organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 15-(2-chloro­phen­yl)-6b-hy­dr­oxy-17-methyl-6b,7,16,17-tetra­hydro-7,14a-methanona­phtho[1′,8′:1,2,3]pyrrolo­[3′,2′:8,8a]azuleno[5,6-b]quinolin-14(15H)-one

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: shirai2011@gmail.com

Edited by H. Ishida, Okayama University, Japan (Received 4 December 2015; accepted 24 December 2015; online 31 December 2015)

In the title compound, C34H25ClN2O2, the fused pyrrolidine ring adopts an envelope conformation with the N atom as the flap. The two adjacent cyclo­pentane rings also adopt envelope conformations. The mean plane of the pyrrolidine ring makes dihedral angles of 40.53 (10) and 80.23 (10)° with the mean planes of the cyclo­pentane rings. The dihedral angle between the mean planes of the cyclo­pentane rings is 46.71 (9)°. An intra­molecular O—H⋯N hydrogen bond is observed. In the crystal, mol­ecules are linked by C—H⋯O, C—H⋯N and C—H⋯π inter­actions, forming a layer parallel to (10-2).

1. Related literature

For biological activities of pyrrolidine derivatives, see: Aravindan et al. (2004[Aravindan, P. G., Selvanayagam, S., Velmurugan, D., Ravikumar, K., Sridhar, G. & Raghunathan, R. (2004). Acta Cryst. E60, o2149-o2151.]); Gayathri et al. (2005[Gayathri, D., Velmurugan, D., Ravikumar, K., Poornachandran, M. & Raghunathan, R. (2005). Acta Cryst. E61, o3556-o3558.]); Seki et al. (2013[Seki, M., Tsuruta, O., Tatsumi, R. & Soejima, A. (2013). Bioorg. Med. Chem. Lett. 23, 4230-4234.]); Li & Xu (2004[Li, Y. L. & Xu, W. F. (2004). Bioorg. Med. Chem. 12, 5171-5180.]); Arun et al. (2014[Arun, Y., Saranraj, K., Balachandran, C. & Perumal, P. T. (2014). Eur. J. Med. Chem. 74, 50-64.]); Govind et al. (2003[Govind, M. M., Selvanayagam, S., Velmurugan, D., Ravikumar, K., Rathna Durga, R. & Raghunathan, R. (2003). Acta Cryst. E59, o1875-o1877.]); Nirmala et al. (2009[Nirmala, S., Karthikeyan, K., Kamala, E. T. S., Sudha, L. & Perumal, P. T. (2009). Acta Cryst. E65, o1655-o1656.]); Sharma & Soman (2015[Sharma, R. & Soman, S. S. (2015). Eur. J. Med. Chem. 90, 342-350.]); Bellina & Rossi (2006[Bellina, F. & Rossi, R. (2006). Tetrahedron, 62, 7213-7256.]); Babu et al. (2012[Babu, M. N., Sharma, L. & Madhavan, V. (2012). Int. J. ChemTech Res. 4, 903-909.]). For related structures, see: Savithri et al. (2014[Savithri, M. P., Suresh, M., Raghunathan, R., Vimala, G., Raja, R. & SubbiahPandi, A. (2014). Acta Cryst. E70, 94-97.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C34H25ClN2O2

  • Mr = 529.01

  • Monoclinic, P 21 /c

  • a = 11.1328 (2) Å

  • b = 13.0756 (3) Å

  • c = 19.0866 (4) Å

  • β = 103.738 (1)°

  • V = 2698.91 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

2.2. Data collection

  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.949, Tmax = 0.966

  • 25834 measured reflections

  • 6713 independent reflections

  • 4796 reflections with I > 2σ(I)

  • Rint = 0.022

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.139

  • S = 1.05

  • 6713 reflections

  • 354 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.58 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N1/C1/C6–C9 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯N2 0.82 2.12 2.664 (2) 124
C25—H25⋯N1i 0.93 2.59 3.503 (2) 169
C33—H33⋯O1ii 0.93 2.40 3.212 (3) 146
C17—H17⋯Cg1iii 0.93 2.73 3.553 (3) 147
Symmetry codes: (i) -x+1, -y+1, -z; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+1, -y, -z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyrrolidine compounds are often encountered in pharmacologically relevant alkaloids (Aravindan et al., 2004). Optically active pyrrolidines have been used as intermediates, chiral ligands or auxiliaries in controlled asymmetric synthesis (Savithri et al., 2014). Synthetic spiro pyrrolidine derivatives exhibit activity against the aldose reductase enzyme, which controls influenza virus (Gayathri et al., 2005) and also pyrrolidine compounds are reported to exhibit ischemic stroke (Seki et al., 2013), anti-inflammatory (Li & Xu, 2004), antitumor (Arun et al., 2014), antimicrobial, antifungal (Govind et al., 2003), antibiotic (Nirmala et al., 2009) and anti-diabetic (Sharma & Soman, 2015) activities and inhibition of retroviral reverse transcriptases [i.e., human immunodeficiency virus type 1 (HIV-1)], cellular DNA polymerases and protein kinases (Bellina & Rossi, 2006). They are also anticonvulsants, sphingosine-1-phosphate (S1P) receptor agonists, malic enzyme inhibitors, ketoamide-based cathepsin K inhibitors and human melanocortin-4 receptor agonists (Babu et al., 2012). In view of the above biological importance, the crystal structure of the title compound was determined.

In the title molecule, one cyclopentane ring I (C10–C12/C22/C23) is fused with the other cyclopentane ring II (C22–C24/C29/C30) of the acenaphthylene ring system (C22–C33). The pyrrolidine ring (C12/C14/C21/N2/C22) is fused with the cyclopentane ring I, and adopts an envelope conformation with atom N2 as the flap atom deviating by 0.5765 (2) Å from the mean plane defined by the other atoms (C12/C14/C21/C22). The two cyclopentane rings I and II adopt envelope conformations with atoms C11 and C22 as the flap atoms, respectively, deviating by 0.7033 and 0.1765 Å from the mean plane. The mean plane of the pyrrolidine ring makes dihedral angles of 40.53 (10) and 80.23 (10)° with the mean planes of the cyclopentane rings I and II, respectively. The mean plane of the pyrrolidine ring makes dihedral angles of 82.04 (8) and 68.25 (9)° with the mean plane of the acenapthylene and phenyl (C8–C13) ring systems, respectively. The mean plane of the cyclopentane ring I makes a dihedral angle of 46.71 (9)° with the mean plane of the cyclopentane ring II. The mean plane of the cyclopentane ring makes dihedral angles of 47.85 (7) and 87.06 (9)° with the mean plane of the acenaphthylene ring system and the phenyl ring, respectively.

In the crystal, a pair of C—H···N interactions (Table 1) show an R22(14) ring (Fig. 2). In addition, a C—H···O hydrogen bond links the symmetry-related molecules, forming a helical chain running along the b axis (Fig. 3). The two molecules are also held together by a C—H···π interaction (Fig. 4).

Related literature top

For biological activities of pyrrolidine derivatives, see: Aravindan et al. (2004); Gayathri et al. (2005); Seki et al. (2013); Li & Xu (2004); Arun et al. (2014); Govind et al. (2003); Nirmala et al. (2009); Sharma & Soman (2015); Bellina & Rossi (2006); Babu et al. (2012). For related structures, see: Savithri et al. (2014).

Experimental top

A mixture of (E)-2-(2-chlorobenzylidene)-3,4-dihydroacridin-1(2H)-one (1 mmol), acenaphthoquinone (1 mmol) and sarcosine (1.5 mmol) was heated to reflux in toluene (3 ml) for 10 h. After completion of the reaction as evident from TLC, the reaction mixture was extracted with ethyl acetate (2 × 20 ml), washed with water (2 × 10 ml), dried over anhydrous Na2SO4 and concentrated under reduced pressure, subjected to column chromatography using petroleum ether-AcOEt (5:1 v/v) as eluent to obtain pure product. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in ethanol at room temperature.

Refinement top

The hydrogen atoms were placed in calculated positions with C—H = 0.93–0.98 Å and O—H = 0.82 Å, and were refined in a riding model with Uiso(H) = 1.5Ueq(Cmethyl, O) or 1.2Ueq(C).

Structure description top

Pyrrolidine compounds are often encountered in pharmacologically relevant alkaloids (Aravindan et al., 2004). Optically active pyrrolidines have been used as intermediates, chiral ligands or auxiliaries in controlled asymmetric synthesis (Savithri et al., 2014). Synthetic spiro pyrrolidine derivatives exhibit activity against the aldose reductase enzyme, which controls influenza virus (Gayathri et al., 2005) and also pyrrolidine compounds are reported to exhibit ischemic stroke (Seki et al., 2013), anti-inflammatory (Li & Xu, 2004), antitumor (Arun et al., 2014), antimicrobial, antifungal (Govind et al., 2003), antibiotic (Nirmala et al., 2009) and anti-diabetic (Sharma & Soman, 2015) activities and inhibition of retroviral reverse transcriptases [i.e., human immunodeficiency virus type 1 (HIV-1)], cellular DNA polymerases and protein kinases (Bellina & Rossi, 2006). They are also anticonvulsants, sphingosine-1-phosphate (S1P) receptor agonists, malic enzyme inhibitors, ketoamide-based cathepsin K inhibitors and human melanocortin-4 receptor agonists (Babu et al., 2012). In view of the above biological importance, the crystal structure of the title compound was determined.

In the title molecule, one cyclopentane ring I (C10–C12/C22/C23) is fused with the other cyclopentane ring II (C22–C24/C29/C30) of the acenaphthylene ring system (C22–C33). The pyrrolidine ring (C12/C14/C21/N2/C22) is fused with the cyclopentane ring I, and adopts an envelope conformation with atom N2 as the flap atom deviating by 0.5765 (2) Å from the mean plane defined by the other atoms (C12/C14/C21/C22). The two cyclopentane rings I and II adopt envelope conformations with atoms C11 and C22 as the flap atoms, respectively, deviating by 0.7033 and 0.1765 Å from the mean plane. The mean plane of the pyrrolidine ring makes dihedral angles of 40.53 (10) and 80.23 (10)° with the mean planes of the cyclopentane rings I and II, respectively. The mean plane of the pyrrolidine ring makes dihedral angles of 82.04 (8) and 68.25 (9)° with the mean plane of the acenapthylene and phenyl (C8–C13) ring systems, respectively. The mean plane of the cyclopentane ring I makes a dihedral angle of 46.71 (9)° with the mean plane of the cyclopentane ring II. The mean plane of the cyclopentane ring makes dihedral angles of 47.85 (7) and 87.06 (9)° with the mean plane of the acenaphthylene ring system and the phenyl ring, respectively.

In the crystal, a pair of C—H···N interactions (Table 1) show an R22(14) ring (Fig. 2). In addition, a C—H···O hydrogen bond links the symmetry-related molecules, forming a helical chain running along the b axis (Fig. 3). The two molecules are also held together by a C—H···π interaction (Fig. 4).

For biological activities of pyrrolidine derivatives, see: Aravindan et al. (2004); Gayathri et al. (2005); Seki et al. (2013); Li & Xu (2004); Arun et al. (2014); Govind et al. (2003); Nirmala et al. (2009); Sharma & Soman (2015); Bellina & Rossi (2006); Babu et al. (2012). For related structures, see: Savithri et al. (2014).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering and displacement ellipsoids drawn at 20% probability level.
[Figure 2] Fig. 2. A packing diagram of the title compound viewed approximately down the c axis, showing the R22(14) ring motif formed by C—H···N hydrogen bonds (dashed lines). H-atoms not involved in hydrogen bonds have been excluded for clarity.
[Figure 3] Fig. 3. A packing diagram of the title compound viewed approximately down the b axis. C—H···O hydrogen bonds are indicated by dashed lines. H atoms not involved in the hydrogen bonds have been excluded for clarity.
[Figure 4] Fig. 4. A packing diagram of the title compound showing a C—H···π interaction (dashed line).
15-(2-Chlorophenyl)-6b-hydroxy-17-methyl-6b,7,16,17-tetrahydro-7,14a-methanonaphtho[1',8':1,2,3]pyrrolo[3',2':8,8a]azuleno[5,6-b]quinolin-14(15H)-one top
Crystal data top
C34H25ClN2O2F(000) = 1104
Mr = 529.01Dx = 1.302 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.1328 (2) ÅCell parameters from 6713 reflections
b = 13.0756 (3) Åθ = 1.9–28.3°
c = 19.0866 (4) ŵ = 0.18 mm1
β = 103.738 (1)°T = 293 K
V = 2698.91 (10) Å3Block, colourless
Z = 40.30 × 0.25 × 0.20 mm
Data collection top
Bruker SMART APEXII area-detector
diffractometer
4796 reflections with I > 2σ(I)
ω and φ scansRint = 0.022
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
θmax = 28.3°, θmin = 1.9°
Tmin = 0.949, Tmax = 0.966h = 1413
25834 measured reflectionsk = 1217
6713 independent reflectionsl = 2325
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.139 w = 1/[σ2(Fo2) + (0.0597P)2 + 0.848P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
6713 reflectionsΔρmax = 0.40 e Å3
354 parametersΔρmin = 0.58 e Å3
Crystal data top
C34H25ClN2O2V = 2698.91 (10) Å3
Mr = 529.01Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.1328 (2) ŵ = 0.18 mm1
b = 13.0756 (3) ÅT = 293 K
c = 19.0866 (4) Å0.30 × 0.25 × 0.20 mm
β = 103.738 (1)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
6713 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
4796 reflections with I > 2σ(I)
Tmin = 0.949, Tmax = 0.966Rint = 0.022
25834 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.139H-atom parameters constrained
S = 1.05Δρmax = 0.40 e Å3
6713 reflectionsΔρmin = 0.58 e Å3
354 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.48949 (15)0.35516 (13)0.16996 (8)0.0410 (4)
C20.40120 (18)0.42324 (15)0.18580 (11)0.0561 (5)
H20.36150.47010.15140.067*
C30.3743 (2)0.41996 (17)0.25204 (12)0.0673 (6)
H30.31620.46500.26240.081*
C40.4328 (2)0.34998 (18)0.30440 (11)0.0690 (6)
H40.41260.34880.34900.083*
C50.5182 (2)0.28387 (16)0.29125 (10)0.0587 (5)
H50.55640.23770.32660.070*
C60.54938 (16)0.28509 (13)0.22343 (8)0.0433 (4)
C70.63722 (15)0.21934 (13)0.20603 (8)0.0423 (4)
H70.68000.17340.24020.051*
C80.65996 (13)0.22281 (12)0.13869 (8)0.0352 (3)
C90.59359 (13)0.29450 (11)0.08764 (7)0.0327 (3)
C100.61453 (13)0.29544 (12)0.01248 (7)0.0338 (3)
H100.54190.32180.02240.041*
C110.64578 (13)0.18722 (12)0.00706 (8)0.0355 (3)
H11A0.64960.18260.05720.043*
H11B0.58610.13810.00210.043*
C120.77426 (13)0.17073 (11)0.04414 (8)0.0337 (3)
C130.75273 (14)0.15339 (12)0.11889 (8)0.0379 (3)
C140.86006 (14)0.09018 (12)0.02079 (9)0.0407 (4)
H140.88760.04150.06040.049*
C150.79749 (15)0.03145 (13)0.04622 (9)0.0449 (4)
C160.72850 (17)0.05621 (15)0.04343 (11)0.0560 (5)
C170.6726 (2)0.1110 (2)0.10403 (15)0.0814 (7)
H170.62860.17020.09970.098*
C180.6820 (3)0.0784 (2)0.17021 (16)0.0933 (9)
H180.64500.11560.21120.112*
C190.7460 (3)0.0090 (2)0.17633 (13)0.0830 (7)
H190.75060.03250.22160.100*
C200.8039 (2)0.06261 (16)0.11492 (11)0.0613 (5)
H200.84850.12120.11980.074*
C210.97124 (16)0.15380 (13)0.01258 (11)0.0514 (4)
H21A1.03500.15410.05720.062*
H21B1.00590.12660.02560.062*
C220.83991 (13)0.27695 (12)0.04290 (8)0.0368 (3)
C230.73303 (14)0.35448 (12)0.00747 (8)0.0356 (3)
C240.75807 (15)0.44880 (12)0.05354 (9)0.0401 (3)
C250.70176 (18)0.54227 (13)0.04710 (10)0.0505 (4)
H250.64000.55900.00660.061*
C260.7405 (2)0.61256 (15)0.10406 (12)0.0630 (5)
H260.70270.67640.10050.076*
C270.8304 (2)0.59131 (16)0.16375 (13)0.0667 (6)
H270.85250.64030.19980.080*
C280.89118 (18)0.49524 (15)0.17184 (11)0.0558 (5)
C290.85176 (15)0.42601 (13)0.11493 (9)0.0431 (4)
C300.90043 (15)0.32693 (13)0.11448 (9)0.0447 (4)
C310.99033 (18)0.29500 (17)0.17236 (11)0.0635 (5)
H311.02380.22970.17350.076*
C321.0311 (2)0.3634 (2)0.23032 (13)0.0821 (7)
H321.09190.34190.26990.098*
C330.9850 (2)0.4597 (2)0.23037 (13)0.0767 (7)
H331.01540.50260.26940.092*
C341.0217 (2)0.33226 (17)0.00314 (15)0.0733 (6)
H34A0.98610.39910.01340.110*
H34B1.06680.31480.03860.110*
H34C1.07680.33210.04390.110*
N10.51194 (12)0.35848 (10)0.10248 (7)0.0385 (3)
N20.92281 (13)0.25697 (11)0.00534 (8)0.0476 (3)
O10.80595 (12)0.08859 (10)0.16014 (7)0.0587 (4)
O20.72880 (12)0.37212 (10)0.06641 (6)0.0493 (3)
H2A0.78200.33760.07850.074*
Cl10.71190 (7)0.10108 (5)0.03928 (4)0.0892 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0437 (8)0.0415 (9)0.0410 (8)0.0001 (7)0.0162 (7)0.0055 (7)
C20.0609 (11)0.0548 (11)0.0601 (11)0.0129 (9)0.0294 (9)0.0031 (9)
C30.0781 (14)0.0662 (13)0.0708 (13)0.0107 (11)0.0438 (11)0.0124 (11)
C40.0904 (16)0.0785 (15)0.0503 (11)0.0004 (12)0.0410 (11)0.0097 (10)
C50.0772 (13)0.0654 (13)0.0383 (9)0.0001 (10)0.0233 (9)0.0040 (8)
C60.0515 (9)0.0458 (10)0.0345 (8)0.0025 (7)0.0142 (7)0.0052 (7)
C70.0483 (9)0.0441 (9)0.0333 (8)0.0027 (7)0.0076 (6)0.0019 (6)
C80.0346 (7)0.0376 (8)0.0326 (7)0.0017 (6)0.0064 (5)0.0002 (6)
C90.0305 (7)0.0355 (8)0.0322 (7)0.0022 (6)0.0076 (5)0.0000 (6)
C100.0313 (7)0.0399 (8)0.0295 (7)0.0077 (6)0.0060 (5)0.0026 (6)
C110.0327 (7)0.0399 (8)0.0343 (7)0.0039 (6)0.0086 (6)0.0018 (6)
C120.0299 (7)0.0333 (8)0.0383 (7)0.0058 (6)0.0088 (6)0.0002 (6)
C130.0348 (7)0.0388 (8)0.0386 (8)0.0044 (6)0.0058 (6)0.0030 (6)
C140.0373 (8)0.0351 (8)0.0521 (9)0.0091 (6)0.0154 (7)0.0010 (7)
C150.0416 (9)0.0392 (9)0.0589 (10)0.0088 (7)0.0216 (7)0.0060 (7)
C160.0469 (10)0.0512 (11)0.0772 (13)0.0024 (8)0.0294 (9)0.0100 (9)
C170.0648 (14)0.0767 (16)0.109 (2)0.0227 (12)0.0341 (13)0.0380 (14)
C180.0830 (18)0.108 (2)0.0918 (19)0.0133 (16)0.0271 (15)0.0495 (17)
C190.0958 (18)0.098 (2)0.0607 (13)0.0095 (16)0.0300 (12)0.0200 (13)
C200.0762 (13)0.0543 (12)0.0616 (12)0.0054 (10)0.0324 (10)0.0078 (9)
C210.0378 (9)0.0442 (10)0.0767 (12)0.0065 (7)0.0228 (8)0.0055 (9)
C220.0321 (7)0.0342 (8)0.0452 (8)0.0039 (6)0.0116 (6)0.0004 (6)
C230.0398 (8)0.0360 (8)0.0332 (7)0.0057 (6)0.0130 (6)0.0030 (6)
C240.0458 (9)0.0339 (8)0.0448 (8)0.0008 (6)0.0194 (7)0.0023 (6)
C250.0630 (11)0.0374 (9)0.0572 (10)0.0063 (8)0.0265 (9)0.0053 (8)
C260.0865 (15)0.0347 (10)0.0769 (14)0.0018 (9)0.0372 (12)0.0027 (9)
C270.0848 (15)0.0466 (12)0.0748 (14)0.0192 (11)0.0313 (12)0.0211 (10)
C280.0586 (11)0.0490 (11)0.0603 (11)0.0160 (9)0.0153 (9)0.0131 (9)
C290.0433 (9)0.0381 (9)0.0494 (9)0.0067 (7)0.0139 (7)0.0034 (7)
C300.0347 (8)0.0431 (9)0.0536 (10)0.0012 (7)0.0049 (7)0.0025 (7)
C310.0455 (10)0.0602 (12)0.0728 (13)0.0014 (9)0.0101 (9)0.0048 (10)
C320.0606 (13)0.0888 (18)0.0769 (15)0.0046 (12)0.0230 (11)0.0104 (13)
C330.0682 (14)0.0793 (17)0.0717 (14)0.0223 (12)0.0053 (11)0.0249 (12)
C340.0599 (13)0.0560 (12)0.1193 (19)0.0101 (10)0.0518 (13)0.0053 (12)
N10.0384 (7)0.0403 (7)0.0391 (7)0.0067 (5)0.0138 (5)0.0005 (5)
N20.0405 (7)0.0404 (8)0.0696 (9)0.0018 (6)0.0285 (7)0.0013 (7)
O10.0630 (8)0.0633 (8)0.0494 (7)0.0281 (7)0.0123 (6)0.0195 (6)
O20.0607 (8)0.0549 (8)0.0384 (6)0.0110 (6)0.0235 (5)0.0085 (5)
Cl10.1012 (5)0.0769 (4)0.1044 (5)0.0282 (3)0.0540 (4)0.0057 (3)
Geometric parameters (Å, º) top
C1—N11.3697 (19)C17—H170.9300
C1—C21.411 (2)C18—C191.366 (4)
C1—C61.415 (2)C18—H180.9300
C2—C31.367 (3)C19—C201.386 (3)
C2—H20.9300C19—H190.9300
C3—C41.397 (3)C20—H200.9300
C3—H30.9300C21—N21.463 (2)
C4—C51.352 (3)C21—H21A0.9700
C4—H40.9300C21—H21B0.9700
C5—C61.418 (2)C22—N21.4736 (19)
C5—H50.9300C22—C301.520 (2)
C6—C71.400 (2)C22—C231.587 (2)
C7—C81.368 (2)C23—O21.4187 (17)
C7—H70.9300C23—C241.502 (2)
C8—C91.426 (2)C24—C251.366 (2)
C8—C131.490 (2)C24—C291.403 (2)
C9—N11.3148 (18)C25—C261.411 (3)
C9—C101.5071 (19)C25—H250.9300
C10—C111.524 (2)C26—C271.355 (3)
C10—C231.551 (2)C26—H260.9300
C10—H100.9800C27—C281.418 (3)
C11—C121.544 (2)C27—H270.9300
C11—H11A0.9700C28—C291.402 (2)
C11—H11B0.9700C28—C331.414 (3)
C12—C131.519 (2)C29—C301.405 (2)
C12—C141.556 (2)C30—C311.368 (2)
C12—C221.572 (2)C31—C321.411 (3)
C13—O11.2113 (19)C31—H310.9300
C14—C151.512 (2)C32—C331.359 (3)
C14—C211.530 (2)C32—H320.9300
C14—H140.9800C33—H330.9300
C15—C161.388 (3)C34—N21.470 (2)
C15—C201.391 (3)C34—H34A0.9600
C16—C171.377 (3)C34—H34B0.9600
C16—Cl11.735 (2)C34—H34C0.9600
C17—C181.361 (4)O2—H2A0.8200
N1—C1—C2118.26 (15)C18—C19—C20119.9 (2)
N1—C1—C6122.61 (14)C18—C19—H19120.1
C2—C1—C6119.12 (15)C20—C19—H19120.1
C3—C2—C1119.67 (19)C19—C20—C15122.1 (2)
C3—C2—H2120.2C19—C20—H20119.0
C1—C2—H2120.2C15—C20—H20119.0
C2—C3—C4120.98 (18)N2—C21—C14105.25 (13)
C2—C3—H3119.5N2—C21—H21A110.7
C4—C3—H3119.5C14—C21—H21A110.7
C5—C4—C3121.00 (17)N2—C21—H21B110.7
C5—C4—H4119.5C14—C21—H21B110.7
C3—C4—H4119.5H21A—C21—H21B108.8
C4—C5—C6119.86 (19)N2—C22—C30115.35 (13)
C4—C5—H5120.1N2—C22—C12102.42 (12)
C6—C5—H5120.1C30—C22—C12118.34 (13)
C7—C6—C1117.54 (14)N2—C22—C23111.38 (12)
C7—C6—C5123.10 (16)C30—C22—C23103.64 (12)
C1—C6—C5119.36 (16)C12—C22—C23105.46 (11)
C8—C7—C6119.86 (15)O2—C23—C24113.97 (13)
C8—C7—H7120.1O2—C23—C10108.31 (12)
C6—C7—H7120.1C24—C23—C10114.53 (12)
C7—C8—C9118.84 (14)O2—C23—C22111.83 (12)
C7—C8—C13120.81 (14)C24—C23—C22105.01 (12)
C9—C8—C13120.35 (13)C10—C23—C22102.61 (11)
N1—C9—C8122.93 (13)C25—C24—C29119.96 (16)
N1—C9—C10118.10 (12)C25—C24—C23131.66 (16)
C8—C9—C10118.93 (12)C29—C24—C23108.20 (13)
C9—C10—C11108.73 (12)C24—C25—C26117.63 (18)
C9—C10—C23112.88 (12)C24—C25—H25121.2
C11—C10—C23101.55 (11)C26—C25—H25121.2
C9—C10—H10111.1C27—C26—C25122.97 (19)
C11—C10—H10111.1C27—C26—H26118.5
C23—C10—H10111.1C25—C26—H26118.5
C10—C11—C12101.87 (11)C26—C27—C28120.76 (18)
C10—C11—H11A111.4C26—C27—H27119.6
C12—C11—H11A111.4C28—C27—H27119.6
C10—C11—H11B111.4C29—C28—C33115.85 (19)
C12—C11—H11B111.4C29—C28—C27115.74 (18)
H11A—C11—H11B109.3C33—C28—C27128.39 (19)
C13—C12—C11106.63 (11)C28—C29—C24122.93 (16)
C13—C12—C14114.36 (12)C28—C29—C30123.36 (17)
C11—C12—C14116.91 (12)C24—C29—C30113.70 (15)
C13—C12—C22108.88 (12)C31—C30—C29119.05 (17)
C11—C12—C22103.37 (11)C31—C30—C22132.67 (17)
C14—C12—C22105.93 (11)C29—C30—C22108.22 (14)
O1—C13—C8121.52 (14)C30—C31—C32118.5 (2)
O1—C13—C12123.58 (14)C30—C31—H31120.8
C8—C13—C12114.89 (12)C32—C31—H31120.8
C15—C14—C21114.25 (14)C33—C32—C31122.4 (2)
C15—C14—C12113.27 (13)C33—C32—H32118.8
C21—C14—C12103.17 (12)C31—C32—H32118.8
C15—C14—H14108.6C32—C33—C28120.81 (19)
C21—C14—H14108.6C32—C33—H33119.6
C12—C14—H14108.6C28—C33—H33119.6
C16—C15—C20115.53 (17)N2—C34—H34A109.5
C16—C15—C14122.33 (16)N2—C34—H34B109.5
C20—C15—C14122.14 (17)H34A—C34—H34B109.5
C17—C16—C15122.8 (2)N2—C34—H34C109.5
C17—C16—Cl1117.64 (17)H34A—C34—H34C109.5
C15—C16—Cl1119.60 (15)H34B—C34—H34C109.5
C18—C17—C16119.9 (2)C9—N1—C1118.18 (13)
C18—C17—H17120.1C21—N2—C34112.26 (14)
C16—C17—H17120.1C21—N2—C22105.56 (13)
C17—C18—C19119.9 (2)C34—N2—C22116.07 (14)
C17—C18—H18120.1C23—O2—H2A109.5
C19—C18—H18120.1
N1—C1—C2—C3178.26 (18)C13—C12—C22—C2398.81 (13)
C6—C1—C2—C30.5 (3)C11—C12—C22—C2314.28 (14)
C1—C2—C3—C40.1 (3)C14—C12—C22—C23137.76 (12)
C2—C3—C4—C50.4 (4)C9—C10—C23—O2166.16 (12)
C3—C4—C5—C60.0 (3)C11—C10—C23—O277.62 (13)
N1—C1—C6—C71.8 (2)C9—C10—C23—C2437.74 (17)
C2—C1—C6—C7179.45 (16)C11—C10—C23—C24153.97 (12)
N1—C1—C6—C5177.84 (16)C9—C10—C23—C2275.45 (14)
C2—C1—C6—C50.9 (3)C11—C10—C23—C2240.78 (13)
C4—C5—C6—C7179.71 (19)N2—C22—C23—O210.48 (18)
C4—C5—C6—C10.6 (3)C30—C22—C23—O2135.09 (13)
C1—C6—C7—C81.6 (2)C12—C22—C23—O299.88 (14)
C5—C6—C7—C8178.07 (17)N2—C22—C23—C24113.61 (13)
C6—C7—C8—C90.4 (2)C30—C22—C23—C2411.00 (15)
C6—C7—C8—C13179.82 (15)C12—C22—C23—C24136.03 (12)
C7—C8—C9—N10.7 (2)N2—C22—C23—C10126.36 (12)
C13—C8—C9—N1179.07 (14)C30—C22—C23—C10109.03 (13)
C7—C8—C9—C10177.45 (14)C12—C22—C23—C1016.00 (14)
C13—C8—C9—C102.8 (2)O2—C23—C24—C2553.0 (2)
N1—C9—C10—C11147.13 (13)C10—C23—C24—C2572.5 (2)
C8—C9—C10—C1131.08 (18)C22—C23—C24—C25175.69 (16)
N1—C9—C10—C23101.00 (15)O2—C23—C24—C29131.95 (14)
C8—C9—C10—C2380.79 (17)C10—C23—C24—C29102.54 (15)
C9—C10—C11—C1268.47 (14)C22—C23—C24—C299.23 (16)
C23—C10—C11—C1250.76 (13)C29—C24—C25—C260.6 (2)
C10—C11—C12—C1374.78 (14)C23—C24—C25—C26173.99 (17)
C10—C11—C12—C14155.85 (12)C24—C25—C26—C270.3 (3)
C10—C11—C12—C2239.94 (13)C25—C26—C27—C280.1 (3)
C7—C8—C13—O13.8 (2)C26—C27—C28—C290.2 (3)
C9—C8—C13—O1176.44 (15)C26—C27—C28—C33179.0 (2)
C7—C8—C13—C12176.11 (14)C33—C28—C29—C24178.85 (18)
C9—C8—C13—C123.6 (2)C27—C28—C29—C240.2 (3)
C11—C12—C13—O1137.38 (16)C33—C28—C29—C300.1 (3)
C14—C12—C13—O16.6 (2)C27—C28—C29—C30178.96 (17)
C22—C12—C13—O1111.69 (17)C25—C24—C29—C280.6 (3)
C11—C12—C13—C842.68 (17)C23—C24—C29—C28175.18 (15)
C14—C12—C13—C8173.50 (13)C25—C24—C29—C30179.47 (15)
C22—C12—C13—C868.25 (15)C23—C24—C29—C303.71 (19)
C13—C12—C14—C15119.48 (15)C28—C29—C30—C310.5 (3)
C11—C12—C14—C156.12 (19)C24—C29—C30—C31178.42 (17)
C22—C12—C14—C15120.61 (14)C28—C29—C30—C22177.26 (16)
C13—C12—C14—C21116.48 (15)C24—C29—C30—C223.85 (19)
C11—C12—C14—C21117.93 (15)N2—C22—C30—C3164.5 (3)
C22—C12—C14—C213.44 (16)C12—C22—C30—C3157.3 (3)
C21—C14—C15—C16155.66 (16)C23—C22—C30—C31173.5 (2)
C12—C14—C15—C1686.58 (19)N2—C22—C30—C29112.83 (15)
C21—C14—C15—C2025.3 (2)C12—C22—C30—C29125.44 (14)
C12—C14—C15—C2092.51 (19)C23—C22—C30—C299.17 (17)
C20—C15—C16—C171.8 (3)C29—C30—C31—C320.3 (3)
C14—C15—C16—C17179.07 (18)C22—C30—C31—C32176.8 (2)
C20—C15—C16—Cl1178.95 (14)C30—C31—C32—C330.4 (4)
C14—C15—C16—Cl10.2 (2)C31—C32—C33—C281.0 (4)
C15—C16—C17—C181.3 (4)C29—C28—C33—C320.8 (3)
Cl1—C16—C17—C18179.4 (2)C27—C28—C33—C32178.1 (2)
C16—C17—C18—C190.6 (4)C8—C9—N1—C10.5 (2)
C17—C18—C19—C201.8 (4)C10—C9—N1—C1177.65 (13)
C18—C19—C20—C151.3 (4)C2—C1—N1—C9179.52 (16)
C16—C15—C20—C190.5 (3)C6—C1—N1—C90.8 (2)
C14—C15—C20—C19179.64 (19)C14—C21—N2—C34170.33 (16)
C15—C14—C21—N296.03 (16)C14—C21—N2—C2242.96 (17)
C12—C14—C21—N227.37 (17)C30—C22—N2—C2190.75 (16)
C13—C12—C22—N2144.56 (12)C12—C22—N2—C2139.21 (15)
C11—C12—C22—N2102.35 (13)C23—C22—N2—C21151.50 (14)
C14—C12—C22—N221.13 (15)C30—C22—N2—C3434.3 (2)
C13—C12—C22—C3016.47 (17)C12—C22—N2—C34164.24 (16)
C11—C12—C22—C30129.56 (13)C23—C22—N2—C3483.47 (19)
C14—C12—C22—C30106.96 (15)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1/C1/C6–C9 ring.
D—H···AD—HH···AD···AD—H···A
O2—H2A···N20.822.122.664 (2)124
C25—H25···N1i0.932.593.503 (2)169
C33—H33···O1ii0.932.403.212 (3)146
C17—H17···Cg1iii0.932.733.553 (3)147
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+1/2, z+1/2; (iii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1/C1/C6–C9 ring.
D—H···AD—HH···AD···AD—H···A
O2—H2A···N20.822.122.664 (2)124
C25—H25···N1i0.932.593.503 (2)169
C33—H33···O1ii0.932.403.212 (3)146
C17—H17···Cg1iii0.932.733.553 (3)147
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+1/2, z+1/2; (iii) x+1, y, z.
 

Acknowledgements

The authors thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection.

References

First citationAravindan, P. G., Selvanayagam, S., Velmurugan, D., Ravikumar, K., Sridhar, G. & Raghunathan, R. (2004). Acta Cryst. E60, o2149–o2151.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationArun, Y., Saranraj, K., Balachandran, C. & Perumal, P. T. (2014). Eur. J. Med. Chem. 74, 50–64.  CrossRef CAS PubMed Google Scholar
First citationBabu, M. N., Sharma, L. & Madhavan, V. (2012). Int. J. ChemTech Res. 4, 903–909.  CAS Google Scholar
First citationBellina, F. & Rossi, R. (2006). Tetrahedron, 62, 7213–7256.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGayathri, D., Velmurugan, D., Ravikumar, K., Poornachandran, M. & Raghunathan, R. (2005). Acta Cryst. E61, o3556–o3558.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGovind, M. M., Selvanayagam, S., Velmurugan, D., Ravikumar, K., Rathna Durga, R. & Raghunathan, R. (2003). Acta Cryst. E59, o1875–o1877.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, Y. L. & Xu, W. F. (2004). Bioorg. Med. Chem. 12, 5171–5180.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNirmala, S., Karthikeyan, K., Kamala, E. T. S., Sudha, L. & Perumal, P. T. (2009). Acta Cryst. E65, o1655–o1656.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSavithri, M. P., Suresh, M., Raghunathan, R., Vimala, G., Raja, R. & SubbiahPandi, A. (2014). Acta Cryst. E70, 94–97.  CSD CrossRef IUCr Journals Google Scholar
First citationSeki, M., Tsuruta, O., Tatsumi, R. & Soejima, A. (2013). Bioorg. Med. Chem. Lett. 23, 4230–4234.  CrossRef CAS PubMed Google Scholar
First citationSharma, R. & Soman, S. S. (2015). Eur. J. Med. Chem. 90, 342–350.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds