organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 6-de­­oxy-α-L-psico­furan­ose

aRare Sugar Research Center, Kagawa University, 2393 Ikenobe, Kagawa 761-0795, Japan, bDepartment of Advanced Materials Science, Faculty of Engineering, Kagawa University, 2217-20 Hayashi-cho, Takamatsu, Kagawa 761-0396, Japan, and cDepartment of Applied Biological Science, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Kagawa 761-0795, Japan
*Correspondence e-mail: tishii@eng.kagawa-u.ac.jp

Edited by H. Ishida, Okayama University, Japan (Received 12 November 2015; accepted 20 November 2015; online 28 November 2015)

The title compound, C6H12O5, was crystallized from an aqueous solution of 6-de­oxy-L-psicose (6-de­oxy-L-allulose, (3S,4S,5S)-1,3,4,5-tetra­hydroxy­hexan-2-one), and the mol­ecule was confirmed as α-furan­ose with a 3T4 (or E4) conformation, which is a predominant tautomer in solution. This five-membered furan­ose ring structure is the second example in the field of the 6-de­oxy-ketohexose family. The cell volume of the title compound [742.67 (7) Å3, Z = 4 at room temperature] is only 1.4% smaller than that of β-D-psico­pyran­ose, C6H12O6 (753.056 Å3, Z = 4 at room temperature).

1. Related literature

For the predominant tautomer, α-furan­ose, of 6-de­oxy-L-psicose in aqueous solution, see: Yoshihara et al. (2015[Yoshihara, A., Sato, M. & Fukada, K. (2015). Chem. Lett. In the press.]). For the crystal structure of chiral β-D-psicose, see: Kwiecień et al. (2008[Kwiecień, A., Ślepokura, K. & Lis, T. (2008). Carbohydr. Res. 343, 2336-2339.]); Fukada et al. (2010[Fukada, K., Ishii, T., Tanaka, K., Yamaji, M., Yamaoka, Y., Kobashi, K. & Izumori, K. (2010). Bull. Chem. Soc. Jpn, 83, 1193-1197.]). For the crystal structure of racemic β-D,L-psicose, see: Ishii et al. (2015[Ishii, T., Sakane, G., Yoshihara, A., Fukada, K. & Senoo, T. (2015). Acta Cryst. E71, o289-o290.]). For the synthesis of 6-de­oxy-L-psicose, see: Shompoosang et al. (2014[Shompoosang, S., Yoshihara, A., Uechi, K., Asada, Y. & Morimoto, K. (2014). Biosci. Biotechnol. Biochem. 78, 317-325.]). For the crystal structures of 6-de­oxy-α-L-sorbo­furan­ose and 6-de­oxy-α-D-sorbo­furan­ose, see: Swaminathan et al. (1979[Swaminathan, P., Anderson, L. & Sundaralingam, M. (1979). Carbohydr. Res. 75, 1-10.]); Rao et al. (1981[Rao, S. T., Swaminathan, P. & Sundaralingam, M. (1981). Carbohydr. Res. 89, 151-154.]); Jones et al. (2006[Jones, N. A., Fanefjord, M., Jenkinson, S. F., Fleet, G. W. J. & Watkin, D. J. (2006). Acta Cryst. E62, o4663-o4665.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C6H12O5

  • Mr = 164.16

  • Orthorhombic, P 21 21 21

  • a = 5.7853 (3) Å

  • b = 8.9442 (5) Å

  • c = 14.3528 (8) Å

  • V = 742.69 (7) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.12 mm−1

  • T = 296 K

  • 0.10 × 0.10 × 0.10 mm

2.2. Data collection

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.732, Tmax = 0.894

  • 13299 measured reflections

  • 1358 independent reflections

  • 1330 reflections with F2 > 2σ(F2)

  • Rint = 0.072

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.065

  • S = 1.08

  • 1358 reflections

  • 105 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.14 e Å−3

  • Absolute structure: Flack x determined using 521 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons & Flack, 2004[Parsons, S. & Flack, H. (2004). Acta Cryst. A60, s61.])

  • Absolute structure parameter: 0.03 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O5i 0.82 2.02 2.839 (2) 177
O2—H2A⋯O1ii 0.82 2.13 2.819 (2) 142
O2—H2A⋯O3 0.82 2.08 2.592 (2) 121
O3—H3A⋯O2iii 0.82 1.93 2.732 (2) 166
O4—H4A⋯O3iv 0.82 2.24 2.902 (2) 138
O4—H4A⋯O4iv 0.82 2.26 2.987 (2) 148
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x-1, y, z; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

Data collection: RAPID-AUTO (Rigaku, 2009[Rigaku (2009). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: Il Milione (Burla et al., 2012[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357-361.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: CrystalStructure (Rigaku, 2014[Rigaku (2014). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

Psicose is classified into a rare sugar, and hardly exists in nature. In this study we prepare a single crystal of 6-deoxy-L-psicose (Fig. 1), which is obtained by enzymatic isomerization of L-rhamnose, and investigate the structure by X-ray crystal analysis. The space group of this compound is orthorhombic P212121, which is the same as that of β-D-psicopyranose (cf. D-psicose; Kwiecień et al., 2008; Fukada et al., 2010). The molecular weight of 6-deoxy-L-psicose (C6H12O5; m.w. = 164.16) is about 10 % smaller than that of D-psicose (180.16). On the other hand, the cell volume of 6-deoxy-α-L-psicofuranose is 742.67 (7) Å3 at r.t., which is a mere 1.4 % smaller than that of β-D-psicopyranose (753.056 Å3 at r.t., cf. D-psicose; Kwiecień et al., 2008; Fukada et al., 2010). This imbalance of decreasing suggests that a weaker intermolecular interaction caused by a smaller molecular density can be expected. The melting point of 6-deoxy-α-L-psicofuranose has been observed to be 76 °C, which is about 30 °C lower than that of psicose (107.6 °C). This lower melting point is consistent with the suggested weaker intermolecular interaction.

We found that 6-deoxy-L-psicose molecules form a five-membered α-furanose ring structure in crystal. In the crystals of ketohexoses so far, six-membered pyranose ring structures have been mainly confirmed (cf. D-psicose; Kwiecień et al., 2008; Fukada et al., 2010, 1-deoxy-L-sorbose; Jones et al., 2006). Because of the deoxygenation in the 6-deoxy-L-psicose molecule, the carbonyl group at the C-2 position cannot form hemiacetal with the C-6 but with the C-5 hydroxyl group. It should be noted that the crystal structure of 6-deoxy-L-sorbose, C-4 epimer of 6-deoxy-L-psicose, was reported to be α-furanose; C3'-exo-C4'-endo, 3T4 (Swaminathan et al., 1979). Therefore, the α-furanose structure observed in the crystal of 6-deoxy-L-psicose is the second example in 6-deoxy-ketohexose family, with 3T4 (or E4) conformation. An intramolecular hydrogen bond (O3—H3A···O5) has been observed both in a chiral D-psicose (Kwiecień et al., 2008; Fukada et al., 2010) and a racemic D,L-psicose (Ishii et al., 2015). This comes from two hydroxy groups located in a shorter distance from each other because of both axial conformations connecting to the C-3 and C-5 positions. On the other hand in the 6-deoxy-L-psicose, such an intramolecular hydrogen bond is not observed, because the hydroxy group at a C-5 position has been used for creating the ring structure. Intermolecular hydrogen bonds (O3—H3A···O2 and O1—H1A···O5) are also confirmed along the b-axis, and O4—H4A···O4 along the a-axis, as shown in Fig. 2.

Related literature top

For the predominant tautomer, α-furanose, of 6-deoxy-L-psicose in aqueous solution, see: Yoshihara et al. (2015). For the crystal structure of chiral β-D-psicose, see: Kwiecień et al. (2008); Fukada et al. (2010). For the crystal structure of racemic β-D,L-psicose, see: Ishii et al. (2015). For the synthesis of 6-deoxy-L-psicose, see: Shompoosang et al. (2014). For the crystal structures of 6-deoxy-α-L-sorbofuranose and 6-deoxy-α-D-sorbofuranose, see: Swaminathan et al. (1979); Rao et al. (1981); Jones et al. (2006).

Experimental top

6-Deoxy-L-psicose was prepared from L-rhamnose by immobilized L-rhamnose isomerase and immobilized D-tagatose 3-epimerase in the batch reaction (Shompoosang et al., 2014). After this reaction was reached equilibrium, the reaction mixture containing 6-deoxy-L-psicose was separated by column chromatography. The purified 6-deoxy-L-psicose solution was concentrated to 80% by evaporation. A seed crystal of 6-deoxy-L-psicose was added to the 80% 6-deoxy-L-psicose solution, which was kept at 30 °C. The tautomer ratio in aqueous solution at 30 °C is obtained as α-furanose : β-furanose : acyclic form = 72.9 : 24.5 : 2.69 (Yoshihara et al., 2015). After one day, single crystals were obtained.

Refinement top

H atoms bounded to methine-type C (H3B, H4B, H5A) were positioned geometrically and refined using a riding model with C—H = 0.98 Å and Uiso(H) = 1.2Ueq(C). H atoms bounded to methylene-type C (H1B, H1C) were positioned geometrically and refined using a riding model with C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C). H atoms bounded to methyl-type C (H6A, H6B, H6C) were positioned geometrically and refined using a riding model with C—H = 0.96 Å and Uiso(H) = 1.2Ueq(C). H atoms bounded to O (H1A, H2A, H3A, H4A) were positioned geometrically and refined using a riding model with O—H = 0.82 Å and Uiso(H) = 1.2Ueq(O), allowing for free rotation of the OH groups.

Structure description top

Psicose is classified into a rare sugar, and hardly exists in nature. In this study we prepare a single crystal of 6-deoxy-L-psicose (Fig. 1), which is obtained by enzymatic isomerization of L-rhamnose, and investigate the structure by X-ray crystal analysis. The space group of this compound is orthorhombic P212121, which is the same as that of β-D-psicopyranose (cf. D-psicose; Kwiecień et al., 2008; Fukada et al., 2010). The molecular weight of 6-deoxy-L-psicose (C6H12O5; m.w. = 164.16) is about 10 % smaller than that of D-psicose (180.16). On the other hand, the cell volume of 6-deoxy-α-L-psicofuranose is 742.67 (7) Å3 at r.t., which is a mere 1.4 % smaller than that of β-D-psicopyranose (753.056 Å3 at r.t., cf. D-psicose; Kwiecień et al., 2008; Fukada et al., 2010). This imbalance of decreasing suggests that a weaker intermolecular interaction caused by a smaller molecular density can be expected. The melting point of 6-deoxy-α-L-psicofuranose has been observed to be 76 °C, which is about 30 °C lower than that of psicose (107.6 °C). This lower melting point is consistent with the suggested weaker intermolecular interaction.

We found that 6-deoxy-L-psicose molecules form a five-membered α-furanose ring structure in crystal. In the crystals of ketohexoses so far, six-membered pyranose ring structures have been mainly confirmed (cf. D-psicose; Kwiecień et al., 2008; Fukada et al., 2010, 1-deoxy-L-sorbose; Jones et al., 2006). Because of the deoxygenation in the 6-deoxy-L-psicose molecule, the carbonyl group at the C-2 position cannot form hemiacetal with the C-6 but with the C-5 hydroxyl group. It should be noted that the crystal structure of 6-deoxy-L-sorbose, C-4 epimer of 6-deoxy-L-psicose, was reported to be α-furanose; C3'-exo-C4'-endo, 3T4 (Swaminathan et al., 1979). Therefore, the α-furanose structure observed in the crystal of 6-deoxy-L-psicose is the second example in 6-deoxy-ketohexose family, with 3T4 (or E4) conformation. An intramolecular hydrogen bond (O3—H3A···O5) has been observed both in a chiral D-psicose (Kwiecień et al., 2008; Fukada et al., 2010) and a racemic D,L-psicose (Ishii et al., 2015). This comes from two hydroxy groups located in a shorter distance from each other because of both axial conformations connecting to the C-3 and C-5 positions. On the other hand in the 6-deoxy-L-psicose, such an intramolecular hydrogen bond is not observed, because the hydroxy group at a C-5 position has been used for creating the ring structure. Intermolecular hydrogen bonds (O3—H3A···O2 and O1—H1A···O5) are also confirmed along the b-axis, and O4—H4A···O4 along the a-axis, as shown in Fig. 2.

For the predominant tautomer, α-furanose, of 6-deoxy-L-psicose in aqueous solution, see: Yoshihara et al. (2015). For the crystal structure of chiral β-D-psicose, see: Kwiecień et al. (2008); Fukada et al. (2010). For the crystal structure of racemic β-D,L-psicose, see: Ishii et al. (2015). For the synthesis of 6-deoxy-L-psicose, see: Shompoosang et al. (2014). For the crystal structures of 6-deoxy-α-L-sorbofuranose and 6-deoxy-α-D-sorbofuranose, see: Swaminathan et al. (1979); Rao et al. (1981); Jones et al. (2006).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2009); cell refinement: RAPID-AUTO (Rigaku, 2009); data reduction: RAPID-AUTO (Rigaku, 2009); program(s) used to solve structure: Il Milione (Burla et al., 2012); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: CrystalStructure (Rigaku, 2014); software used to prepare material for publication: CrystalStructure (Rigaku, 2014).

Figures top
[Figure 1] Fig. 1. An ORTEP view of the title compound with the atom-labeling scheme. The thermal ellipsoids of all non-hydrogen atoms are drawn at the 50 % probability level. H atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A packing diagram of the title compound viewed down the a-axis, showing the hydrogen-bonding network (green dashed lines).
6-Deoxy-α-L-psicofuranose top
Crystal data top
C6H12O5Dx = 1.468 Mg m3
Mr = 164.16Cu Kα radiation, λ = 1.54187 Å
Orthorhombic, P212121Cell parameters from 7546 reflections
a = 5.7853 (3) Åθ = 3.1–68.3°
b = 8.9442 (5) ŵ = 1.12 mm1
c = 14.3528 (8) ÅT = 296 K
V = 742.69 (7) Å3Block, colorless
Z = 40.10 × 0.10 × 0.10 mm
F(000) = 352.00
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1330 reflections with F2 > 2σ(F2)
Detector resolution: 10.000 pixels mm-1Rint = 0.072
ω scansθmax = 68.2°, θmin = 5.8°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 66
Tmin = 0.732, Tmax = 0.894k = 1010
13299 measured reflectionsl = 1717
1358 independent reflections
Refinement top
Refinement on F2H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.027 w = 1/[σ2(Fo2) + (0.0207P)2 + 0.1732P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.065(Δ/σ)max < 0.001
S = 1.08Δρmax = 0.15 e Å3
1358 reflectionsΔρmin = 0.14 e Å3
105 parametersExtinction correction: SHELXL
0 restraintsExtinction coefficient: 0.0144 (15)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack x determined using 521 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.03 (8)
Hydrogen site location: inferred from neighbouring sites
Crystal data top
C6H12O5V = 742.69 (7) Å3
Mr = 164.16Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 5.7853 (3) ŵ = 1.12 mm1
b = 8.9442 (5) ÅT = 296 K
c = 14.3528 (8) Å0.10 × 0.10 × 0.10 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1358 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1330 reflections with F2 > 2σ(F2)
Tmin = 0.732, Tmax = 0.894Rint = 0.072
13299 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.065Δρmax = 0.15 e Å3
S = 1.08Δρmin = 0.14 e Å3
1358 reflectionsAbsolute structure: Flack x determined using 521 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004)
105 parametersAbsolute structure parameter: 0.03 (8)
0 restraints
Special details top

Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 sigma(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.1489 (3)0.60359 (18)0.19568 (11)0.0370 (4)
O20.5730 (3)0.45936 (18)0.23138 (13)0.0419 (4)
O30.5171 (2)0.68432 (15)0.34295 (10)0.0274 (3)
O40.8265 (3)0.72675 (18)0.47842 (10)0.0371 (4)
O50.8957 (3)0.41852 (14)0.32155 (9)0.0297 (4)
C10.9314 (4)0.5411 (2)0.17460 (13)0.0299 (5)
C20.7827 (3)0.5218 (2)0.26045 (13)0.0239 (4)
C30.7513 (3)0.6680 (2)0.31678 (13)0.0217 (4)
C40.9029 (3)0.6417 (2)0.40186 (13)0.0243 (4)
C50.8846 (4)0.4748 (2)0.41607 (13)0.0288 (5)
C61.0749 (5)0.4055 (3)0.47269 (18)0.0472 (6)
H1A1.141960.694850.190940.0444*
H1C0.953550.444560.145160.0359*
H1B0.851810.605390.130610.0359*
H2A0.466470.51510.245950.0503*
H3A0.470110.766630.326370.0328*
H3B0.804790.754780.281140.0261*
H4A0.938170.753180.509510.0445*
H4B1.063090.668170.387120.0291*
H5A0.734360.450080.443610.0346*
H6A1.06780.442630.535380.0566*
H6B1.056750.298810.473110.0566*
H6C1.221650.43080.445770.0566*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0306 (8)0.0317 (8)0.0486 (9)0.0022 (7)0.0045 (7)0.0026 (7)
O20.0265 (8)0.0310 (9)0.0683 (11)0.0008 (7)0.0091 (7)0.0203 (8)
O30.0221 (7)0.0249 (8)0.0351 (7)0.0048 (6)0.0004 (6)0.0008 (6)
O40.0320 (8)0.0467 (10)0.0325 (8)0.0046 (8)0.0052 (6)0.0198 (7)
O50.0448 (9)0.0177 (7)0.0266 (7)0.0073 (6)0.0022 (7)0.0004 (5)
C10.0384 (11)0.0263 (11)0.0249 (10)0.0058 (9)0.0033 (8)0.0040 (8)
C20.0267 (11)0.0170 (9)0.0282 (9)0.0018 (8)0.0066 (8)0.0025 (7)
C30.0223 (9)0.0165 (9)0.0262 (9)0.0002 (8)0.0014 (8)0.0022 (7)
C40.0231 (9)0.0244 (11)0.0253 (9)0.0001 (9)0.0000 (8)0.0055 (8)
C50.0333 (11)0.0283 (11)0.0248 (9)0.0004 (9)0.0008 (8)0.0004 (8)
C60.0607 (16)0.0405 (14)0.0404 (12)0.0144 (12)0.0125 (12)0.0049 (10)
Geometric parameters (Å, º) top
O1—C11.410 (3)O2—H2A0.820
O2—C21.399 (2)O3—H3A0.820
O3—C31.414 (2)O4—H4A0.820
O4—C41.408 (2)C1—H1C0.970
O5—C21.432 (2)C1—H1B0.970
O5—C51.448 (2)C3—H3B0.980
C1—C21.512 (3)C4—H4B0.980
C2—C31.548 (3)C5—H5A0.980
C3—C41.522 (3)C6—H6A0.960
C4—C51.510 (3)C6—H6B0.960
C5—C61.502 (3)C6—H6C0.960
O1—H1A0.820
C2—O5—C5109.24 (14)O1—C1—H1C109.164
O1—C1—C2112.20 (16)O1—C1—H1B109.167
O2—C2—O5108.73 (15)C2—C1—H1C109.166
O2—C2—C1107.19 (16)C2—C1—H1B109.170
O2—C2—C3113.01 (16)H1C—C1—H1B107.872
O5—C2—C1108.26 (16)O3—C3—H3B111.067
O5—C2—C3106.18 (14)C2—C3—H3B111.068
C1—C2—C3113.31 (16)C4—C3—H3B111.066
O3—C3—C2109.81 (15)O4—C4—H4B109.543
O3—C3—C4110.80 (15)C3—C4—H4B109.538
C2—C3—C4102.75 (15)C5—C4—H4B109.537
O4—C4—C3111.22 (16)O5—C5—H5A109.822
O4—C4—C5114.02 (16)C4—C5—H5A109.816
C3—C4—C5102.76 (15)C6—C5—H5A109.811
O5—C5—C4102.34 (14)C5—C6—H6A109.470
O5—C5—C6109.33 (18)C5—C6—H6B109.472
C4—C5—C6115.43 (18)C5—C6—H6C109.471
C1—O1—H1A109.468H6A—C6—H6B109.472
C2—O2—H2A109.470H6A—C6—H6C109.470
C3—O3—H3A109.471H6B—C6—H6C109.473
C4—O4—H4A109.477
C2—O5—C5—C434.64 (18)O5—C2—C3—C412.06 (17)
C2—O5—C5—C6157.50 (14)C1—C2—C3—O3135.42 (15)
C5—O5—C2—O2107.81 (16)C1—C2—C3—C4106.65 (16)
C5—O5—C2—C1136.05 (14)O3—C3—C4—O437.4 (2)
C5—O5—C2—C314.07 (18)O3—C3—C4—C585.02 (16)
O1—C1—C2—O2179.95 (14)C2—C3—C4—O4154.60 (14)
O1—C1—C2—O562.8 (2)C2—C3—C4—C532.21 (16)
O1—C1—C2—C354.7 (2)O4—C4—C5—O5161.44 (14)
O2—C2—C3—O313.2 (2)O4—C4—C5—C679.9 (2)
O2—C2—C3—C4131.17 (15)C3—C4—C5—O540.95 (18)
O5—C2—C3—O3105.88 (16)C3—C4—C5—C6159.59 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O5i0.822.022.839 (2)177
O2—H2A···O1ii0.822.132.819 (2)142
O2—H2A···O30.822.082.592 (2)121
O3—H3A···O2iii0.821.932.732 (2)166
O4—H4A···O3iv0.822.242.902 (2)138
O4—H4A···O4iv0.822.262.987 (2)148
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x1, y, z; (iii) x+1, y+1/2, z+1/2; (iv) x+1/2, y+3/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O5i0.822.022.839 (2)177
O2—H2A···O1ii0.822.132.819 (2)142
O2—H2A···O30.822.082.592 (2)121
O3—H3A···O2iii0.821.932.732 (2)166
O4—H4A···O3iv0.822.242.902 (2)138
O4—H4A···O4iv0.822.262.987 (2)148
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x1, y, z; (iii) x+1, y+1/2, z+1/2; (iv) x+1/2, y+3/2, z+1.
 

Acknowledgements

The authors are grateful to Grants-in-Aid for Rare Sugar Research of Kagawa University.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357–361.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFukada, K., Ishii, T., Tanaka, K., Yamaji, M., Yamaoka, Y., Kobashi, K. & Izumori, K. (2010). Bull. Chem. Soc. Jpn, 83, 1193–1197.  Web of Science CSD CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationIshii, T., Sakane, G., Yoshihara, A., Fukada, K. & Senoo, T. (2015). Acta Cryst. E71, o289–o290.  CSD CrossRef IUCr Journals Google Scholar
First citationJones, N. A., Fanefjord, M., Jenkinson, S. F., Fleet, G. W. J. & Watkin, D. J. (2006). Acta Cryst. E62, o4663–o4665.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKwiecień, A., Ślepokura, K. & Lis, T. (2008). Carbohydr. Res. 343, 2336–2339.  Web of Science PubMed Google Scholar
First citationParsons, S. & Flack, H. (2004). Acta Cryst. A60, s61.  CrossRef IUCr Journals Google Scholar
First citationRao, S. T., Swaminathan, P. & Sundaralingam, M. (1981). Carbohydr. Res. 89, 151–154.  CSD CrossRef CAS Web of Science Google Scholar
First citationRigaku (2009). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2014). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShompoosang, S., Yoshihara, A., Uechi, K., Asada, Y. & Morimoto, K. (2014). Biosci. Biotechnol. Biochem. 78, 317–325.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSwaminathan, P., Anderson, L. & Sundaralingam, M. (1979). Carbohydr. Res. 75, 1–10.  CSD CrossRef CAS Web of Science Google Scholar
First citationYoshihara, A., Sato, M. & Fukada, K. (2015). Chem. Lett. In the press.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds