research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (±)-(5SR,6SR)-6-ethenyl-1-[(RS)-1-phenyl­eth­­oxy]-1-aza­spiro­[4.5]decan-2-one

aSchool of Medicine, Keio University, Hiyoshi 4-1-1, Kohoku-ku, Yokohama 223-8521, Japan, and bDepartment of Applied Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama 223-8522, Japan
*Correspondence e-mail: oec@keio.jp

Edited by H. Ishida, Okayama University, Japan (Received 28 October 2015; accepted 9 November 2015; online 25 November 2015)

In the title compound, C19H25NO2, the pyrrolidine ring adopts an envelope form, with the spiro C atom as the flap, while the cyclo­hexane ring shows a chair form. A weak intra­molecular C—H⋯O inter­action supports the mol­ecular conformation, generating an S(6) ring motif. In the crystal, pairs of C—H⋯O inter­actions connect the mol­ecules into inversion dimers with an R22(16) ring motif. The dimers are linked by a second pair of C—H⋯O inter­actions, enclosing an R42(12) ring motif, into a tape structure along the b axis.

1. Chemical context

A number of compounds containing an N-hy­droxy or N-alk­oxy substituent have been widely explored in organic synthesis. These substances show specific and intriguing reactivity caused by a covalent bond between the electronegative heteroatoms. Among these compounds, for example, the N-alk­oxy­amines are known to be initiators for stable free radical polymerization (Hawker et al., 2001[Hawker, C. J., Bosman, A. W. & Harth, E. (2001). Chem. Rev. 101, 3661-3688.]), and the N-alk­oxy­amides are utilized for mild and effective acyl­ating agents (cf. Weinreb amide; Nahm & Weinreb, 1981[Nahm, S. & Weinreb, S. M. (1981). Tetrahedron Lett. 22, 3815-3818.]). We noticed this stable but contributable functionality, and have developed a new synthetic pathway to synthesize the natural alkaloids (Sato & Chida, 2014[Sato, T. & Chida, N. (2014). Org. Biomol. Chem. 12, 3147-3150.]).

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The pyrrolidine ring (N1/C2–C5) adopts an envelope form, with puckering parameters of Q(2) = 0.1965 (16) Å and φ(2) = 151.8 (5)°. The flap atom C5 deviates from the mean plane of other four atoms by 0.314 (2) Å. For the N-alk­oxy-N-alkyl­amide moiety, the geometry around atom N1 is a little deformed from a planar to a pyramidal configuration. The shift of atom N1 from the C2/C5/O14 plane is 0.2163 (13) Å, and the sum of angles for C2—N1—O14, O14—N1—C5 and C5—N1—C2 is 353.0°.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The black dashed line indicates the intra­molecular C—H⋯O hydrogen bond. Only H atoms connected to chiral C atoms are shown for clarity.

The cyclo­hexane ring (C5–C10), which is spiro-fused to the pyrrolidine ring, adopts a chair form with puckering parameters of Q = 0.5782 (17) Å, θ = 1.82 (17)°, φ = 347 (5)°, Q(2) = 0.0197 (17) Å and Q(3) = 0.5779 (17) Å. The equatorially oriented C10—C11 bond makes an angle of 70.60 (9)° with the normal to the Cremer & Pople plane of the cyclo­hexane ring, and the vinyl group (C11=C12) is positioned in syn-periplanar geometry to the cyclo­hexane framework, with a C9—C10—C11=C12 torsion angle of 10.9 (2)°.

An intra­molecular C—H⋯O inter­action (C15—H15⋯O13) supports the mol­ecular conformation, generating an S(6) graph-set motif. No intra­molecular C—H⋯π inter­action is observed.

3. Supra­molecular features

In the crystal, a pair of C—H⋯O inter­actions (C18—H18⋯O13i; Table 1[link]) with an R22(16) graph-set motif links the mol­ecules, forming an inversion dimer. The dimers are linked into a tape structure running along the b axis by weak C—H⋯O inter­actions (C20—H20⋯O13ii; Table 1[link]), enclosing an R42(12) graph-set motif (Figs. 2[link] and 3[link]). There is no inter­molecular C—H⋯π inter­action.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯O13 1.00 2.42 3.0437 (16) 120
C18—H18⋯O13i 0.95 2.53 3.2864 (17) 136
C20—H20⋯O13ii 0.95 2.61 3.4307 (17) 145
Symmetry codes: (i) -x, -y, -z+1; (ii) x, y-1, z.
[Figure 2]
Figure 2
A partial packing view showing the tape structure. Black dashed lines indicate the inter­molecular C—H⋯O hydrogen bonds. Only H atoms involved in the hydrogen bonds are shown for clarity. [Symmetry codes: (i) −x, −y, −z + 1; (ii) x, y − 1, z.]
[Figure 3]
Figure 3
A packing diagram viewed down the b axis. Black dotted lines indicate the inter­molecular C—H⋯O inter­actions. The pale-green parallelograms indicate the tape structures running along the b axis. Only H atoms involved in hydrogen bonding are shown for clarity.

4. Database survey

In the Cambridge Structural Database (CSD, Version 5.36, November 2014; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]), 20 structures containing a 1-aza­spiro­[4.5]decan-2-one skeleton, (a), are registered (Fig. 4[link]). These include 14 compounds with an N-alkyl substituent, (b), but no compound with an N-alk­oxy substituent, (c).

[Figure 4]
Figure 4
The structures of (a) the 1-aza­spiro­[4.5]decan-2-one skeleton from the database survey and its (b) N-alkyl and (c) N-alk­oxy derivatives; R = alkyl or aryl, (d) (4S*,5R*)-6-isopropyl-1-meth­oxy-4-methyl-1-aza­spiro­[4.5]deca-6,9-diene-2,8-dione and (e) the title compound; X = (R*)-1-phenyl­ethyl.

The structure of an N-meth­oxy-aza­spiro­cyclic derivative, (d), which is related to the title compound, (e), has also been reported (TUWCUJ; Wardrop et al., 2003[Wardrop, D. J., Burge, M. S., Zhang, W. & Ortíz, J. A. (2003). Tetrahedron Lett. 44, 2587-2591.]). In the crystal of (d), the pyrrolidine ring adopts a similar conformation to the title compound. The spiro-C atom is at the flap of the envelope, and the geometry around the N atom shows a little deformation to a pyramidal configuration with the sum of the C(carbon­yl)—N—O, O—N—C and C—N—C(carbon­yl) angles being 345.8 (5)°. No intra­molecular C—H⋯O inter­action is observed in (d).

5. Synthesis and crystallization

The title compound was synthesized convergently from hex-5-en-1-ol, methyl 4-chloro-4-oxobutyrate and 1-phenyl­ethanol (Yamamoto et al., 2015[Yamamoto, S., Sato, T. & Chida, N. (2015). In preparation.]). Purification was carried out by silica gel column chromatography, and colorless crystals were obtained from a hexane solution by slow evaporation at ambient temperature. M.p. 357.1–357.8 K. HRMS (ESI) m/z calculated for C19H25NO2Na+ [M + Na]+: 322.1783; found: 322.1779. Analysis calculated for C19H25NO2: C 76.22, H 8.42, N 4.68%; found: C 76.31, H 8.44, N 4.58%.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. C-bound H atoms were positioned geometrically with C—H = 0.95–1.00 Å, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Table 2
Experimental details

Crystal data
Chemical formula C19H25NO2
Mr 299.41
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 90
a, b, c (Å) 8.9032 (5), 9.6307 (5), 11.3401 (6)
α, β, γ (°) 93.306 (2), 108.710 (2), 114.929 (2)
V3) 813.83 (8)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.29 × 0.24 × 0.20
 
Data collection
Diffractometer Bruker D8 Venture
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.98, 0.98
No. of measured, independent and observed [I > 2σ(I)] reflections 14217, 2861, 2304
Rint 0.028
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.083, 1.06
No. of reflections 2861
No. of parameters 200
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.23, −0.21
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010) and PLATON (Spek, 2009).

(±)-(5SR,6SR)-6-Ethenyl-1-[(RS)-1-phenylethoxy]-1-azaspiro[4.5]decan-2-one top
Crystal data top
C19H25NO2F(000) = 324
Mr = 299.41Dx = 1.222 Mg m3
Triclinic, P1Melting point: 357.8 K
a = 8.9032 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.6307 (5) ÅCell parameters from 5086 reflections
c = 11.3401 (6) Åθ = 2.7–25.1°
α = 93.306 (2)°µ = 0.08 mm1
β = 108.710 (2)°T = 90 K
γ = 114.929 (2)°Plate, colorless
V = 813.83 (8) Å30.29 × 0.24 × 0.20 mm
Z = 2
Data collection top
Bruker D8 Venture
diffractometer
2861 independent reflections
Radiation source: fine-focus sealed tube2304 reflections with I > 2σ(I)
Multilayered confocal mirror monochromatorRint = 0.028
Detector resolution: 10.4167 pixels mm-1θmax = 25.0°, θmin = 2.4°
φ and ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
k = 1111
Tmin = 0.98, Tmax = 0.98l = 1313
14217 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0345P)2 + 0.2546P]
where P = (Fo2 + 2Fc2)/3
2861 reflections(Δ/σ)max = 0.003
200 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.21 e Å3
Special details top

Experimental. IR (film): 2933, 2859, 1708, 1451, 1047, 916, 700 cm-1; 1H NMR (500 MHz, CDCl3): δ (p.p.m.) 7.41–7.38 (m, 2H; H18 & H22), 7.37–7.28 (m, 3H; H19–21), 5.66 (ddd, J = 17.5, 10.6, 6.9 Hz, 1H; H11), 5.27 (q, J = 6.6 Hz, 1H; H15), 5.15 (ddd, J = 17.5, 1.7, 1.4 Hz, 1H; H12A), 5.09 (ddd, J = 10.6, 1.7, 1.2 Hz, 1H; H12B), 2.46 (ddddd, J = 11.5, 6.9, 4.0, 1.4, 1.2 Hz, 1H; H10), 2.24 (ddd, J = 17.5, 10.9, 3.7 Hz, 1H; H3B), 2.17 (ddd, J = 17.5, 10.3, 7.8 Hz, 1H; H3A), 1.98 (ddd, J = 14.0, 10.3, 3.7 Hz, 1H; H4A), 1.72–1.68 (m, 1H; H9B), 1.66 (d, J = 6.6 Hz, 3H; H16ABC), 1.63–1.57 (m, 1H; H7B), 1.49–1.41 (m, 2H; H4B & H8B), 1.31–1.20 (m, 2H; H6A & H9A), 1.17–1.01 (m, 2H; H7A & H8A), 0.90–0.82 (m, 1H; H6B). 13C NMR (125 MHz, CDCl3): δ (p.p.m.) 172.8 (C; C2), 141.5 (C; C17), 137.6 (CH; C11), 128.4 (CH; C20), 128.3 (CH; C19 & C21), 127.7 (CH; C18 & C22), 117.8 (CH2; C12), 83.2 (CH; C15), 66.7 (C; C5), 44.6 (CH; C10), 37.6 (CH2; C6), 27.7 (CH2; C9), 27.3 (CH2; C3), 25.0 (CH2; C7), 22.8 (CH2; C8), 22.6 (CH2; C4), 21.2 (CH3; C16).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Problematic one reflection with |I(obs)-I(calc)|/σW(I) greater than 10 (5 4 0) has been omitted in the final refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.38594 (14)0.18774 (12)0.71854 (10)0.0150 (3)
C20.27948 (18)0.23274 (15)0.63314 (13)0.0181 (3)
C30.35545 (19)0.27324 (18)0.53172 (13)0.0239 (3)
H3A0.38310.38230.52360.029*
H3B0.26940.20090.4480.029*
C40.52667 (18)0.25541 (17)0.57599 (12)0.0204 (3)
H4A0.62830.35050.57340.024*
H4B0.51070.16360.51970.024*
C50.56353 (17)0.23207 (15)0.71449 (12)0.0161 (3)
C60.61336 (18)0.09955 (16)0.73662 (13)0.0187 (3)
H6A0.61120.07540.81990.022*
H6B0.52320.00390.66910.022*
C70.79862 (18)0.14278 (17)0.73554 (14)0.0224 (3)
H7A0.79780.1570.64960.027*
H7B0.82810.0560.75390.027*
C80.94114 (18)0.29350 (17)0.83460 (14)0.0239 (3)
H8A0.95250.27520.92130.029*
H8B1.05820.32320.82740.029*
C90.89331 (18)0.42710 (16)0.81564 (13)0.0207 (3)
H9A0.89560.45330.73290.025*
H9B0.98420.52140.88420.025*
C100.70790 (17)0.38388 (15)0.81750 (13)0.0169 (3)
H100.71150.3580.90220.02*
C110.65709 (18)0.51421 (16)0.80790 (12)0.0197 (3)
H110.55320.49780.8240.024*
C120.7417 (2)0.64903 (16)0.77944 (13)0.0250 (3)
H12A0.84640.67130.76250.03*
H12B0.69810.72390.77590.03*
O130.14599 (13)0.23609 (11)0.63826 (9)0.0236 (2)
O140.36946 (11)0.17339 (10)0.83675 (8)0.0157 (2)
C150.20748 (17)0.02915 (15)0.82165 (12)0.0162 (3)
H150.10190.03010.75560.019*
C160.19176 (19)0.04574 (16)0.94965 (13)0.0205 (3)
H16A0.30040.05631.01670.031*
H16B0.08760.04750.9490.031*
H16C0.17710.13930.96640.031*
C170.22033 (17)0.11480 (15)0.77798 (12)0.0161 (3)
C180.14415 (17)0.18306 (16)0.64821 (13)0.0193 (3)
H180.08130.14090.58970.023*
C190.15846 (19)0.31154 (16)0.60300 (14)0.0236 (3)
H190.10630.35670.5140.028*
C200.24866 (19)0.37425 (16)0.68731 (14)0.0257 (3)
H200.25880.46240.65640.031*
C210.32436 (19)0.30816 (16)0.81723 (14)0.0228 (3)
H210.38590.35150.87550.027*
C220.31044 (17)0.17913 (15)0.86219 (13)0.0178 (3)
H220.36280.13420.95130.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0159 (6)0.0195 (6)0.0124 (6)0.0089 (5)0.0073 (4)0.0061 (5)
C20.0188 (7)0.0155 (7)0.0185 (7)0.0079 (6)0.0056 (6)0.0034 (6)
C30.0249 (8)0.0299 (8)0.0180 (7)0.0131 (7)0.0086 (6)0.0095 (6)
C40.0212 (7)0.0236 (8)0.0171 (7)0.0096 (6)0.0093 (6)0.0045 (6)
C50.0139 (7)0.0186 (7)0.0176 (7)0.0070 (6)0.0087 (6)0.0044 (6)
C60.0176 (7)0.0172 (7)0.0221 (7)0.0081 (6)0.0089 (6)0.0033 (6)
C70.0213 (8)0.0246 (8)0.0281 (8)0.0137 (7)0.0133 (6)0.0073 (6)
C80.0169 (7)0.0295 (8)0.0286 (8)0.0117 (7)0.0111 (6)0.0086 (7)
C90.0169 (7)0.0222 (8)0.0204 (7)0.0065 (6)0.0075 (6)0.0043 (6)
C100.0176 (7)0.0178 (7)0.0160 (7)0.0077 (6)0.0078 (6)0.0050 (6)
C110.0187 (7)0.0203 (8)0.0187 (7)0.0082 (6)0.0071 (6)0.0019 (6)
C120.0284 (8)0.0212 (8)0.0251 (8)0.0113 (7)0.0103 (6)0.0050 (6)
O130.0204 (5)0.0311 (6)0.0255 (5)0.0165 (5)0.0092 (4)0.0106 (5)
O140.0160 (5)0.0175 (5)0.0138 (5)0.0060 (4)0.0080 (4)0.0046 (4)
C150.0112 (7)0.0171 (7)0.0199 (7)0.0053 (6)0.0070 (5)0.0055 (6)
C160.0215 (7)0.0217 (7)0.0244 (8)0.0116 (6)0.0136 (6)0.0074 (6)
C170.0107 (6)0.0164 (7)0.0199 (7)0.0034 (6)0.0082 (6)0.0058 (6)
C180.0133 (7)0.0198 (7)0.0199 (7)0.0034 (6)0.0062 (6)0.0050 (6)
C190.0217 (8)0.0185 (7)0.0229 (8)0.0018 (6)0.0105 (6)0.0006 (6)
C200.0262 (8)0.0161 (7)0.0362 (9)0.0073 (7)0.0177 (7)0.0024 (7)
C210.0203 (7)0.0195 (8)0.0322 (9)0.0100 (6)0.0125 (6)0.0098 (6)
C220.0145 (7)0.0180 (7)0.0192 (7)0.0051 (6)0.0076 (6)0.0050 (6)
Geometric parameters (Å, º) top
N1—C21.3528 (17)C10—C111.5015 (18)
N1—O141.4028 (13)C10—H101.0
N1—C51.4712 (16)C11—C121.3182 (19)
C2—O131.2220 (16)C11—H110.95
C2—C31.5035 (19)C12—H12A0.95
C3—C41.5313 (19)C12—H12B0.95
C3—H3A0.99O14—C151.4711 (15)
C3—H3B0.99C15—C171.5070 (18)
C4—C51.5483 (18)C15—C161.5082 (18)
C4—H4A0.99C15—H151.0
C4—H4B0.99C16—H16A0.98
C5—C61.5269 (18)C16—H16B0.98
C5—C101.5524 (18)C16—H16C0.98
C6—C71.5260 (18)C17—C181.3893 (19)
C6—H6A0.99C17—C221.3911 (18)
C6—H6B0.99C18—C191.383 (2)
C7—C81.524 (2)C18—H180.95
C7—H7A0.99C19—C201.381 (2)
C7—H7B0.99C19—H190.95
C8—C91.5225 (19)C20—C211.387 (2)
C8—H8A0.99C20—H200.95
C8—H8B0.99C21—C221.3845 (19)
C9—C101.5305 (18)C21—H210.95
C9—H9A0.99C22—H220.95
C9—H9B0.99
C2—N1—O14119.24 (10)C10—C9—H9B109.3
C2—N1—C5116.41 (10)H9A—C9—H9B107.9
O14—N1—C5117.39 (9)C11—C10—C9114.62 (11)
O13—C2—N1125.63 (12)C11—C10—C5111.76 (11)
O13—C2—C3127.65 (12)C9—C10—C5110.36 (10)
N1—C2—C3106.72 (11)C11—C10—H10106.5
C2—C3—C4105.52 (11)C9—C10—H10106.5
C2—C3—H3A110.6C5—C10—H10106.5
C4—C3—H3A110.6C12—C11—C10126.73 (13)
C2—C3—H3B110.6C12—C11—H11116.6
C4—C3—H3B110.6C10—C11—H11116.6
H3A—C3—H3B108.8C11—C12—H12A120.0
C3—C4—C5107.09 (10)C11—C12—H12B120.0
C3—C4—H4A110.3H12A—C12—H12B120.0
C5—C4—H4A110.3N1—O14—C15110.49 (9)
C3—C4—H4B110.3O14—C15—C17110.98 (10)
C5—C4—H4B110.3O14—C15—C16103.77 (10)
H4A—C4—H4B108.6C17—C15—C16116.12 (11)
N1—C5—C6110.47 (10)O14—C15—H15108.6
N1—C5—C499.85 (10)C17—C15—H15108.6
C6—C5—C4112.75 (11)C16—C15—H15108.6
N1—C5—C10110.47 (10)C15—C16—H16A109.5
C6—C5—C10109.45 (10)C15—C16—H16B109.5
C4—C5—C10113.53 (11)H16A—C16—H16B109.5
C7—C6—C5111.89 (11)C15—C16—H16C109.5
C7—C6—H6A109.2H16A—C16—H16C109.5
C5—C6—H6A109.2H16B—C16—H16C109.5
C7—C6—H6B109.2C18—C17—C22118.66 (12)
C5—C6—H6B109.2C18—C17—C15118.77 (12)
H6A—C6—H6B107.9C22—C17—C15122.54 (12)
C8—C7—C6111.07 (11)C19—C18—C17120.93 (13)
C8—C7—H7A109.4C19—C18—H18119.5
C6—C7—H7A109.4C17—C18—H18119.5
C8—C7—H7B109.4C20—C19—C18119.98 (13)
C6—C7—H7B109.4C20—C19—H19120.0
H7A—C7—H7B108.0C18—C19—H19120.0
C9—C8—C7111.06 (11)C19—C20—C21119.80 (13)
C9—C8—H8A109.4C19—C20—H20120.1
C7—C8—H8A109.4C21—C20—H20120.1
C9—C8—H8B109.4C22—C21—C20120.10 (13)
C7—C8—H8B109.4C22—C21—H21119.9
H8A—C8—H8B108.0C20—C21—H21119.9
C8—C9—C10111.81 (11)C21—C22—C17120.53 (13)
C8—C9—H9A109.3C21—C22—H22119.7
C10—C9—H9A109.3C17—C22—H22119.7
C8—C9—H9B109.3
O14—N1—C2—O1314.0 (2)N1—C5—C10—C1152.82 (13)
C5—N1—C2—O13164.04 (13)C6—C5—C10—C11174.67 (10)
O14—N1—C2—C3167.24 (10)C4—C5—C10—C1158.38 (14)
C5—N1—C2—C317.17 (15)N1—C5—C10—C9178.38 (10)
O13—C2—C3—C4177.61 (13)C6—C5—C10—C956.53 (13)
N1—C2—C3—C43.62 (15)C4—C5—C10—C970.42 (13)
C2—C3—C4—C59.48 (15)C9—C10—C11—C1210.9 (2)
C2—N1—C5—C6141.15 (11)C5—C10—C11—C12115.63 (15)
O14—N1—C5—C668.22 (13)C2—N1—O14—C1575.55 (13)
C2—N1—C5—C422.22 (14)C5—N1—O14—C15134.67 (10)
O14—N1—C5—C4172.85 (10)N1—O14—C15—C1764.29 (12)
C2—N1—C5—C1097.60 (13)N1—O14—C15—C16170.29 (9)
O14—N1—C5—C1053.03 (13)O14—C15—C17—C1895.21 (13)
C3—C4—C5—N117.59 (13)C16—C15—C17—C18146.62 (12)
C3—C4—C5—C6134.83 (12)O14—C15—C17—C2282.70 (14)
C3—C4—C5—C1099.97 (13)C16—C15—C17—C2235.46 (17)
N1—C5—C6—C7178.92 (11)C22—C17—C18—C190.54 (19)
C4—C5—C6—C770.32 (14)C15—C17—C18—C19177.46 (12)
C10—C5—C6—C757.07 (14)C17—C18—C19—C200.3 (2)
C5—C6—C7—C856.61 (15)C18—C19—C20—C210.1 (2)
C6—C7—C8—C954.81 (15)C19—C20—C21—C220.4 (2)
C7—C8—C9—C1055.59 (15)C20—C21—C22—C170.2 (2)
C8—C9—C10—C11176.19 (11)C18—C17—C22—C210.28 (19)
C8—C9—C10—C556.57 (14)C15—C17—C22—C21177.64 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O131.002.423.0437 (16)120
C18—H18···O13i0.952.533.2864 (17)136
C20—H20···O13ii0.952.613.4307 (17)145
Symmetry codes: (i) x, y, z+1; (ii) x, y1, z.
 

Acknowledgements

This research was partially supported by the Keio Gijuku Fukuzawa Memorial Fund for the Advancement of Education and Research. We also thank Professor S. Ohba (Keio University, Japan) for his fruitful advice.

References

First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationHawker, C. J., Bosman, A. W. & Harth, E. (2001). Chem. Rev. 101, 3661–3688.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNahm, S. & Weinreb, S. M. (1981). Tetrahedron Lett. 22, 3815–3818.  CrossRef CAS Web of Science Google Scholar
First citationSato, T. & Chida, N. (2014). Org. Biomol. Chem. 12, 3147–3150.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWardrop, D. J., Burge, M. S., Zhang, W. & Ortíz, J. A. (2003). Tetrahedron Lett. 44, 2587–2591.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYamamoto, S., Sato, T. & Chida, N. (2015). In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds