organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (5Z)-5-(2-hy­dr­oxy­benzyl­­idene)-1,3-thia­zolidine-2,4-dione

aDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, bChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, cChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, eDepartment of Chemistry, Faculty of Science, Sohag University, 82524 Sohag, Egypt, and fKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

Edited by H. Ishida, Okayama University, Japan (Received 30 October 2015; accepted 17 November 2015; online 21 November 2015)

The title compound, C10H7NO3S, crystallizes with four independent mol­ecules in the asymmetric unit with slightly different conformations; the dihedral angles between the six- and five-membered rings are 2.6 (1), 1.09 (9), 8.6 (1) and 6.2 (1)°. In the crystal, mol­ecules are linked by O—H⋯O and N—H⋯O hydrogen bonds, forming sheets lying parallel to (101).

1. Related literature

For synthesis and biological activities of thia­zolidinones, see: Singh et al. (1981[Singh, S. P., Parmar, S. S., Raman, K. & Stenberg, V. I. (1981). Chem. Rev. 81, 175-203.]); Bondock et al. (2007[Bondock, S., Khalifa, W. & Fadda, A. A. (2007). Eur. J. Med. Chem. 42, 948-954.]); Vicini et al. (2008[Vicini, P., Geronikaki, A., Incerti, M., Zani, F., Dearden, J. & Hewitt, M. (2008). Bioorg. Med. Chem. 16, 3714-3724.]); Behbehani & Ibrahim (2012[Behbehani, H. & Ibrahim, H. M. (2012). Molecules, 17, 6362-6385.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C10H7NO3S

  • Mr = 221.23

  • Triclinic, [P \overline 1]

  • a = 7.2040 (7) Å

  • b = 13.6544 (14) Å

  • c = 18.9346 (18) Å

  • α = 90.226 (2)°

  • β = 95.531 (2)°

  • γ = 91.330 (2)°

  • V = 1853.3 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 150 K

  • 0.22 × 0.11 × 0.08 mm

2.2. Data collection

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (TWINABS; Sheldrick, 2009[Sheldrick, G. M. (2009). TWINABS. University of Göttingen, Germany.]) Tmin = 0.93, Tmax = 0.97

  • 64240 measured reflections

  • 9869 independent reflections

  • 5466 reflections with I > 2σ(I)

  • Rint = 0.074

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.125

  • S = 0.93

  • 9869 reflections

  • 541 parameters

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O5i 0.91 1.91 2.819 (2) 175
O1—H1O⋯O12ii 0.84 1.91 2.744 (2) 175
N2—H2N⋯O2iii 0.91 1.96 2.859 (2) 169
O4—H2O⋯O9iv 0.84 1.97 2.759 (2) 156
N3—H3N⋯O11v 0.91 1.95 2.859 (2) 177
O7—H3O⋯O6i 0.84 1.94 2.757 (2) 166
N4—H4N⋯O8vi 0.91 1.93 2.843 (2) 176
O10—H4O⋯O3vii 0.84 1.89 2.722 (2) 169
Symmetry codes: (i) x, y+1, z; (ii) x, y, z-1; (iii) x, y-1, z; (iv) x-1, y-1, z+1; (v) x, y+1, z-1; (vi) x, y-1, z+1; (vii) x+1, y, z.

Data collection: APEX2 (Bruker, 2015[Bruker (2015). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2015[Bruker (2015). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL2014.

Supporting information


Comment top

Thiazolidinones are an important group of heterocyclic compounds. Diverse biological activities such as bactericidal, pesticidal, fungicidal, insecticidal, anticonvulsant, tuberculostatic, antiinflammatory, antithyroidal, potentiation of pentobarbital induced sleeping time, etc., have been found to be associated with thiazolidinone derivatives (Singh et al., 1981; Bondock et al., 2007; Vicini et al., 2008; Behbehani & Ibrahim, 2012). In this context we report here the synthesis and crystal structure determination of the title compound.

The title compound crystallizes with four independent molecules in the asymmetric unit with similar but significantly different conformations (Fig. 1). This is most distinctly shown by the dihedral angles between the 6- and 5-membererd rings. For molecules 1–4, respectively, these are: 2.6 (1), 1.09 (9), 8.6 (1) and 6.2 (1)°. Intermolecular N—H···O and O—H···O hydrogen bonds (Table 1 and Fig. 2) form sheets running approximately parallel to (101) (Fig. 3).

Related literature top

For synthesis and biological activities of thiazolidinones, see: Singh et al. (1981); Bondock et al. (2007); Vicini et al. (2008); Behbehani & Ibrahim (2012).

Experimental top

The title compound was obtained as a major product from a three component reaction of 2-hydroxy-benzaldehyde (1 mmol, 122 mg), thiazolidine-2,4-dione (1 mmol, 117 mg) and 1-aminopropan-2-ol (1 mmol, 75 mg) under reflux. The reaction was monitored by TLC till completion. On cooling the solid product was collected by filteration, dried under vacuum and recrystallized from ethanol to afford yellow crystals in a sufficient quality for X-ray diffraction. M.p. 558 K.

Refinement top

H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 Å) while those attached to nitrogen and oxygen were placed in locations derived from a difference map and their coordinates adjusted to give N—H = 0.91 Å and O—H = 0.84 Å. All were included as riding contributions with isotropic displacement parameters 1.2 times those of the attached atoms. Analysis of 852 reflections having I/σ(I) > 13 and chosen from the full data set with CELL_NOW showed the crystal to belong to the triclinic system and to consist of one major component (ca. 88%) and two minor components. The raw data were processed using the multi-component version of SAINT under control of the two-component orientation file generated by CELL_NOW. Reflections from the major twin domain were used for the refinement.

Structure description top

Thiazolidinones are an important group of heterocyclic compounds. Diverse biological activities such as bactericidal, pesticidal, fungicidal, insecticidal, anticonvulsant, tuberculostatic, antiinflammatory, antithyroidal, potentiation of pentobarbital induced sleeping time, etc., have been found to be associated with thiazolidinone derivatives (Singh et al., 1981; Bondock et al., 2007; Vicini et al., 2008; Behbehani & Ibrahim, 2012). In this context we report here the synthesis and crystal structure determination of the title compound.

The title compound crystallizes with four independent molecules in the asymmetric unit with similar but significantly different conformations (Fig. 1). This is most distinctly shown by the dihedral angles between the 6- and 5-membererd rings. For molecules 1–4, respectively, these are: 2.6 (1), 1.09 (9), 8.6 (1) and 6.2 (1)°. Intermolecular N—H···O and O—H···O hydrogen bonds (Table 1 and Fig. 2) form sheets running approximately parallel to (101) (Fig. 3).

For synthesis and biological activities of thiazolidinones, see: Singh et al. (1981); Bondock et al. (2007); Vicini et al. (2008); Behbehani & Ibrahim (2012).

Computing details top

Data collection: APEX2 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b).

Figures top
[Figure 1] Fig. 1. The asymmetric unit showing labeling scheme and 50% probability ellipsoids.
[Figure 2] Fig. 2. A packing diagram viewed down the a axis with O—H···O and N—H···N hydrogen bonds shown, respectively, as red and blue dotted lines.
[Figure 3] Fig. 3. A packing diagram viewed down the b axis showing the sheet structure.
(5Z)-5-(2-Hydroxybenzylidene)-1,3-thiazolidine-2,4-dione top
Crystal data top
C10H7NO3SZ = 8
Mr = 221.23F(000) = 912
Triclinic, P1Dx = 1.586 Mg m3
a = 7.2040 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.6544 (14) ÅCell parameters from 6790 reflections
c = 18.9346 (18) Åθ = 2.6–28.4°
α = 90.226 (2)°µ = 0.33 mm1
β = 95.531 (2)°T = 150 K
γ = 91.330 (2)°Parallelepiped, yellow
V = 1853.3 (3) Å30.22 × 0.11 × 0.08 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
9869 independent reflections
Radiation source: fine-focus sealed tube5466 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.074
Detector resolution: 8.3333 pixels mm-1θmax = 29.4°, θmin = 1.8°
φ and ω scansh = 99
Absorption correction: multi-scan
(TWINABS; Sheldrick, 2009)
k = 1818
Tmin = 0.93, Tmax = 0.97l = 2626
64240 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: mixed
wR(F2) = 0.125H-atom parameters constrained
S = 0.93 w = 1/[σ2(Fo2) + (0.0665P)2]
where P = (Fo2 + 2Fc2)/3
9869 reflections(Δ/σ)max < 0.001
541 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C10H7NO3Sγ = 91.330 (2)°
Mr = 221.23V = 1853.3 (3) Å3
Triclinic, P1Z = 8
a = 7.2040 (7) ÅMo Kα radiation
b = 13.6544 (14) ŵ = 0.33 mm1
c = 18.9346 (18) ÅT = 150 K
α = 90.226 (2)°0.22 × 0.11 × 0.08 mm
β = 95.531 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
9869 independent reflections
Absorption correction: multi-scan
(TWINABS; Sheldrick, 2009)
5466 reflections with I > 2σ(I)
Tmin = 0.93, Tmax = 0.97Rint = 0.074
64240 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 0.93Δρmax = 0.53 e Å3
9869 reflectionsΔρmin = 0.38 e Å3
541 parameters
Special details top

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, colllected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = -30.00 and 210.00°. The scan time was 20 sec/frame. Analysis of 852 reflections having I/σ(I) > 13 and chosen from the full data set with CELL_NOW (Sheldrick, 2008) showed the crystal to belong to the triclinic system and to consist of one major and two minor components. The second of the minor components was considered to be small enough compared to the others that it could be neglected in the integration. The raw data were processed using the multi-component version of SAINT under control of the two-component orientation file generated by CELL_NOW.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 Å) while those attached to nitrogen and oxygen were placed in locations derived from a difference map and their coordinates adjusted to give N—H = 0.91%A and O—H = 0.84%A. All were included as riding contributions with isotropic displacement parameters 1.2 times those of the attached atoms. Trial refinements after all atoms were included indicated that the single component reflection file extracted from the twinned data set gave superior results.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.40644 (8)0.38610 (4)0.38644 (3)0.02299 (14)
O10.6291 (2)0.42858 (11)0.12068 (9)0.0370 (5)
H1O0.66900.42660.08040.044*
O20.4643 (2)0.63917 (11)0.30031 (8)0.0254 (4)
O30.2764 (2)0.47843 (12)0.49334 (8)0.0294 (4)
N10.3645 (2)0.57249 (13)0.40148 (9)0.0219 (4)
H1N0.35430.63180.42260.026*
C10.5409 (3)0.34462 (16)0.22111 (12)0.0208 (5)
C20.5130 (3)0.25416 (16)0.25447 (12)0.0254 (5)
H20.46970.25360.30030.031*
C30.5467 (3)0.16666 (17)0.22248 (13)0.0294 (6)
H30.52720.10660.24620.035*
C40.6098 (3)0.16625 (17)0.15511 (12)0.0279 (5)
H40.63350.10590.13290.033*
C50.6375 (3)0.25316 (17)0.12096 (12)0.0271 (5)
H50.68130.25270.07520.032*
C60.6020 (3)0.34172 (16)0.15285 (12)0.0241 (5)
C70.5131 (3)0.43940 (16)0.25299 (11)0.0217 (5)
H70.53660.49370.22370.026*
C80.4605 (3)0.46345 (15)0.31612 (11)0.0184 (5)
C90.4339 (3)0.56730 (16)0.33623 (11)0.0195 (5)
C100.3375 (3)0.48608 (17)0.43577 (12)0.0225 (5)
S20.32807 (8)0.01122 (4)0.37273 (3)0.02336 (14)
O40.1704 (2)0.04010 (11)0.64706 (8)0.0285 (4)
H2O0.14340.02250.68730.034*
O50.3142 (2)0.24179 (11)0.46129 (8)0.0268 (4)
O60.4279 (2)0.07906 (12)0.25874 (8)0.0293 (4)
N20.3748 (2)0.17408 (13)0.35499 (9)0.0218 (4)
H2N0.39580.23090.33220.026*
C110.2175 (3)0.04760 (16)0.54267 (11)0.0192 (5)
C120.1743 (3)0.04827 (16)0.61370 (12)0.0202 (5)
C130.1370 (3)0.13555 (16)0.64762 (12)0.0242 (5)
H130.10670.13470.69530.029*
C140.1441 (3)0.22250 (17)0.61207 (13)0.0267 (5)
H140.12050.28180.63560.032*
C150.1853 (3)0.22489 (17)0.54197 (13)0.0292 (6)
H150.18840.28540.51740.035*
C160.2219 (3)0.13864 (16)0.50825 (12)0.0243 (5)
H160.25090.14080.46040.029*
C170.2538 (3)0.04522 (16)0.50986 (11)0.0190 (5)
H170.24520.10020.54000.023*
C180.2977 (3)0.06743 (15)0.44423 (11)0.0188 (5)
C190.3286 (3)0.16940 (16)0.42378 (11)0.0202 (5)
C200.3851 (3)0.08749 (16)0.31868 (12)0.0217 (5)
S30.90516 (8)0.88184 (4)0.11410 (3)0.02609 (15)
O70.6217 (2)0.92781 (11)0.14016 (8)0.0326 (4)
H3O0.57730.91920.17910.039*
O80.7715 (2)1.13295 (11)0.04415 (8)0.0266 (4)
O91.0061 (2)0.97420 (12)0.22769 (8)0.0329 (4)
N30.8938 (2)1.06761 (13)0.14051 (9)0.0222 (4)
H3N0.90011.12610.16310.027*
C210.7074 (3)0.84107 (16)0.04052 (11)0.0199 (5)
C220.6480 (3)0.83940 (16)0.10950 (12)0.0239 (5)
C230.6200 (3)0.75171 (17)0.14383 (12)0.0262 (5)
H230.58180.75180.19050.031*
C240.6476 (3)0.66414 (17)0.11018 (13)0.0292 (6)
H240.62770.60420.13390.035*
C250.7037 (3)0.66242 (17)0.04226 (13)0.0302 (6)
H250.72110.60190.01910.036*
C260.7342 (3)0.75025 (17)0.00866 (12)0.0268 (5)
H260.77480.74900.03760.032*
C270.7336 (3)0.93551 (16)0.00744 (11)0.0200 (5)
H270.69250.98990.03270.024*
C280.8069 (3)0.95820 (16)0.05322 (11)0.0202 (5)
C290.8192 (3)1.06154 (16)0.07655 (11)0.0196 (5)
C300.9443 (3)0.98161 (17)0.17070 (12)0.0238 (5)
S40.87243 (9)0.50738 (4)0.87921 (3)0.02846 (16)
O101.1108 (2)0.46387 (11)0.61625 (8)0.0274 (4)
H4O1.15510.47530.57760.033*
O110.9134 (2)0.25436 (11)0.79255 (8)0.0286 (4)
O120.7722 (3)0.41381 (13)0.99199 (9)0.0386 (5)
N40.8343 (2)0.32045 (13)0.89658 (9)0.0237 (4)
H4N0.81610.26150.91740.028*
C311.0119 (3)0.54867 (16)0.71490 (11)0.0197 (5)
C321.0756 (3)0.55082 (15)0.64669 (11)0.0197 (5)
C331.0984 (3)0.63921 (16)0.61191 (12)0.0233 (5)
H331.14000.63960.56580.028*
C341.0609 (3)0.72617 (17)0.64428 (12)0.0269 (5)
H341.07720.78640.62050.032*
C350.9989 (3)0.72613 (16)0.71194 (12)0.0249 (5)
H350.97350.78620.73420.030*
C360.9750 (3)0.63891 (16)0.74614 (12)0.0220 (5)
H360.93230.63950.79210.026*
C370.9820 (3)0.45351 (16)0.74680 (11)0.0203 (5)
H371.00820.39910.71820.024*
C380.9236 (3)0.42983 (16)0.80996 (11)0.0204 (5)
C390.8931 (3)0.32598 (17)0.82932 (12)0.0223 (5)
C400.8174 (3)0.40666 (18)0.93258 (12)0.0259 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0304 (3)0.0206 (3)0.0193 (3)0.0001 (2)0.0096 (2)0.0009 (2)
O10.0658 (13)0.0232 (9)0.0265 (10)0.0031 (8)0.0273 (9)0.0037 (7)
O20.0356 (10)0.0195 (8)0.0230 (9)0.0006 (7)0.0114 (7)0.0011 (7)
O30.0359 (10)0.0323 (9)0.0221 (9)0.0022 (8)0.0137 (7)0.0027 (7)
N10.0288 (11)0.0153 (10)0.0228 (11)0.0019 (8)0.0095 (8)0.0044 (8)
C10.0215 (12)0.0188 (12)0.0230 (12)0.0014 (9)0.0065 (9)0.0009 (9)
C20.0302 (13)0.0224 (12)0.0251 (13)0.0008 (10)0.0094 (10)0.0022 (10)
C30.0354 (14)0.0212 (13)0.0328 (14)0.0007 (10)0.0090 (11)0.0012 (11)
C40.0333 (14)0.0229 (13)0.0280 (14)0.0030 (10)0.0059 (10)0.0052 (10)
C50.0323 (14)0.0264 (13)0.0239 (13)0.0019 (10)0.0099 (10)0.0024 (10)
C60.0272 (13)0.0214 (12)0.0251 (13)0.0001 (10)0.0097 (10)0.0003 (10)
C70.0251 (12)0.0188 (12)0.0221 (12)0.0001 (9)0.0060 (9)0.0048 (9)
C80.0172 (11)0.0182 (11)0.0204 (12)0.0005 (9)0.0040 (9)0.0016 (9)
C90.0191 (12)0.0205 (12)0.0200 (12)0.0013 (9)0.0068 (9)0.0030 (9)
C100.0210 (12)0.0275 (13)0.0197 (12)0.0017 (10)0.0052 (9)0.0020 (10)
S20.0310 (3)0.0213 (3)0.0192 (3)0.0022 (2)0.0094 (2)0.0018 (2)
O40.0447 (10)0.0212 (9)0.0225 (9)0.0020 (7)0.0180 (7)0.0001 (7)
O50.0372 (10)0.0206 (9)0.0246 (9)0.0006 (7)0.0133 (7)0.0011 (7)
O60.0388 (10)0.0313 (10)0.0198 (9)0.0010 (8)0.0126 (7)0.0017 (7)
N20.0296 (11)0.0193 (10)0.0174 (10)0.0010 (8)0.0071 (8)0.0032 (8)
C110.0186 (11)0.0213 (12)0.0186 (11)0.0004 (9)0.0056 (9)0.0012 (9)
C120.0207 (12)0.0178 (11)0.0227 (12)0.0000 (9)0.0050 (9)0.0000 (9)
C130.0250 (13)0.0269 (13)0.0219 (12)0.0009 (10)0.0088 (9)0.0064 (10)
C140.0305 (14)0.0181 (12)0.0330 (14)0.0026 (10)0.0102 (10)0.0070 (11)
C150.0348 (14)0.0221 (13)0.0321 (14)0.0038 (11)0.0102 (11)0.0020 (11)
C160.0291 (13)0.0221 (12)0.0231 (13)0.0033 (10)0.0092 (10)0.0013 (10)
C170.0198 (11)0.0191 (11)0.0188 (11)0.0003 (9)0.0051 (9)0.0012 (9)
C180.0185 (11)0.0189 (11)0.0199 (12)0.0003 (9)0.0064 (9)0.0011 (9)
C190.0184 (11)0.0213 (12)0.0217 (12)0.0002 (9)0.0055 (9)0.0004 (10)
C200.0218 (12)0.0227 (12)0.0212 (12)0.0007 (9)0.0052 (9)0.0004 (10)
S30.0365 (4)0.0219 (3)0.0220 (3)0.0032 (3)0.0137 (3)0.0002 (2)
O70.0552 (12)0.0220 (9)0.0238 (9)0.0029 (8)0.0209 (8)0.0031 (7)
O80.0334 (9)0.0227 (9)0.0255 (9)0.0038 (7)0.0118 (7)0.0005 (7)
O90.0461 (11)0.0348 (10)0.0206 (9)0.0025 (8)0.0174 (8)0.0000 (8)
N30.0301 (11)0.0182 (10)0.0197 (10)0.0015 (8)0.0088 (8)0.0029 (8)
C210.0199 (11)0.0207 (12)0.0200 (12)0.0004 (9)0.0060 (9)0.0015 (9)
C220.0271 (13)0.0201 (12)0.0252 (13)0.0013 (10)0.0076 (10)0.0019 (10)
C230.0316 (14)0.0275 (13)0.0208 (12)0.0018 (10)0.0095 (10)0.0044 (10)
C240.0314 (14)0.0213 (13)0.0360 (15)0.0019 (10)0.0093 (11)0.0085 (11)
C250.0369 (15)0.0181 (12)0.0374 (15)0.0009 (10)0.0129 (11)0.0002 (11)
C260.0317 (14)0.0252 (13)0.0249 (13)0.0012 (10)0.0100 (10)0.0001 (10)
C270.0234 (12)0.0175 (11)0.0199 (12)0.0009 (9)0.0063 (9)0.0010 (9)
C280.0193 (12)0.0237 (12)0.0181 (12)0.0017 (9)0.0045 (9)0.0001 (9)
C290.0177 (11)0.0223 (12)0.0195 (12)0.0009 (9)0.0044 (9)0.0015 (10)
C300.0275 (13)0.0257 (13)0.0192 (12)0.0007 (10)0.0069 (9)0.0016 (10)
S40.0442 (4)0.0226 (3)0.0206 (3)0.0011 (3)0.0146 (3)0.0020 (2)
O100.0387 (10)0.0227 (9)0.0236 (9)0.0050 (7)0.0162 (7)0.0006 (7)
O110.0428 (10)0.0209 (9)0.0240 (9)0.0017 (7)0.0135 (7)0.0009 (7)
O120.0602 (13)0.0379 (11)0.0212 (9)0.0016 (9)0.0220 (8)0.0018 (8)
N40.0326 (11)0.0188 (10)0.0208 (10)0.0032 (8)0.0087 (8)0.0022 (8)
C310.0193 (11)0.0188 (11)0.0215 (12)0.0001 (9)0.0040 (9)0.0011 (9)
C320.0219 (12)0.0182 (11)0.0199 (12)0.0021 (9)0.0066 (9)0.0004 (9)
C330.0233 (12)0.0267 (13)0.0209 (12)0.0009 (10)0.0080 (9)0.0017 (10)
C340.0277 (13)0.0223 (12)0.0311 (14)0.0022 (10)0.0050 (10)0.0068 (11)
C350.0286 (13)0.0171 (12)0.0295 (13)0.0005 (10)0.0059 (10)0.0038 (10)
C360.0260 (13)0.0199 (12)0.0209 (12)0.0007 (9)0.0062 (9)0.0021 (9)
C370.0238 (12)0.0179 (11)0.0201 (12)0.0023 (9)0.0059 (9)0.0014 (9)
C380.0220 (12)0.0209 (12)0.0188 (12)0.0001 (9)0.0055 (9)0.0001 (9)
C390.0235 (12)0.0229 (12)0.0211 (12)0.0007 (9)0.0048 (9)0.0022 (10)
C400.0304 (13)0.0304 (14)0.0178 (12)0.0023 (10)0.0083 (10)0.0017 (10)
Geometric parameters (Å, º) top
S1—C101.759 (2)S3—C281.760 (2)
S1—C81.770 (2)S3—C301.771 (2)
O1—C61.354 (3)O7—C221.362 (3)
O1—H1O0.8404O7—H3O0.8400
O2—C91.224 (2)O8—C291.223 (3)
O3—C101.218 (2)O9—C301.211 (2)
N1—C101.368 (3)N3—C291.373 (3)
N1—C91.379 (3)N3—C301.376 (3)
N1—H1N0.9104N3—H3N0.9104
C1—C61.406 (3)C21—C261.402 (3)
C1—C21.409 (3)C21—C221.413 (3)
C1—C71.452 (3)C21—C271.452 (3)
C2—C31.375 (3)C22—C231.385 (3)
C2—H20.9500C23—C241.380 (3)
C3—C41.395 (3)C23—H230.9500
C3—H30.9500C24—C251.385 (3)
C4—C51.373 (3)C24—H240.9500
C4—H40.9500C25—C261.383 (3)
C5—C61.389 (3)C25—H250.9500
C5—H50.9500C26—H260.9500
C7—C81.331 (3)C27—C281.344 (3)
C7—H70.9500C27—H270.9500
C8—C91.488 (3)C28—C291.483 (3)
S2—C181.758 (2)S4—C381.754 (2)
S2—C201.769 (2)S4—C401.770 (2)
O4—C121.365 (2)O10—C321.357 (2)
O4—H2O0.8403O10—H4O0.8399
O5—C191.228 (2)O11—C391.218 (3)
O6—C201.210 (2)O12—C401.205 (3)
N2—C201.374 (3)N4—C401.372 (3)
N2—C191.377 (3)N4—C391.382 (3)
N2—H2N0.9093N4—H4N0.9104
C11—C161.407 (3)C31—C361.407 (3)
C11—C121.409 (3)C31—C321.412 (3)
C11—C171.450 (3)C31—C371.455 (3)
C12—C131.395 (3)C32—C331.391 (3)
C13—C141.369 (3)C33—C341.378 (3)
C13—H130.9500C33—H330.9500
C14—C151.388 (3)C34—C351.397 (3)
C14—H140.9500C34—H340.9500
C15—C161.380 (3)C35—C361.373 (3)
C15—H150.9500C35—H350.9500
C16—H160.9500C36—H360.9500
C17—C181.346 (3)C37—C381.344 (3)
C17—H170.9500C37—H370.9500
C18—C191.471 (3)C38—C391.483 (3)
C10—S1—C891.68 (10)C28—S3—C3091.93 (10)
C6—O1—H1O116.9C22—O7—H3O109.6
C10—N1—C9117.22 (19)C29—N3—C30117.45 (19)
C10—N1—H1N122.4C29—N3—H3N120.3
C9—N1—H1N119.8C30—N3—H3N122.1
C6—C1—C2117.1 (2)C26—C21—C22116.9 (2)
C6—C1—C7118.6 (2)C26—C21—C27124.8 (2)
C2—C1—C7124.3 (2)C22—C21—C27118.3 (2)
C3—C2—C1121.8 (2)O7—C22—C23122.3 (2)
C3—C2—H2119.1O7—C22—C21116.7 (2)
C1—C2—H2119.1C23—C22—C21121.0 (2)
C2—C3—C4119.8 (2)C24—C23—C22119.9 (2)
C2—C3—H3120.1C24—C23—H23120.1
C4—C3—H3120.1C22—C23—H23120.1
C5—C4—C3119.9 (2)C23—C24—C25120.9 (2)
C5—C4—H4120.0C23—C24—H24119.5
C3—C4—H4120.0C25—C24—H24119.5
C4—C5—C6120.5 (2)C26—C25—C24118.9 (2)
C4—C5—H5119.8C26—C25—H25120.5
C6—C5—H5119.8C24—C25—H25120.5
O1—C6—C5121.8 (2)C25—C26—C21122.3 (2)
O1—C6—C1117.2 (2)C25—C26—H26118.9
C5—C6—C1121.0 (2)C21—C26—H26118.9
C8—C7—C1131.2 (2)C28—C27—C21130.3 (2)
C8—C7—H7114.4C28—C27—H27114.9
C1—C7—H7114.4C21—C27—H27114.9
C7—C8—C9121.54 (19)C27—C28—C29120.5 (2)
C7—C8—S1129.03 (17)C27—C28—S3129.85 (18)
C9—C8—S1109.41 (15)C29—C28—S3109.61 (15)
O2—C9—N1123.5 (2)O8—C29—N3123.4 (2)
O2—C9—C8126.0 (2)O8—C29—C28125.8 (2)
N1—C9—C8110.46 (18)N3—C29—C28110.74 (19)
O3—C10—N1125.1 (2)O9—C30—N3125.5 (2)
O3—C10—S1123.85 (18)O9—C30—S3124.39 (19)
N1—C10—S1111.07 (16)N3—C30—S3110.10 (15)
C18—S2—C2091.79 (10)C38—S4—C4091.88 (11)
C12—O4—H2O100.4C32—O10—H4O108.3
C20—N2—C19117.47 (19)C40—N4—C39117.62 (19)
C20—N2—H2N118.7C40—N4—H4N121.3
C19—N2—H2N123.8C39—N4—H4N121.0
C16—C11—C12116.9 (2)C36—C31—C32117.46 (19)
C16—C11—C17124.3 (2)C36—C31—C37124.5 (2)
C12—C11—C17118.78 (19)C32—C31—C37118.0 (2)
O4—C12—C13122.1 (2)O10—C32—C33121.60 (19)
O4—C12—C11116.80 (19)O10—C32—C31117.65 (19)
C13—C12—C11121.1 (2)C33—C32—C31120.7 (2)
C14—C13—C12120.0 (2)C34—C33—C32120.1 (2)
C14—C13—H13120.0C34—C33—H33120.0
C12—C13—H13120.0C32—C33—H33120.0
C13—C14—C15120.7 (2)C33—C34—C35120.3 (2)
C13—C14—H14119.6C33—C34—H34119.8
C15—C14—H14119.6C35—C34—H34119.8
C16—C15—C14119.4 (2)C36—C35—C34119.7 (2)
C16—C15—H15120.3C36—C35—H35120.1
C14—C15—H15120.3C34—C35—H35120.1
C15—C16—C11121.9 (2)C35—C36—C31121.7 (2)
C15—C16—H16119.0C35—C36—H36119.2
C11—C16—H16119.0C31—C36—H36119.2
C18—C17—C11131.5 (2)C38—C37—C31130.7 (2)
C18—C17—H17114.2C38—C37—H37114.7
C11—C17—H17114.2C31—C37—H37114.7
C17—C18—C19120.88 (19)C37—C38—C39120.8 (2)
C17—C18—S2129.02 (17)C37—C38—S4128.92 (18)
C19—C18—S2110.10 (15)C39—C38—S4110.26 (15)
O5—C19—N2123.4 (2)O11—C39—N4123.4 (2)
O5—C19—C18126.0 (2)O11—C39—C38126.6 (2)
N2—C19—C18110.57 (19)N4—C39—C38110.0 (2)
O6—C20—N2125.5 (2)O12—C40—N4125.5 (2)
O6—C20—S2124.48 (18)O12—C40—S4124.3 (2)
N2—C20—S2110.04 (16)N4—C40—S4110.20 (16)
C6—C1—C2—C31.1 (3)C26—C21—C22—O7179.87 (19)
C7—C1—C2—C3178.1 (2)C27—C21—C22—O70.7 (3)
C1—C2—C3—C40.2 (4)C26—C21—C22—C230.7 (3)
C2—C3—C4—C50.1 (4)C27—C21—C22—C23179.8 (2)
C3—C4—C5—C60.4 (4)O7—C22—C23—C24179.6 (2)
C4—C5—C6—O1179.6 (2)C21—C22—C23—C240.9 (4)
C4—C5—C6—C11.3 (4)C22—C23—C24—C250.2 (4)
C2—C1—C6—O1179.96 (19)C23—C24—C25—C260.8 (4)
C7—C1—C6—O10.8 (3)C24—C25—C26—C211.0 (4)
C2—C1—C6—C51.6 (3)C22—C21—C26—C250.3 (3)
C7—C1—C6—C5177.6 (2)C27—C21—C26—C25178.8 (2)
C6—C1—C7—C8178.6 (2)C26—C21—C27—C288.9 (4)
C2—C1—C7—C80.5 (4)C22—C21—C27—C28172.0 (2)
C1—C7—C8—C9177.5 (2)C21—C27—C28—C29180.0 (2)
C1—C7—C8—S10.8 (4)C21—C27—C28—S32.1 (4)
C10—S1—C8—C7174.7 (2)C30—S3—C28—C27178.1 (2)
C10—S1—C8—C93.77 (16)C30—S3—C28—C293.85 (16)
C10—N1—C9—O2180.0 (2)C30—N3—C29—O8179.0 (2)
C10—N1—C9—C81.5 (3)C30—N3—C29—C280.6 (3)
C7—C8—C9—O23.5 (3)C27—C28—C29—O82.0 (3)
S1—C8—C9—O2177.87 (19)S3—C28—C29—O8176.31 (18)
C7—C8—C9—N1175.0 (2)C27—C28—C29—N3178.43 (19)
S1—C8—C9—N13.7 (2)S3—C28—C29—N33.3 (2)
C9—N1—C10—O3179.6 (2)C29—N3—C30—O9177.5 (2)
C9—N1—C10—S11.4 (3)C29—N3—C30—S32.3 (2)
C8—S1—C10—O3177.9 (2)C28—S3—C30—O9176.3 (2)
C8—S1—C10—N13.04 (17)C28—S3—C30—N33.57 (17)
C16—C11—C12—O4179.87 (18)C36—C31—C32—O10179.76 (19)
C17—C11—C12—O40.2 (3)C37—C31—C32—O102.1 (3)
C16—C11—C12—C130.3 (3)C36—C31—C32—C330.7 (3)
C17—C11—C12—C13179.60 (19)C37—C31—C32—C33176.92 (19)
O4—C12—C13—C14179.5 (2)O10—C32—C33—C34179.8 (2)
C11—C12—C13—C140.7 (3)C31—C32—C33—C340.8 (3)
C12—C13—C14—C151.0 (4)C32—C33—C34—C350.3 (3)
C13—C14—C15—C160.9 (4)C33—C34—C35—C360.2 (3)
C14—C15—C16—C110.5 (4)C34—C35—C36—C310.2 (3)
C12—C11—C16—C150.2 (3)C32—C31—C36—C350.2 (3)
C17—C11—C16—C15179.7 (2)C37—C31—C36—C35177.2 (2)
C16—C11—C17—C180.1 (4)C36—C31—C37—C382.8 (4)
C12—C11—C17—C18180.0 (2)C32—C31—C37—C38179.8 (2)
C11—C17—C18—C19179.9 (2)C31—C37—C38—C39176.4 (2)
C11—C17—C18—S20.2 (4)C31—C37—C38—S43.4 (4)
C20—S2—C18—C17178.4 (2)C40—S4—C38—C37179.0 (2)
C20—S2—C18—C191.28 (16)C40—S4—C38—C391.07 (17)
C20—N2—C19—O5179.6 (2)C40—N4—C39—O11179.9 (2)
C20—N2—C19—C180.3 (3)C40—N4—C39—C380.9 (3)
C17—C18—C19—O51.9 (3)C37—C38—C39—O111.0 (4)
S2—C18—C19—O5178.41 (18)S4—C38—C39—O11178.9 (2)
C17—C18—C19—N2178.90 (19)C37—C38—C39—N4179.8 (2)
S2—C18—C19—N20.8 (2)S4—C38—C39—N40.3 (2)
C19—N2—C20—O6178.2 (2)C39—N4—C40—O12178.2 (2)
C19—N2—C20—S21.3 (2)C39—N4—C40—S41.7 (3)
C18—S2—C20—O6178.1 (2)C38—S4—C40—O12178.3 (2)
C18—S2—C20—N21.45 (16)C38—S4—C40—N41.56 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O5i0.911.912.819 (2)175
O1—H1O···O12ii0.841.912.744 (2)175
N2—H2N···O2iii0.911.962.859 (2)169
O4—H2O···O9iv0.841.972.759 (2)156
N3—H3N···O11v0.911.952.859 (2)177
O7—H3O···O6i0.841.942.757 (2)166
N4—H4N···O8vi0.911.932.843 (2)176
O10—H4O···O3vii0.841.892.722 (2)169
Symmetry codes: (i) x, y+1, z; (ii) x, y, z1; (iii) x, y1, z; (iv) x1, y1, z+1; (v) x, y+1, z1; (vi) x, y1, z+1; (vii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O5i0.911.912.819 (2)175
O1—H1O···O12ii0.841.912.744 (2)175
N2—H2N···O2iii0.911.962.859 (2)169
O4—H2O···O9iv0.841.972.759 (2)156
N3—H3N···O11v0.911.952.859 (2)177
O7—H3O···O6i0.841.942.757 (2)166
N4—H4N···O8vi0.911.932.843 (2)176
O10—H4O···O3vii0.841.892.722 (2)169
Symmetry codes: (i) x, y+1, z; (ii) x, y, z1; (iii) x, y1, z; (iv) x1, y1, z+1; (v) x, y+1, z1; (vi) x, y1, z+1; (vii) x+1, y, z.
 

Acknowledgements

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

References

First citationBehbehani, H. & Ibrahim, H. M. (2012). Molecules, 17, 6362–6385.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBondock, S., Khalifa, W. & Fadda, A. A. (2007). Eur. J. Med. Chem. 42, 948–954.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2015). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2009). TWINABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, S. P., Parmar, S. S., Raman, K. & Stenberg, V. I. (1981). Chem. Rev. 81, 175–203.  CrossRef CAS Web of Science Google Scholar
First citationVicini, P., Geronikaki, A., Incerti, M., Zani, F., Dearden, J. & Hewitt, M. (2008). Bioorg. Med. Chem. 16, 3714–3724.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds