane is 0.2163 (13) Å, and the sum of angles for C2—N1—O14, O14—N1—C5 and C5—N1—C2 is 353.0°.
The cyclohexane ring (C5–C10), which is spiro-fused to the pyrrolidine ring, adopts a chair form with puckering parameters of Q = 0.5782 (17) Å, θ = 1.82 (17)°, φ = 347 (5)°, Q(2) = 0.0197 (17) Å and Q(3) = 0.5779 (17) Å. The equatorially oriented C10—C11 bond makes an angle of 70.60 (9)° with the normal to the Cremer & Pople plane of the cyclohexane ring, and the vinyl group (C11=C12) is positioned in syn-periplanar geometry to the cyclohexane framework, with a C9—C10—C11=C12 torsion angle of 10.9 (2)°.
An intramolecular C—H⋯O interaction (C15—H15⋯O13) supports the molecular conformation, generating an S(6) graph-set motif. No intramolecular C—H⋯π interaction is observed.
3. Supramolecular features
In the crystal, a pair of C—H⋯O interactions (C18—H18⋯O13i; Table 1) with an R22(16) graph-set motif links the molecules, forming an inversion dimer. The dimers are linked into a tape structure running along the b axis by weak C—H⋯O interactions (C20—H20⋯O13ii; Table 1), enclosing an R42(12) graph-set motif (Figs. 2 and 3). There is no intermolecular C—H⋯π interaction.
4. Database survey
In the Cambridge Structural Database (CSD, Version 5.36, November 2014; Groom & Allen, 2014), 20 structures containing a 1-azaspiro[4.5]decan-2-one skeleton, (a), are registered (Fig. 4). These include 14 compounds with an N-alkyl substituent, (b), but no compound with an N-alkoxy substituent, (c).
The structure of an N-methoxy-azaspirocyclic derivative, (d), which is related to the title compound, (e), has also been reported (TUWCUJ; Wardrop et al., 2003). In the crystal of (d), the pyrrolidine ring adopts a similar conformation to the title compound. The spiro-C atom is at the flap of the envelope, and the geometry around the N atom shows a little deformation to a pyramidal configuration with the sum of the C(carbonyl)—N—O, O—N—C and C—N—C(carbonyl) angles being 345.8 (5)°. No intramolecular C—H⋯O interaction is observed in (d).
5. Synthesis and crystallization
The title compound was synthesized convergently from hex-5-en-1-ol, methyl 4-chloro-4-oxobutyrate and 1-phenylethanol (Yamamoto et al., 2015). Purification was carried out by silica gel and colorless crystals were obtained from a hexane solution by slow evaporation at ambient temperature. M.p. 357.1–357.8 K. HRMS (ESI) m/z calculated for C19H25NO2Na+ [M + Na]+: 322.1783; found: 322.1779. Analysis calculated for C19H25NO2: C 76.22, H 8.42, N 4.68%; found: C 76.31, H 8.44, N 4.58%.
6. Refinement
Crystal data, data collection and structure . C-bound H atoms were positioned geometrically with C—H = 0.95–1.00 Å, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).
details are summarized in Table 2Supporting information
CCDC reference: 1435676
https://doi.org/10.1107/S2056989015021209/is5431sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989015021209/is5431Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989015021209/is5431Isup3.cml
Data collection: APEX2 (Bruker, 2014); cell
SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010) and PLATON (Spek, 2009).C19H25NO2 | F(000) = 324 |
Mr = 299.41 | Dx = 1.222 Mg m−3 |
Triclinic, P1 | Melting point: 357.8 K |
a = 8.9032 (5) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.6307 (5) Å | Cell parameters from 5086 reflections |
c = 11.3401 (6) Å | θ = 2.7–25.1° |
α = 93.306 (2)° | µ = 0.08 mm−1 |
β = 108.710 (2)° | T = 90 K |
γ = 114.929 (2)° | Plate, colorless |
V = 813.83 (8) Å3 | 0.29 × 0.24 × 0.20 mm |
Z = 2 |
Bruker D8 Venture diffractometer | 2861 independent reflections |
Radiation source: fine-focus sealed tube | 2304 reflections with I > 2σ(I) |
Multilayered confocal mirror monochromator | Rint = 0.028 |
Detector resolution: 10.4167 pixels mm-1 | θmax = 25.0°, θmin = 2.4° |
φ and ω scans | h = −10→10 |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | k = −11→11 |
Tmin = 0.98, Tmax = 0.98 | l = −13→13 |
14217 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.034 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.083 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0345P)2 + 0.2546P] where P = (Fo2 + 2Fc2)/3 |
2861 reflections | (Δ/σ)max = 0.003 |
200 parameters | Δρmax = 0.23 e Å−3 |
0 restraints | Δρmin = −0.21 e Å−3 |
Experimental. IR (film): 2933, 2859, 1708, 1451, 1047, 916, 700 cm-1; 1H NMR (500 MHz, CDCl3): δ (p.p.m.) 7.41–7.38 (m, 2H; H18 & H22), 7.37–7.28 (m, 3H; H19–21), 5.66 (ddd, J = 17.5, 10.6, 6.9 Hz, 1H; H11), 5.27 (q, J = 6.6 Hz, 1H; H15), 5.15 (ddd, J = 17.5, 1.7, 1.4 Hz, 1H; H12A), 5.09 (ddd, J = 10.6, 1.7, 1.2 Hz, 1H; H12B), 2.46 (ddddd, J = 11.5, 6.9, 4.0, 1.4, 1.2 Hz, 1H; H10), 2.24 (ddd, J = 17.5, 10.9, 3.7 Hz, 1H; H3B), 2.17 (ddd, J = 17.5, 10.3, 7.8 Hz, 1H; H3A), 1.98 (ddd, J = 14.0, 10.3, 3.7 Hz, 1H; H4A), 1.72–1.68 (m, 1H; H9B), 1.66 (d, J = 6.6 Hz, 3H; H16ABC), 1.63–1.57 (m, 1H; H7B), 1.49–1.41 (m, 2H; H4B & H8B), 1.31–1.20 (m, 2H; H6A & H9A), 1.17–1.01 (m, 2H; H7A & H8A), 0.90–0.82 (m, 1H; H6B). 13C NMR (125 MHz, CDCl3): δ (p.p.m.) 172.8 (C; C2), 141.5 (C; C17), 137.6 (CH; C11), 128.4 (CH; C20), 128.3 (CH; C19 & C21), 127.7 (CH; C18 & C22), 117.8 (CH2; C12), 83.2 (CH; C15), 66.7 (C; C5), 44.6 (CH; C10), 37.6 (CH2; C6), 27.7 (CH2; C9), 27.3 (CH2; C3), 25.0 (CH2; C7), 22.8 (CH2; C8), 22.6 (CH2; C4), 21.2 (CH3; C16). |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. Problematic one reflection with |I(obs)-I(calc)|/σW(I) greater than 10 (5 4 0) has been omitted in the final refinement. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.38594 (14) | 0.18774 (12) | 0.71854 (10) | 0.0150 (3) | |
C2 | 0.27948 (18) | 0.23274 (15) | 0.63314 (13) | 0.0181 (3) | |
C3 | 0.35545 (19) | 0.27324 (18) | 0.53172 (13) | 0.0239 (3) | |
H3A | 0.3831 | 0.3823 | 0.5236 | 0.029* | |
H3B | 0.2694 | 0.2009 | 0.448 | 0.029* | |
C4 | 0.52667 (18) | 0.25541 (17) | 0.57599 (12) | 0.0204 (3) | |
H4A | 0.6283 | 0.3505 | 0.5734 | 0.024* | |
H4B | 0.5107 | 0.1636 | 0.5197 | 0.024* | |
C5 | 0.56353 (17) | 0.23207 (15) | 0.71449 (12) | 0.0161 (3) | |
C6 | 0.61336 (18) | 0.09955 (16) | 0.73662 (13) | 0.0187 (3) | |
H6A | 0.6112 | 0.0754 | 0.8199 | 0.022* | |
H6B | 0.5232 | 0.0039 | 0.6691 | 0.022* | |
C7 | 0.79862 (18) | 0.14278 (17) | 0.73554 (14) | 0.0224 (3) | |
H7A | 0.7978 | 0.157 | 0.6496 | 0.027* | |
H7B | 0.8281 | 0.056 | 0.7539 | 0.027* | |
C8 | 0.94114 (18) | 0.29350 (17) | 0.83460 (14) | 0.0239 (3) | |
H8A | 0.9525 | 0.2752 | 0.9213 | 0.029* | |
H8B | 1.0582 | 0.3232 | 0.8274 | 0.029* | |
C9 | 0.89331 (18) | 0.42710 (16) | 0.81564 (13) | 0.0207 (3) | |
H9A | 0.8956 | 0.4533 | 0.7329 | 0.025* | |
H9B | 0.9842 | 0.5214 | 0.8842 | 0.025* | |
C10 | 0.70790 (17) | 0.38388 (15) | 0.81750 (13) | 0.0169 (3) | |
H10 | 0.7115 | 0.358 | 0.9022 | 0.02* | |
C11 | 0.65709 (18) | 0.51421 (16) | 0.80790 (12) | 0.0197 (3) | |
H11 | 0.5532 | 0.4978 | 0.824 | 0.024* | |
C12 | 0.7417 (2) | 0.64903 (16) | 0.77944 (13) | 0.0250 (3) | |
H12A | 0.8464 | 0.6713 | 0.7625 | 0.03* | |
H12B | 0.6981 | 0.7239 | 0.7759 | 0.03* | |
O13 | 0.14599 (13) | 0.23609 (11) | 0.63826 (9) | 0.0236 (2) | |
O14 | 0.36946 (11) | 0.17339 (10) | 0.83675 (8) | 0.0157 (2) | |
C15 | 0.20748 (17) | 0.02915 (15) | 0.82165 (12) | 0.0162 (3) | |
H15 | 0.1019 | 0.0301 | 0.7556 | 0.019* | |
C16 | 0.19176 (19) | 0.04574 (16) | 0.94965 (13) | 0.0205 (3) | |
H16A | 0.3004 | 0.0563 | 1.0167 | 0.031* | |
H16B | 0.0876 | −0.0475 | 0.949 | 0.031* | |
H16C | 0.1771 | 0.1393 | 0.9664 | 0.031* | |
C17 | 0.22033 (17) | −0.11480 (15) | 0.77798 (12) | 0.0161 (3) | |
C18 | 0.14415 (17) | −0.18306 (16) | 0.64821 (13) | 0.0193 (3) | |
H18 | 0.0813 | −0.1409 | 0.5897 | 0.023* | |
C19 | 0.15846 (19) | −0.31154 (16) | 0.60300 (14) | 0.0236 (3) | |
H19 | 0.1063 | −0.3567 | 0.514 | 0.028* | |
C20 | 0.24866 (19) | −0.37425 (16) | 0.68731 (14) | 0.0257 (3) | |
H20 | 0.2588 | −0.4624 | 0.6564 | 0.031* | |
C21 | 0.32436 (19) | −0.30816 (16) | 0.81723 (14) | 0.0228 (3) | |
H21 | 0.3859 | −0.3515 | 0.8755 | 0.027* | |
C22 | 0.31044 (17) | −0.17913 (15) | 0.86219 (13) | 0.0178 (3) | |
H22 | 0.3628 | −0.1342 | 0.9513 | 0.021* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0159 (6) | 0.0195 (6) | 0.0124 (6) | 0.0089 (5) | 0.0073 (4) | 0.0061 (5) |
C2 | 0.0188 (7) | 0.0155 (7) | 0.0185 (7) | 0.0079 (6) | 0.0056 (6) | 0.0034 (6) |
C3 | 0.0249 (8) | 0.0299 (8) | 0.0180 (7) | 0.0131 (7) | 0.0086 (6) | 0.0095 (6) |
C4 | 0.0212 (7) | 0.0236 (8) | 0.0171 (7) | 0.0096 (6) | 0.0093 (6) | 0.0045 (6) |
C5 | 0.0139 (7) | 0.0186 (7) | 0.0176 (7) | 0.0070 (6) | 0.0087 (6) | 0.0044 (6) |
C6 | 0.0176 (7) | 0.0172 (7) | 0.0221 (7) | 0.0081 (6) | 0.0089 (6) | 0.0033 (6) |
C7 | 0.0213 (8) | 0.0246 (8) | 0.0281 (8) | 0.0137 (7) | 0.0133 (6) | 0.0073 (6) |
C8 | 0.0169 (7) | 0.0295 (8) | 0.0286 (8) | 0.0117 (7) | 0.0111 (6) | 0.0086 (7) |
C9 | 0.0169 (7) | 0.0222 (8) | 0.0204 (7) | 0.0065 (6) | 0.0075 (6) | 0.0043 (6) |
C10 | 0.0176 (7) | 0.0178 (7) | 0.0160 (7) | 0.0077 (6) | 0.0078 (6) | 0.0050 (6) |
C11 | 0.0187 (7) | 0.0203 (8) | 0.0187 (7) | 0.0082 (6) | 0.0071 (6) | 0.0019 (6) |
C12 | 0.0284 (8) | 0.0212 (8) | 0.0251 (8) | 0.0113 (7) | 0.0103 (6) | 0.0050 (6) |
O13 | 0.0204 (5) | 0.0311 (6) | 0.0255 (5) | 0.0165 (5) | 0.0092 (4) | 0.0106 (5) |
O14 | 0.0160 (5) | 0.0175 (5) | 0.0138 (5) | 0.0060 (4) | 0.0080 (4) | 0.0046 (4) |
C15 | 0.0112 (7) | 0.0171 (7) | 0.0199 (7) | 0.0053 (6) | 0.0070 (5) | 0.0055 (6) |
C16 | 0.0215 (7) | 0.0217 (7) | 0.0244 (8) | 0.0116 (6) | 0.0136 (6) | 0.0074 (6) |
C17 | 0.0107 (6) | 0.0164 (7) | 0.0199 (7) | 0.0034 (6) | 0.0082 (6) | 0.0058 (6) |
C18 | 0.0133 (7) | 0.0198 (7) | 0.0199 (7) | 0.0034 (6) | 0.0062 (6) | 0.0050 (6) |
C19 | 0.0217 (8) | 0.0185 (7) | 0.0229 (8) | 0.0018 (6) | 0.0105 (6) | −0.0006 (6) |
C20 | 0.0262 (8) | 0.0161 (7) | 0.0362 (9) | 0.0073 (7) | 0.0177 (7) | 0.0024 (7) |
C21 | 0.0203 (7) | 0.0195 (8) | 0.0322 (9) | 0.0100 (6) | 0.0125 (6) | 0.0098 (6) |
C22 | 0.0145 (7) | 0.0180 (7) | 0.0192 (7) | 0.0051 (6) | 0.0076 (6) | 0.0050 (6) |
N1—C2 | 1.3528 (17) | C10—C11 | 1.5015 (18) |
N1—O14 | 1.4028 (13) | C10—H10 | 1.0 |
N1—C5 | 1.4712 (16) | C11—C12 | 1.3182 (19) |
C2—O13 | 1.2220 (16) | C11—H11 | 0.95 |
C2—C3 | 1.5035 (19) | C12—H12A | 0.95 |
C3—C4 | 1.5313 (19) | C12—H12B | 0.95 |
C3—H3A | 0.99 | O14—C15 | 1.4711 (15) |
C3—H3B | 0.99 | C15—C17 | 1.5070 (18) |
C4—C5 | 1.5483 (18) | C15—C16 | 1.5082 (18) |
C4—H4A | 0.99 | C15—H15 | 1.0 |
C4—H4B | 0.99 | C16—H16A | 0.98 |
C5—C6 | 1.5269 (18) | C16—H16B | 0.98 |
C5—C10 | 1.5524 (18) | C16—H16C | 0.98 |
C6—C7 | 1.5260 (18) | C17—C18 | 1.3893 (19) |
C6—H6A | 0.99 | C17—C22 | 1.3911 (18) |
C6—H6B | 0.99 | C18—C19 | 1.383 (2) |
C7—C8 | 1.524 (2) | C18—H18 | 0.95 |
C7—H7A | 0.99 | C19—C20 | 1.381 (2) |
C7—H7B | 0.99 | C19—H19 | 0.95 |
C8—C9 | 1.5225 (19) | C20—C21 | 1.387 (2) |
C8—H8A | 0.99 | C20—H20 | 0.95 |
C8—H8B | 0.99 | C21—C22 | 1.3845 (19) |
C9—C10 | 1.5305 (18) | C21—H21 | 0.95 |
C9—H9A | 0.99 | C22—H22 | 0.95 |
C9—H9B | 0.99 | ||
C2—N1—O14 | 119.24 (10) | C10—C9—H9B | 109.3 |
C2—N1—C5 | 116.41 (10) | H9A—C9—H9B | 107.9 |
O14—N1—C5 | 117.39 (9) | C11—C10—C9 | 114.62 (11) |
O13—C2—N1 | 125.63 (12) | C11—C10—C5 | 111.76 (11) |
O13—C2—C3 | 127.65 (12) | C9—C10—C5 | 110.36 (10) |
N1—C2—C3 | 106.72 (11) | C11—C10—H10 | 106.5 |
C2—C3—C4 | 105.52 (11) | C9—C10—H10 | 106.5 |
C2—C3—H3A | 110.6 | C5—C10—H10 | 106.5 |
C4—C3—H3A | 110.6 | C12—C11—C10 | 126.73 (13) |
C2—C3—H3B | 110.6 | C12—C11—H11 | 116.6 |
C4—C3—H3B | 110.6 | C10—C11—H11 | 116.6 |
H3A—C3—H3B | 108.8 | C11—C12—H12A | 120.0 |
C3—C4—C5 | 107.09 (10) | C11—C12—H12B | 120.0 |
C3—C4—H4A | 110.3 | H12A—C12—H12B | 120.0 |
C5—C4—H4A | 110.3 | N1—O14—C15 | 110.49 (9) |
C3—C4—H4B | 110.3 | O14—C15—C17 | 110.98 (10) |
C5—C4—H4B | 110.3 | O14—C15—C16 | 103.77 (10) |
H4A—C4—H4B | 108.6 | C17—C15—C16 | 116.12 (11) |
N1—C5—C6 | 110.47 (10) | O14—C15—H15 | 108.6 |
N1—C5—C4 | 99.85 (10) | C17—C15—H15 | 108.6 |
C6—C5—C4 | 112.75 (11) | C16—C15—H15 | 108.6 |
N1—C5—C10 | 110.47 (10) | C15—C16—H16A | 109.5 |
C6—C5—C10 | 109.45 (10) | C15—C16—H16B | 109.5 |
C4—C5—C10 | 113.53 (11) | H16A—C16—H16B | 109.5 |
C7—C6—C5 | 111.89 (11) | C15—C16—H16C | 109.5 |
C7—C6—H6A | 109.2 | H16A—C16—H16C | 109.5 |
C5—C6—H6A | 109.2 | H16B—C16—H16C | 109.5 |
C7—C6—H6B | 109.2 | C18—C17—C22 | 118.66 (12) |
C5—C6—H6B | 109.2 | C18—C17—C15 | 118.77 (12) |
H6A—C6—H6B | 107.9 | C22—C17—C15 | 122.54 (12) |
C8—C7—C6 | 111.07 (11) | C19—C18—C17 | 120.93 (13) |
C8—C7—H7A | 109.4 | C19—C18—H18 | 119.5 |
C6—C7—H7A | 109.4 | C17—C18—H18 | 119.5 |
C8—C7—H7B | 109.4 | C20—C19—C18 | 119.98 (13) |
C6—C7—H7B | 109.4 | C20—C19—H19 | 120.0 |
H7A—C7—H7B | 108.0 | C18—C19—H19 | 120.0 |
C9—C8—C7 | 111.06 (11) | C19—C20—C21 | 119.80 (13) |
C9—C8—H8A | 109.4 | C19—C20—H20 | 120.1 |
C7—C8—H8A | 109.4 | C21—C20—H20 | 120.1 |
C9—C8—H8B | 109.4 | C22—C21—C20 | 120.10 (13) |
C7—C8—H8B | 109.4 | C22—C21—H21 | 119.9 |
H8A—C8—H8B | 108.0 | C20—C21—H21 | 119.9 |
C8—C9—C10 | 111.81 (11) | C21—C22—C17 | 120.53 (13) |
C8—C9—H9A | 109.3 | C21—C22—H22 | 119.7 |
C10—C9—H9A | 109.3 | C17—C22—H22 | 119.7 |
C8—C9—H9B | 109.3 | ||
O14—N1—C2—O13 | −14.0 (2) | N1—C5—C10—C11 | −52.82 (13) |
C5—N1—C2—O13 | −164.04 (13) | C6—C5—C10—C11 | −174.67 (10) |
O14—N1—C2—C3 | 167.24 (10) | C4—C5—C10—C11 | 58.38 (14) |
C5—N1—C2—C3 | 17.17 (15) | N1—C5—C10—C9 | 178.38 (10) |
O13—C2—C3—C4 | 177.61 (13) | C6—C5—C10—C9 | 56.53 (13) |
N1—C2—C3—C4 | −3.62 (15) | C4—C5—C10—C9 | −70.42 (13) |
C2—C3—C4—C5 | −9.48 (15) | C9—C10—C11—C12 | 10.9 (2) |
C2—N1—C5—C6 | −141.15 (11) | C5—C10—C11—C12 | −115.63 (15) |
O14—N1—C5—C6 | 68.22 (13) | C2—N1—O14—C15 | 75.55 (13) |
C2—N1—C5—C4 | −22.22 (14) | C5—N1—O14—C15 | −134.67 (10) |
O14—N1—C5—C4 | −172.85 (10) | N1—O14—C15—C17 | 64.29 (12) |
C2—N1—C5—C10 | 97.60 (13) | N1—O14—C15—C16 | −170.29 (9) |
O14—N1—C5—C10 | −53.03 (13) | O14—C15—C17—C18 | −95.21 (13) |
C3—C4—C5—N1 | 17.59 (13) | C16—C15—C17—C18 | 146.62 (12) |
C3—C4—C5—C6 | 134.83 (12) | O14—C15—C17—C22 | 82.70 (14) |
C3—C4—C5—C10 | −99.97 (13) | C16—C15—C17—C22 | −35.46 (17) |
N1—C5—C6—C7 | −178.92 (11) | C22—C17—C18—C19 | −0.54 (19) |
C4—C5—C6—C7 | 70.32 (14) | C15—C17—C18—C19 | 177.46 (12) |
C10—C5—C6—C7 | −57.07 (14) | C17—C18—C19—C20 | 0.3 (2) |
C5—C6—C7—C8 | 56.61 (15) | C18—C19—C20—C21 | 0.1 (2) |
C6—C7—C8—C9 | −54.81 (15) | C19—C20—C21—C22 | −0.4 (2) |
C7—C8—C9—C10 | 55.59 (15) | C20—C21—C22—C17 | 0.2 (2) |
C8—C9—C10—C11 | 176.19 (11) | C18—C17—C22—C21 | 0.28 (19) |
C8—C9—C10—C5 | −56.57 (14) | C15—C17—C22—C21 | −177.64 (12) |
D—H···A | D—H | H···A | D···A | D—H···A |
C15—H15···O13 | 1.00 | 2.42 | 3.0437 (16) | 120 |
C18—H18···O13i | 0.95 | 2.53 | 3.2864 (17) | 136 |
C20—H20···O13ii | 0.95 | 2.61 | 3.4307 (17) | 145 |
Symmetry codes: (i) −x, −y, −z+1; (ii) x, y−1, z. |
Acknowledgements
This research was partially supported by the Keio Gijuku Fukuzawa Memorial Fund for the Advancement of Education and Research. We also thank Professor S. Ohba (Keio University, Japan) for his fruitful advice.
References
Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. Web of Science CSD CrossRef CAS Google Scholar
Hawker, C. J., Bosman, A. W. & Harth, E. (2001). Chem. Rev. 101, 3661–3688. Web of Science CrossRef PubMed CAS Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Nahm, S. & Weinreb, S. M. (1981). Tetrahedron Lett. 22, 3815–3818. CrossRef CAS Web of Science Google Scholar
Sato, T. & Chida, N. (2014). Org. Biomol. Chem. 12, 3147–3150. Web of Science CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wardrop, D. J., Burge, M. S., Zhang, W. & Ortíz, J. A. (2003). Tetrahedron Lett. 44, 2587–2591. Web of Science CSD CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yamamoto, S., Sato, T. & Chida, N. (2015). In preparation. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.