organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of N′-[bis­­(ethyl­sulfan­yl)methyl­­idene]-2-hy­dr­oxy-4-meth­­oxy­benzohydrazide

aDepartment of Chemistry, Banaras Hindu University, Varanasi 221 005, India, and bSchool of Studies in Chemistry, Jiwaji University, Gwalior 474 011, India
*Correspondence e-mail: manoj_vns2005@yahoo.co.in

Edited by J. Jasinsk, Keene State College, USA (Received 29 October 2015; accepted 9 November 2015; online 21 November 2015)

In the title compound, C13H18N2O3S2, the amide group is in the plane of the ­benzoyl ring with a C—N—N—C torsion angle of 177.63 (12)°. The two di­thio­ate groups are in an anti conformation [torsion angles = 173.68 (8) and −9.98 (10)°]. An intra­molecular N—H⋯O hydrogen bond is observed. In the crystal, an O—H⋯O hydrogen bond and a weak C—H⋯O contact involving the same acceptor atom generate an S(6) ring motif and give rise to chains along [010].

1. Related literature

For S-alk­yl/aryl esters of di­thio­carbaza­tes that form metal complexes, see: Ali et al. (2008[Ali, M. A., Mirza, A. H., Hamid, M. H. S. A., Bernhardt, P. V., Atchade, O., Song, X., Eng, G. & May, L. (2008). Polyhedron, 27, 977-984.]); Singh et al. (2010[Singh, N. K., Bharty, M. K., Kushawaha, S. K., Singh, U. P. & Tyagi, P. (2010). Polyhedron, 29, 1902-1909.], 2012[Singh, M., Bharty, M. K., Singh, A., Kashyap, S., Singh, U. P. & Singh, N. K. (2012). Transition Met. Chem. 37, 695-703.]). For their biological properties, see: Bharti et al. (2000[Bharti, N., Maurya, M. R., Naqvi, F., Bhattcharya, A., Bhattacharya, S. & Azam, A. (2000). Eur. J. Med. Chem. 35, 481-486.]). For cyclization of potassium salts of N-(aro­yl)hydrazine carbodi­thio­ates, see: Singh et al. (2008[Singh, M., Butcher, R. J. & Singh, N. K. (2008). Polyhedron, 27, 3451-3460.], 2009[Singh, N. K., Kushawaha, S. K., Bharty, M. K., Dulare, R. & Butcher, R. J. (2009). J. Mol. Struct. 936, 257-263.]); Bharty et al. (2012[Bharty, M. K., Bharti, A., Dani, R. K., Dulare, R., Bharati, P. & Singh, N. K. (2012). J. Mol. Struct. 1011, 34-41.]). For bidentate, tridentate and multidentate esters, see: Wang et al. (2002[Wang, X., Deng, Z., Jin, B., Tian, Y. & Lin, X. (2002). Bull. Chem. Soc. Jpn, 75, 1269-1273.]); Tarafder et al. (2000[Tarafder, M. T. H., Ali, M. A., Saravanan, N., Weng, W. Y., Kumar, S., Umar-Tsafe, N. & Crouse, K. A. (2000). Transition Met. Chem. 25, 295-298.]); Ali et al. (2001[Ali, M. A., Mirza, A. H., Butcher, R. J., Tarafder, M. T. H. & Ali, M. A. (2001). Inorg. Chim. Acta, 320, 1-6.]). For related structures, see: Jasinski et al. (2010[Jasinski, J. P., Butcher, R. J., Kushawaha, S. K., Bharty, M. K. & Singh, N. K. (2010). Acta Cryst. E66, o1899.]); Butcher et al. (2007[Butcher, R. J., Jasinski, J. P., Kushawaha, S. K., Bharty, M. K. & Singh, N. K. (2007). Acta Cryst. E63, o4590-o4591.]); Tayamon et al. (2012[Tayamon, S., Ravoof, T. B. S. A., Tahir, M. I. M., Crouse, K. A. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o1640-o1641.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C13H18N2O3S2

  • Mr = 314.41

  • Monoclinic, P 21 /n

  • a = 8.479 (2) Å

  • b = 12.894 (3) Å

  • c = 13.843 (3) Å

  • β = 104.156 (10)°

  • V = 1467.5 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 293 K

  • 0.2 × 0.2 × 0.2 mm

2.2. Data collection

  • Rigaku Mercury 375R diffractometer

  • Absorption correction: multi-scan (CrystalClear-SM Expert; Rigaku, 2011[Rigaku (2011). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.938, Tmax = 1.000

  • 12952 measured reflections

  • 2685 independent reflections

  • 2530 reflections with I > 2σ(I)

  • Rint = 0.027

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.077

  • S = 1.08

  • 2685 reflections

  • 192 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O3i 0.82 (2) 1.80 (2) 2.6118 (15) 177 (2)
N1—H1A⋯O2 0.836 (19) 1.957 (19) 2.6384 (16) 137.9 (17)
C3—H3A⋯O3i 0.93 2.52 3.1975 (18) 130
Symmetry code: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClear-SM Expert (Rigaku, 2011[Rigaku (2011). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear-SM Expert; data reduction: CrystalClear-SM Expert; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Nitro­gen-sulfur donor chelating agents such as di­thio­carbaza­tes and their S-alkyl/aryl esters have shown inter­esting biological properties (Bharti et al. (2000). They form large number of metal complexes with novel structural features (Ali et al., 2008; Singh et al., 2010; Singh et al., 2012). The S-alkyl/aryl esters derived from potassium salts of N-aroylhydrazine carbodi­thio­ates have been found to be more stable towardscyclization (Singh et al., 2008) and form 1,3,4-oxa­diazole-2-thio­nes in the presence of acid or base (Singh et al., 2009; Bharty et al., 2012). The above esters behave as bidentate, tridentate or multidentate chelating agents with hetero donor atoms (Wang et al., 2002; Tarafder et al., 2000; Ali et al., 2001). In view of the importance of the title compound, (I), herein we report its synthesis and crystal structure.

In the title compound, C13H18N2O3S2, the sum of the angles around C9 (120.0°) and the S1/C9/S2 bond angle of 117.94 (8)° indicate a nearly planar sp2 hybridized carbon atom (Fig. 2). The amide group is in plane to the benzoyl ring with a C8—N1—N2—C9 torsion angle of 177.63 (12)°, in contrast to the values in related structures (Jasinski et al. (2010); Butcher et al. (2007); Tayamon et al. (2012)). The two di­ethyl di­thio­ate groups are in an anti conformation with respect to each other, as reflected by torsion angles C10/S1/C9/S2 of 173.68 (8)° and S1/C9/S2/C12 of – 9.98 (10)°. The N2 atom in the amide linkage possesses distorted tetra­hedral geometry (C9/N2/N1 = 116.59 (12)° while the N1 atom is almost planar (sum of bond angles 359.6°). The C8—N1 and C9—N2 bond lengths (1.3448 (18) Å and 1.2837 (18) Å) lie between typical C–N and CN values owing to the extensive delocalization of π electron density over the C9/N2/N1/C8 linkage.

In the crystal, an inter­molecular O2–H2A···O3 hydrogen bond and weak inter­molecular C3–H3A···O3 contact in bifurcated bonding arrangement (Fig. 3) generate an S(6) ring motif (Table 1). Intra­molecular N1–H1A···O2 hydrogen bonds are also observed.

Experimental top

Potassium 2-(2-hy­droxy-4-meth­oxy­benzoyl)­hydrazinecarbodi­thio­ate was prepared by adding carbon di­sulfide (20.0 mmol, 1.50 mL) to a solution of 4-meth­oxy­salicylic acid hydrazide (20.0 mmol, 3.65 g) and potassium hydroxide (20.0 mmol, 1.12 g) in ethanol (30 mL), then stirring the reaction mixture for 2 h (Fig. 1). The solid separated was filtered off, washed with ethanol and dried in vacuo. Ethyl iodide (20.0 mmol, 1.60 mL) was added drop-wise to a suspension of potassium 2-(2-hy­droxy-4-meth­oxy­benzoyl)­hydrazinecarbodi­thio­ate (10.0 mmol, 2.96 g) in ethanol (20 mL) and stirring the reaction mixture for a period of 3–4 h. The resulting yellow solution was concentrated and acidified with dilute CH3COOH (20% v/v) which yielded a yellow precipitate, washed with water and dried in vacuo. Yellow crystals of (I) (m.p. 427–429 K), suitable for X-ray analysis were obtained by slow evaporation of the methanol solution over a period of 9–10 days (yield 60%): Anal. Calc. for C13H18N2O3S2 (%): C, 49.61; H, 5.77; N, 8.91; S, 20.40. Found: C, 49.24; H, 5.85; N, 8.86; S, 20.12.

Refinement top

The H atoms bonded to N1 and O2 were located in a difference Fourier map and refined freely; N1–H1A = 0.836 (19) Å and O2–H2A = 0.82 (2)Å. Other H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93–0.97 Å, and with Uiso(H) = 1.2–1.5Ueq(C).

Related literature top

For S-alkyl/aryl esters of dithiocarbazates that form metal complexes, see: Ali et al. (2008); Singh et al. (2010, 2012). For their biological properties, see: Bharti et al. (2000). For cyclization of potassium salts of N-(aroyl)hydrazine carbodithioates, see: Singh et al. (2008, 2009); Bharty et al. (2012). For bidentate, tridentate and multidentate esters, see: Wang et al. (2002); Tarafder et al. (2000); Ali et al. (2001). For related structures, see: Jasinski et al. (2010); Butcher et al. (2007); Tayamon et al. (2012).

Structure description top

Nitro­gen-sulfur donor chelating agents such as di­thio­carbaza­tes and their S-alkyl/aryl esters have shown inter­esting biological properties (Bharti et al. (2000). They form large number of metal complexes with novel structural features (Ali et al., 2008; Singh et al., 2010; Singh et al., 2012). The S-alkyl/aryl esters derived from potassium salts of N-aroylhydrazine carbodi­thio­ates have been found to be more stable towardscyclization (Singh et al., 2008) and form 1,3,4-oxa­diazole-2-thio­nes in the presence of acid or base (Singh et al., 2009; Bharty et al., 2012). The above esters behave as bidentate, tridentate or multidentate chelating agents with hetero donor atoms (Wang et al., 2002; Tarafder et al., 2000; Ali et al., 2001). In view of the importance of the title compound, (I), herein we report its synthesis and crystal structure.

In the title compound, C13H18N2O3S2, the sum of the angles around C9 (120.0°) and the S1/C9/S2 bond angle of 117.94 (8)° indicate a nearly planar sp2 hybridized carbon atom (Fig. 2). The amide group is in plane to the benzoyl ring with a C8—N1—N2—C9 torsion angle of 177.63 (12)°, in contrast to the values in related structures (Jasinski et al. (2010); Butcher et al. (2007); Tayamon et al. (2012)). The two di­ethyl di­thio­ate groups are in an anti conformation with respect to each other, as reflected by torsion angles C10/S1/C9/S2 of 173.68 (8)° and S1/C9/S2/C12 of – 9.98 (10)°. The N2 atom in the amide linkage possesses distorted tetra­hedral geometry (C9/N2/N1 = 116.59 (12)° while the N1 atom is almost planar (sum of bond angles 359.6°). The C8—N1 and C9—N2 bond lengths (1.3448 (18) Å and 1.2837 (18) Å) lie between typical C–N and CN values owing to the extensive delocalization of π electron density over the C9/N2/N1/C8 linkage.

In the crystal, an inter­molecular O2–H2A···O3 hydrogen bond and weak inter­molecular C3–H3A···O3 contact in bifurcated bonding arrangement (Fig. 3) generate an S(6) ring motif (Table 1). Intra­molecular N1–H1A···O2 hydrogen bonds are also observed.

Potassium 2-(2-hy­droxy-4-meth­oxy­benzoyl)­hydrazinecarbodi­thio­ate was prepared by adding carbon di­sulfide (20.0 mmol, 1.50 mL) to a solution of 4-meth­oxy­salicylic acid hydrazide (20.0 mmol, 3.65 g) and potassium hydroxide (20.0 mmol, 1.12 g) in ethanol (30 mL), then stirring the reaction mixture for 2 h (Fig. 1). The solid separated was filtered off, washed with ethanol and dried in vacuo. Ethyl iodide (20.0 mmol, 1.60 mL) was added drop-wise to a suspension of potassium 2-(2-hy­droxy-4-meth­oxy­benzoyl)­hydrazinecarbodi­thio­ate (10.0 mmol, 2.96 g) in ethanol (20 mL) and stirring the reaction mixture for a period of 3–4 h. The resulting yellow solution was concentrated and acidified with dilute CH3COOH (20% v/v) which yielded a yellow precipitate, washed with water and dried in vacuo. Yellow crystals of (I) (m.p. 427–429 K), suitable for X-ray analysis were obtained by slow evaporation of the methanol solution over a period of 9–10 days (yield 60%): Anal. Calc. for C13H18N2O3S2 (%): C, 49.61; H, 5.77; N, 8.91; S, 20.40. Found: C, 49.24; H, 5.85; N, 8.86; S, 20.12.

For S-alkyl/aryl esters of dithiocarbazates that form metal complexes, see: Ali et al. (2008); Singh et al. (2010, 2012). For their biological properties, see: Bharti et al. (2000). For cyclization of potassium salts of N-(aroyl)hydrazine carbodithioates, see: Singh et al. (2008, 2009); Bharty et al. (2012). For bidentate, tridentate and multidentate esters, see: Wang et al. (2002); Tarafder et al. (2000); Ali et al. (2001). For related structures, see: Jasinski et al. (2010); Butcher et al. (2007); Tayamon et al. (2012).

Refinement details top

The H atoms bonded to N1 and O2 were located in a difference Fourier map and refined freely; N1–H1A = 0.836 (19) Å and O2–H2A = 0.82 (2)Å. Other H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93–0.97 Å, and with Uiso(H) = 1.2–1.5Ueq(C).

Computing details top

Data collection: CrystalClear-SM Expert (Rigaku, 2011); cell refinement: CrystalClear-SM Expert (Rigaku, 2011); data reduction: CrystalClear-SM Expert (Rigaku, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A reaction scheme showing the synthesis of the title compound, C13H18N2O3S2.
[Figure 2] Fig. 2. Molecular structure of the title compound, C13H18N2O3S2, showing 50% probability displacement ellipsoids.
[Figure 3] Fig. 3. Molecular packing of C13H18N2O3S2 viewed along the c-axis. Dashed lines indicate intermolecular hydroxyl O—H···Ocarbonylhydrogen bonds and weak phenyl C—H···Ocarbonyl interactions.
N'-[Bis(ethylsulfanyl)methylidene]-2-hydroxy-4-methoxybenzohydrazide top
Crystal data top
C13H18N2O3S2F(000) = 664
Mr = 314.41Dx = 1.423 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.479 (2) ÅCell parameters from 4529 reflections
b = 12.894 (3) Åθ = 3.0–27.5°
c = 13.843 (3) ŵ = 0.37 mm1
β = 104.156 (10)°T = 293 K
V = 1467.5 (6) Å3Prism, colorless
Z = 40.2 × 0.2 × 0.2 mm
Data collection top
Rigaku Mercury 375R
diffractometer
2685 independent reflections
Radiation source: Sealed Tube2530 reflections with I > 2σ(I)
Detector resolution: 13.6612 pixels mm-1Rint = 0.027
ω scansθmax = 25.3°, θmin = 3.0°
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku, 2011)
h = 1010
Tmin = 0.938, Tmax = 1.000k = 1515
12952 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: mixed
wR(F2) = 0.077H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0391P)2 + 0.8434P]
where P = (Fo2 + 2Fc2)/3
2685 reflections(Δ/σ)max < 0.001
192 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C13H18N2O3S2V = 1467.5 (6) Å3
Mr = 314.41Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.479 (2) ŵ = 0.37 mm1
b = 12.894 (3) ÅT = 293 K
c = 13.843 (3) Å0.2 × 0.2 × 0.2 mm
β = 104.156 (10)°
Data collection top
Rigaku Mercury 375R
diffractometer
2685 independent reflections
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku, 2011)
2530 reflections with I > 2σ(I)
Tmin = 0.938, Tmax = 1.000Rint = 0.027
12952 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.077H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.28 e Å3
2685 reflectionsΔρmin = 0.27 e Å3
192 parameters
Special details top

Experimental. IR (selected, KBr): 3320 [ν(O–H)], 3276 [ν(N–H)], 1634 [ν(C O)], 1094 [ν(N–N)], 876 [ν(CS)] cm-1. 1H NMR (DMSO-d6); δ [p.p.m.] = 12.26 (s, 1H, OH), 9.77 (s, 1H, NH), 7.80–6.40 (m, 3H, C6H3, phenyl), 3.82 (s, 3H, –OCH3), 3.06 (q, 4H, CH2), 1.44 (t, 6H, CH3). 13C NMR (DMSO-d6) δ [p.p.m.] = 168.3 (C4), 163.3 (C8), 162.0 (C2), 157.9 (C9), 132.1 (C6), 128.2 (C5), 106.8 (C3), 55.2 (C7), 27.1 (C10, C12), 14.4 (C11, C13).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.18898 (4)0.33147 (3)0.40368 (3)0.01707 (12)
S20.36737 (4)0.51413 (3)0.34551 (3)0.01997 (12)
O11.14563 (12)0.43927 (8)0.07886 (8)0.0191 (2)
O20.73950 (13)0.50561 (8)0.24846 (8)0.0175 (2)
H2A0.775 (2)0.5643 (17)0.2477 (15)0.034 (5)*
O30.63540 (13)0.19012 (8)0.25602 (8)0.0211 (2)
N10.55185 (14)0.35185 (9)0.27860 (9)0.0141 (2)
H1A0.571 (2)0.4154 (15)0.2769 (13)0.025 (5)*
N20.43294 (14)0.31214 (9)0.32068 (9)0.0154 (3)
C10.78058 (16)0.32991 (10)0.20495 (10)0.0127 (3)
C20.82146 (17)0.43652 (10)0.20485 (10)0.0136 (3)
C30.94371 (17)0.46929 (11)0.16183 (10)0.0147 (3)
H3A0.96960.53940.16190.018*
C41.02795 (16)0.39806 (11)0.11852 (10)0.0150 (3)
C50.98999 (17)0.29255 (11)0.11710 (10)0.0157 (3)
H5A1.04590.24470.08770.019*
C60.86766 (17)0.26095 (11)0.16032 (10)0.0147 (3)
H6A0.84230.19070.15960.018*
C71.23586 (18)0.36914 (12)0.03325 (12)0.0214 (3)
H7A1.31180.40740.00590.032*
H7B1.16260.33180.01900.032*
H7C1.29380.32110.08220.032*
C80.65227 (16)0.28531 (11)0.24849 (10)0.0139 (3)
C90.34330 (17)0.37829 (11)0.35163 (10)0.0145 (3)
C100.19836 (17)0.19372 (11)0.37997 (11)0.0173 (3)
H10A0.18090.18120.30900.021*
H10B0.30440.16660.41340.021*
C110.06688 (18)0.14095 (12)0.41920 (11)0.0220 (3)
H11A0.06280.06870.40210.033*
H11B0.03630.17250.39000.033*
H11C0.09090.14830.49030.033*
C120.19060 (17)0.56936 (11)0.37838 (11)0.0186 (3)
H12A0.16530.63530.34440.022*
H12B0.09850.52370.35430.022*
C130.2116 (2)0.58643 (13)0.48938 (12)0.0253 (3)
H13A0.11680.62020.50060.038*
H13B0.30540.62910.51460.038*
H13C0.22600.52080.52310.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0167 (2)0.01427 (19)0.0235 (2)0.00006 (13)0.01113 (15)0.00050 (13)
S20.0224 (2)0.01129 (19)0.0307 (2)0.00183 (14)0.01520 (16)0.00151 (14)
O10.0207 (5)0.0153 (5)0.0264 (6)0.0009 (4)0.0156 (4)0.0009 (4)
O20.0195 (5)0.0094 (5)0.0276 (6)0.0009 (4)0.0135 (4)0.0018 (4)
O30.0208 (5)0.0106 (5)0.0367 (6)0.0004 (4)0.0161 (5)0.0010 (4)
N10.0136 (6)0.0098 (6)0.0214 (6)0.0017 (5)0.0091 (5)0.0004 (5)
N20.0143 (6)0.0147 (6)0.0195 (6)0.0011 (5)0.0085 (5)0.0010 (5)
C10.0111 (6)0.0128 (7)0.0140 (6)0.0004 (5)0.0027 (5)0.0004 (5)
C20.0143 (6)0.0125 (7)0.0135 (6)0.0020 (5)0.0026 (5)0.0002 (5)
C30.0171 (7)0.0112 (6)0.0160 (7)0.0008 (5)0.0043 (5)0.0001 (5)
C40.0140 (7)0.0180 (7)0.0137 (6)0.0007 (6)0.0048 (5)0.0023 (5)
C50.0163 (7)0.0148 (7)0.0174 (7)0.0018 (5)0.0069 (6)0.0019 (5)
C60.0167 (7)0.0102 (6)0.0173 (7)0.0000 (5)0.0044 (5)0.0005 (5)
C70.0212 (8)0.0198 (7)0.0284 (8)0.0029 (6)0.0162 (6)0.0001 (6)
C80.0125 (7)0.0134 (7)0.0154 (6)0.0001 (5)0.0024 (5)0.0001 (5)
C90.0148 (7)0.0124 (7)0.0164 (6)0.0002 (5)0.0043 (5)0.0018 (5)
C100.0175 (7)0.0136 (7)0.0221 (7)0.0015 (6)0.0073 (6)0.0003 (6)
C110.0207 (8)0.0219 (8)0.0242 (8)0.0059 (6)0.0071 (6)0.0020 (6)
C120.0170 (7)0.0144 (7)0.0242 (7)0.0042 (6)0.0048 (6)0.0018 (6)
C130.0302 (9)0.0225 (8)0.0259 (8)0.0003 (7)0.0121 (7)0.0043 (6)
Geometric parameters (Å, º) top
S1—C91.7485 (14)C4—C51.397 (2)
S1—C101.8115 (15)C5—C61.380 (2)
S2—C91.7678 (15)C5—H5A0.9300
S2—C121.8151 (15)C6—H6A0.9300
O1—C41.3591 (17)C7—H7A0.9600
O1—C71.4276 (17)C7—H7B0.9600
O2—C21.3588 (17)C7—H7C0.9600
O2—H2A0.82 (2)C10—C111.516 (2)
O3—C81.2430 (17)C10—H10A0.9700
N1—C81.3448 (18)C10—H10B0.9700
N1—N21.3804 (16)C11—H11A0.9600
N1—H1A0.836 (19)C11—H11B0.9600
N2—C91.2837 (18)C11—H11C0.9600
C1—C61.3932 (19)C12—C131.519 (2)
C1—C21.4176 (19)C12—H12A0.9700
C1—C81.4827 (19)C12—H12B0.9700
C2—C31.382 (2)C13—H13A0.9600
C3—C41.387 (2)C13—H13B0.9600
C3—H3A0.9300C13—H13C0.9600
C9—S1—C10101.15 (7)H7B—C7—H7C109.5
C9—S2—C12105.35 (7)O3—C8—N1120.63 (13)
C4—O1—C7117.17 (11)O3—C8—C1121.87 (12)
C2—O2—H2A111.7 (14)N1—C8—C1117.49 (12)
C8—N1—N2118.51 (12)N2—C9—S1118.17 (11)
C8—N1—H1A118.4 (13)N2—C9—S2123.89 (11)
N2—N1—H1A122.7 (13)S1—C9—S2117.94 (8)
C9—N2—N1116.59 (12)C11—C10—S1107.85 (10)
C6—C1—C2117.53 (12)C11—C10—H10A110.1
C6—C1—C8116.99 (12)S1—C10—H10A110.1
C2—C1—C8125.48 (12)C11—C10—H10B110.1
O2—C2—C3120.66 (12)S1—C10—H10B110.1
O2—C2—C1118.91 (12)H10A—C10—H10B108.4
C3—C2—C1120.42 (13)C10—C11—H11A109.5
C2—C3—C4120.25 (13)C10—C11—H11B109.5
C2—C3—H3A119.9H11A—C11—H11B109.5
C4—C3—H3A119.9C10—C11—H11C109.5
O1—C4—C3114.98 (12)H11A—C11—H11C109.5
O1—C4—C5124.37 (13)H11B—C11—H11C109.5
C3—C4—C5120.65 (13)C13—C12—S2114.24 (11)
C6—C5—C4118.46 (13)C13—C12—H12A108.7
C6—C5—H5A120.8S2—C12—H12A108.7
C4—C5—H5A120.8C13—C12—H12B108.7
C5—C6—C1122.69 (13)S2—C12—H12B108.7
C5—C6—H6A118.7H12A—C12—H12B107.6
C1—C6—H6A118.7C12—C13—H13A109.5
O1—C7—H7A109.5C12—C13—H13B109.5
O1—C7—H7B109.5H13A—C13—H13B109.5
H7A—C7—H7B109.5C12—C13—H13C109.5
O1—C7—H7C109.5H13A—C13—H13C109.5
H7A—C7—H7C109.5H13B—C13—H13C109.5
C8—N1—N2—C9177.63 (12)C8—C1—C6—C5179.98 (12)
C6—C1—C2—O2179.53 (12)N2—N1—C8—O31.9 (2)
C8—C1—C2—O20.6 (2)N2—N1—C8—C1179.09 (11)
C6—C1—C2—C30.1 (2)C6—C1—C8—O38.5 (2)
C8—C1—C2—C3179.96 (12)C2—C1—C8—O3171.64 (13)
O2—C2—C3—C4179.25 (12)C6—C1—C8—N1170.50 (12)
C1—C2—C3—C40.2 (2)C2—C1—C8—N19.4 (2)
C7—O1—C4—C3179.94 (12)N1—N2—C9—S1179.01 (9)
C7—O1—C4—C50.2 (2)N1—N2—C9—S21.42 (18)
C2—C3—C4—O1179.83 (12)C10—S1—C9—N26.72 (13)
C2—C3—C4—C50.4 (2)C10—S1—C9—S2173.68 (8)
O1—C4—C5—C6179.87 (12)C12—S2—C9—N2170.45 (12)
C3—C4—C5—C60.4 (2)C12—S2—C9—S19.98 (10)
C4—C5—C6—C10.1 (2)C9—S1—C10—C11178.68 (10)
C2—C1—C6—C50.1 (2)C9—S2—C12—C1388.23 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O3i0.82 (2)1.80 (2)2.6118 (15)177 (2)
N1—H1A···O20.836 (19)1.957 (19)2.6384 (16)137.9 (17)
C3—H3A···O3i0.932.523.1975 (18)130
Symmetry code: (i) x+3/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O3i0.82 (2)1.80 (2)2.6118 (15)177 (2)
N1—H1A···O20.836 (19)1.957 (19)2.6384 (16)137.9 (17)
C3—H3A···O3i0.932.523.1975 (18)129.9
Symmetry code: (i) x+3/2, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the Department of Science and Technology (DST), New Delhi, India (Young Scientist Project No. SR/FT/CS-63/2011). We express our sincere thanks to Professor Ray J. Butcher for useful discussions.

References

First citationAli, M. A., Mirza, A. H., Butcher, R. J., Tarafder, M. T. H. & Ali, M. A. (2001). Inorg. Chim. Acta, 320, 1–6.  Google Scholar
First citationAli, M. A., Mirza, A. H., Hamid, M. H. S. A., Bernhardt, P. V., Atchade, O., Song, X., Eng, G. & May, L. (2008). Polyhedron, 27, 977–984.  Web of Science CSD CrossRef CAS Google Scholar
First citationBharti, N., Maurya, M. R., Naqvi, F., Bhattcharya, A., Bhattacharya, S. & Azam, A. (2000). Eur. J. Med. Chem. 35, 481–486.  Web of Science PubMed Google Scholar
First citationBharty, M. K., Bharti, A., Dani, R. K., Dulare, R., Bharati, P. & Singh, N. K. (2012). J. Mol. Struct. 1011, 34–41.  Web of Science CSD CrossRef CAS Google Scholar
First citationButcher, R. J., Jasinski, J. P., Kushawaha, S. K., Bharty, M. K. & Singh, N. K. (2007). Acta Cryst. E63, o4590–o4591.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJasinski, J. P., Butcher, R. J., Kushawaha, S. K., Bharty, M. K. & Singh, N. K. (2010). Acta Cryst. E66, o1899.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2011). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, N. K., Bharty, M. K., Kushawaha, S. K., Singh, U. P. & Tyagi, P. (2010). Polyhedron, 29, 1902–1909.  CSD CrossRef CAS Google Scholar
First citationSingh, M., Bharty, M. K., Singh, A., Kashyap, S., Singh, U. P. & Singh, N. K. (2012). Transition Met. Chem. 37, 695–703.  Web of Science CSD CrossRef CAS Google Scholar
First citationSingh, M., Butcher, R. J. & Singh, N. K. (2008). Polyhedron, 27, 3451–3460.  Web of Science CSD CrossRef CAS Google Scholar
First citationSingh, N. K., Kushawaha, S. K., Bharty, M. K., Dulare, R. & Butcher, R. J. (2009). J. Mol. Struct. 936, 257–263.  Web of Science CSD CrossRef CAS Google Scholar
First citationTarafder, M. T. H., Ali, M. A., Saravanan, N., Weng, W. Y., Kumar, S., Umar-Tsafe, N. & Crouse, K. A. (2000). Transition Met. Chem. 25, 295–298.  Web of Science CrossRef CAS Google Scholar
First citationTayamon, S., Ravoof, T. B. S. A., Tahir, M. I. M., Crouse, K. A. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o1640–o1641.  CSD CrossRef IUCr Journals Google Scholar
First citationWang, X., Deng, Z., Jin, B., Tian, Y. & Lin, X. (2002). Bull. Chem. Soc. Jpn, 75, 1269–1273.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds