organic compounds
N′-[bis(ethylsulfanyl)methylidene]-2-hydroxy-4-methoxybenzohydrazide
ofaDepartment of Chemistry, Banaras Hindu University, Varanasi 221 005, India, and bSchool of Studies in Chemistry, Jiwaji University, Gwalior 474 011, India
*Correspondence e-mail: manoj_vns2005@yahoo.co.in
In the title compound, C13H18N2O3S2, the amide group is in the plane of the benzoyl ring with a C—N—N—C torsion angle of 177.63 (12)°. The two dithioate groups are in an anti conformation [torsion angles = 173.68 (8) and −9.98 (10)°]. An intramolecular N—H⋯O hydrogen bond is observed. In the crystal, an O—H⋯O hydrogen bond and a weak C—H⋯O contact involving the same acceptor atom generate an S(6) ring motif and give rise to chains along [010].
Keywords: crystal structure; dithiocarbazate; hydrogen bonding; ester.
CCDC reference: 1431260
1. Related literature
For S-alkyl/aryl of dithiocarbazates that form metal complexes, see: Ali et al. (2008); Singh et al. (2010, 2012). For their biological properties, see: Bharti et al. (2000). For of potassium salts of N-(aroyl)hydrazine carbodithioates, see: Singh et al. (2008, 2009); Bharty et al. (2012). For bidentate, tridentate and multidentate see: Wang et al. (2002); Tarafder et al. (2000); Ali et al. (2001). For related structures, see: Jasinski et al. (2010); Butcher et al. (2007); Tayamon et al. (2012).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
|
Data collection: CrystalClear-SM Expert (Rigaku, 2011); cell CrystalClear-SM Expert; data reduction: CrystalClear-SM Expert; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
CCDC reference: 1431260
https://doi.org/10.1107/S2056989015021271/jj2195sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989015021271/jj2195Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989015021271/jj2195Isup3.cml
Nitrogen-sulfur donor chelating agents such as dithiocarbazates and their S-alkyl/aryl
have shown interesting biological properties (Bharti et al. (2000). They form large number of metal complexes with novel structural features (Ali et al., 2008; Singh et al., 2010; Singh et al., 2012). The S-alkyl/aryl derived from potassium salts of N-aroylhydrazine carbodithioates have been found to be more stable towardscyclization (Singh et al., 2008) and form 1,3,4-oxadiazole-2-thiones in the presence of acid or base (Singh et al., 2009; Bharty et al., 2012). The above behave as bidentate, tridentate or multidentate chelating agents with hetero donor atoms (Wang et al., 2002; Tarafder et al., 2000; Ali et al., 2001). In view of the importance of the title compound, (I), herein we report its synthesis and crystal structure.In the title compound, C13H18N2O3S2, the sum of the angles around C9 (120.0°) and the S1/C9/S2 bond angle of 117.94 (8)° indicate a nearly planar sp2 hybridized carbon atom (Fig. 2). The amide group is in plane to the benzoyl ring with a C8—N1—N2—C9 torsion angle of 177.63 (12)°, in contrast to the values in related structures (Jasinski et al. (2010); Butcher et al. (2007); Tayamon et al. (2012)). The two diethyl dithioate groups are in an anti conformation with respect to each other, as reflected by torsion angles C10/S1/C9/S2 of 173.68 (8)° and S1/C9/S2/C12 of – 9.98 (10)°. The N2 atom in the amide linkage possesses distorted tetrahedral geometry (C9/N2/N1 = 116.59 (12)° while the N1 atom is almost planar (sum of bond angles 359.6°). The C8—N1 and C9—N2 bond lengths (1.3448 (18) Å and 1.2837 (18) Å) lie between typical C–N and C═N values owing to the extensive delocalization of π electron density over the C9/N2/N1/C8 linkage.
In the crystal, an intermolecular O2–H2A···O3 hydrogen bond and weak intermolecular C3–H3A···O3 contact in bifurcated bonding arrangement (Fig. 3) generate an S(6) ring motif (Table 1). Intramolecular N1–H1A···O2 hydrogen bonds are also observed.
Potassium 2-(2-hydroxy-4-methoxybenzoyl)hydrazinecarbodithioate was prepared by adding carbon disulfide (20.0 mmol, 1.50 mL) to a solution of 4-methoxysalicylic acid hydrazide (20.0 mmol, 3.65 g) and potassium hydroxide (20.0 mmol, 1.12 g) in ethanol (30 mL), then stirring the reaction mixture for 2 h (Fig. 1). The solid separated was filtered off, washed with ethanol and dried in vacuo. Ethyl iodide (20.0 mmol, 1.60 mL) was added drop-wise to a suspension of potassium 2-(2-hydroxy-4-methoxybenzoyl)hydrazinecarbodithioate (10.0 mmol, 2.96 g) in ethanol (20 mL) and stirring the reaction mixture for a period of 3–4 h. The resulting yellow solution was concentrated and acidified with dilute CH3COOH (20% v/v) which yielded a yellow precipitate, washed with water and dried in vacuo. Yellow crystals of (I) (m.p. 427–429 K), suitable for X-ray analysis were obtained by slow evaporation of the methanol solution over a period of 9–10 days (yield 60%): Anal. Calc. for C13H18N2O3S2 (%): C, 49.61; H, 5.77; N, 8.91; S, 20.40. Found: C, 49.24; H, 5.85; N, 8.86; S, 20.12.
Nitrogen-sulfur donor chelating agents such as dithiocarbazates and their S-alkyl/aryl
have shown interesting biological properties (Bharti et al. (2000). They form large number of metal complexes with novel structural features (Ali et al., 2008; Singh et al., 2010; Singh et al., 2012). The S-alkyl/aryl derived from potassium salts of N-aroylhydrazine carbodithioates have been found to be more stable towardscyclization (Singh et al., 2008) and form 1,3,4-oxadiazole-2-thiones in the presence of acid or base (Singh et al., 2009; Bharty et al., 2012). The above behave as bidentate, tridentate or multidentate chelating agents with hetero donor atoms (Wang et al., 2002; Tarafder et al., 2000; Ali et al., 2001). In view of the importance of the title compound, (I), herein we report its synthesis and crystal structure.In the title compound, C13H18N2O3S2, the sum of the angles around C9 (120.0°) and the S1/C9/S2 bond angle of 117.94 (8)° indicate a nearly planar sp2 hybridized carbon atom (Fig. 2). The amide group is in plane to the benzoyl ring with a C8—N1—N2—C9 torsion angle of 177.63 (12)°, in contrast to the values in related structures (Jasinski et al. (2010); Butcher et al. (2007); Tayamon et al. (2012)). The two diethyl dithioate groups are in an anti conformation with respect to each other, as reflected by torsion angles C10/S1/C9/S2 of 173.68 (8)° and S1/C9/S2/C12 of – 9.98 (10)°. The N2 atom in the amide linkage possesses distorted tetrahedral geometry (C9/N2/N1 = 116.59 (12)° while the N1 atom is almost planar (sum of bond angles 359.6°). The C8—N1 and C9—N2 bond lengths (1.3448 (18) Å and 1.2837 (18) Å) lie between typical C–N and C═N values owing to the extensive delocalization of π electron density over the C9/N2/N1/C8 linkage.
In the crystal, an intermolecular O2–H2A···O3 hydrogen bond and weak intermolecular C3–H3A···O3 contact in bifurcated bonding arrangement (Fig. 3) generate an S(6) ring motif (Table 1). Intramolecular N1–H1A···O2 hydrogen bonds are also observed.
Potassium 2-(2-hydroxy-4-methoxybenzoyl)hydrazinecarbodithioate was prepared by adding carbon disulfide (20.0 mmol, 1.50 mL) to a solution of 4-methoxysalicylic acid hydrazide (20.0 mmol, 3.65 g) and potassium hydroxide (20.0 mmol, 1.12 g) in ethanol (30 mL), then stirring the reaction mixture for 2 h (Fig. 1). The solid separated was filtered off, washed with ethanol and dried in vacuo. Ethyl iodide (20.0 mmol, 1.60 mL) was added drop-wise to a suspension of potassium 2-(2-hydroxy-4-methoxybenzoyl)hydrazinecarbodithioate (10.0 mmol, 2.96 g) in ethanol (20 mL) and stirring the reaction mixture for a period of 3–4 h. The resulting yellow solution was concentrated and acidified with dilute CH3COOH (20% v/v) which yielded a yellow precipitate, washed with water and dried in vacuo. Yellow crystals of (I) (m.p. 427–429 K), suitable for X-ray analysis were obtained by slow evaporation of the methanol solution over a period of 9–10 days (yield 60%): Anal. Calc. for C13H18N2O3S2 (%): C, 49.61; H, 5.77; N, 8.91; S, 20.40. Found: C, 49.24; H, 5.85; N, 8.86; S, 20.12.
For S-alkyl/aryl
of dithiocarbazates that form metal complexes, see: Ali et al. (2008); Singh et al. (2010, 2012). For their biological properties, see: Bharti et al. (2000). For of potassium salts of N-(aroyl)hydrazine carbodithioates, see: Singh et al. (2008, 2009); Bharty et al. (2012). For bidentate, tridentate and multidentate see: Wang et al. (2002); Tarafder et al. (2000); Ali et al. (2001). For related structures, see: Jasinski et al. (2010); Butcher et al. (2007); Tayamon et al. (2012). detailsThe H atoms bonded to N1 and O2 were located in a difference Fourier map and refined freely; N1–H1A = 0.836 (19) Å and O2–H2A = 0.82 (2)Å. Other H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93–0.97 Å, and with Uiso(H) = 1.2–1.5Ueq(C).
Data collection: CrystalClear-SM Expert (Rigaku, 2011); cell
CrystalClear-SM Expert (Rigaku, 2011); data reduction: CrystalClear-SM Expert (Rigaku, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C13H18N2O3S2 | F(000) = 664 |
Mr = 314.41 | Dx = 1.423 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 8.479 (2) Å | Cell parameters from 4529 reflections |
b = 12.894 (3) Å | θ = 3.0–27.5° |
c = 13.843 (3) Å | µ = 0.37 mm−1 |
β = 104.156 (10)° | T = 293 K |
V = 1467.5 (6) Å3 | Prism, colorless |
Z = 4 | 0.2 × 0.2 × 0.2 mm |
Rigaku Mercury 375R diffractometer | 2685 independent reflections |
Radiation source: Sealed Tube | 2530 reflections with I > 2σ(I) |
Detector resolution: 13.6612 pixels mm-1 | Rint = 0.027 |
ω scans | θmax = 25.3°, θmin = 3.0° |
Absorption correction: multi-scan (CrystalClear-SM Expert; Rigaku, 2011) | h = −10→10 |
Tmin = 0.938, Tmax = 1.000 | k = −15→15 |
12952 measured reflections | l = −16→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.029 | Hydrogen site location: mixed |
wR(F2) = 0.077 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0391P)2 + 0.8434P] where P = (Fo2 + 2Fc2)/3 |
2685 reflections | (Δ/σ)max < 0.001 |
192 parameters | Δρmax = 0.28 e Å−3 |
0 restraints | Δρmin = −0.27 e Å−3 |
C13H18N2O3S2 | V = 1467.5 (6) Å3 |
Mr = 314.41 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 8.479 (2) Å | µ = 0.37 mm−1 |
b = 12.894 (3) Å | T = 293 K |
c = 13.843 (3) Å | 0.2 × 0.2 × 0.2 mm |
β = 104.156 (10)° |
Rigaku Mercury 375R diffractometer | 2685 independent reflections |
Absorption correction: multi-scan (CrystalClear-SM Expert; Rigaku, 2011) | 2530 reflections with I > 2σ(I) |
Tmin = 0.938, Tmax = 1.000 | Rint = 0.027 |
12952 measured reflections |
R[F2 > 2σ(F2)] = 0.029 | 0 restraints |
wR(F2) = 0.077 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.08 | Δρmax = 0.28 e Å−3 |
2685 reflections | Δρmin = −0.27 e Å−3 |
192 parameters |
Experimental. IR (selected, KBr): 3320 [ν(O–H)], 3276 [ν(N–H)], 1634 [ν(C═ O)], 1094 [ν(N–N)], 876 [ν(C═S)] cm-1. 1H NMR (DMSO-d6); δ [p.p.m.] = 12.26 (s, 1H, OH), 9.77 (s, 1H, NH), 7.80–6.40 (m, 3H, C6H3, phenyl), 3.82 (s, 3H, –OCH3), 3.06 (q, 4H, CH2), 1.44 (t, 6H, CH3). 13C NMR (DMSO-d6) δ [p.p.m.] = 168.3 (C4), 163.3 (C8), 162.0 (C2), 157.9 (C9), 132.1 (C6), 128.2 (C5), 106.8 (C3), 55.2 (C7), 27.1 (C10, C12), 14.4 (C11, C13). |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.18898 (4) | 0.33147 (3) | 0.40368 (3) | 0.01707 (12) | |
S2 | 0.36737 (4) | 0.51413 (3) | 0.34551 (3) | 0.01997 (12) | |
O1 | 1.14563 (12) | 0.43927 (8) | 0.07886 (8) | 0.0191 (2) | |
O2 | 0.73950 (13) | 0.50561 (8) | 0.24846 (8) | 0.0175 (2) | |
H2A | 0.775 (2) | 0.5643 (17) | 0.2477 (15) | 0.034 (5)* | |
O3 | 0.63540 (13) | 0.19012 (8) | 0.25602 (8) | 0.0211 (2) | |
N1 | 0.55185 (14) | 0.35185 (9) | 0.27860 (9) | 0.0141 (2) | |
H1A | 0.571 (2) | 0.4154 (15) | 0.2769 (13) | 0.025 (5)* | |
N2 | 0.43294 (14) | 0.31214 (9) | 0.32068 (9) | 0.0154 (3) | |
C1 | 0.78058 (16) | 0.32991 (10) | 0.20495 (10) | 0.0127 (3) | |
C2 | 0.82146 (17) | 0.43652 (10) | 0.20485 (10) | 0.0136 (3) | |
C3 | 0.94371 (17) | 0.46929 (11) | 0.16183 (10) | 0.0147 (3) | |
H3A | 0.9696 | 0.5394 | 0.1619 | 0.018* | |
C4 | 1.02795 (16) | 0.39806 (11) | 0.11852 (10) | 0.0150 (3) | |
C5 | 0.98999 (17) | 0.29255 (11) | 0.11710 (10) | 0.0157 (3) | |
H5A | 1.0459 | 0.2447 | 0.0877 | 0.019* | |
C6 | 0.86766 (17) | 0.26095 (11) | 0.16032 (10) | 0.0147 (3) | |
H6A | 0.8423 | 0.1907 | 0.1596 | 0.018* | |
C7 | 1.23586 (18) | 0.36914 (12) | 0.03325 (12) | 0.0214 (3) | |
H7A | 1.3118 | 0.4074 | 0.0059 | 0.032* | |
H7B | 1.1626 | 0.3318 | −0.0190 | 0.032* | |
H7C | 1.2938 | 0.3211 | 0.0822 | 0.032* | |
C8 | 0.65227 (16) | 0.28531 (11) | 0.24849 (10) | 0.0139 (3) | |
C9 | 0.34330 (17) | 0.37829 (11) | 0.35163 (10) | 0.0145 (3) | |
C10 | 0.19836 (17) | 0.19372 (11) | 0.37997 (11) | 0.0173 (3) | |
H10A | 0.1809 | 0.1812 | 0.3090 | 0.021* | |
H10B | 0.3044 | 0.1666 | 0.4134 | 0.021* | |
C11 | 0.06688 (18) | 0.14095 (12) | 0.41920 (11) | 0.0220 (3) | |
H11A | 0.0628 | 0.0687 | 0.4021 | 0.033* | |
H11B | −0.0363 | 0.1725 | 0.3900 | 0.033* | |
H11C | 0.0909 | 0.1483 | 0.4903 | 0.033* | |
C12 | 0.19060 (17) | 0.56936 (11) | 0.37838 (11) | 0.0186 (3) | |
H12A | 0.1653 | 0.6353 | 0.3444 | 0.022* | |
H12B | 0.0985 | 0.5237 | 0.3543 | 0.022* | |
C13 | 0.2116 (2) | 0.58643 (13) | 0.48938 (12) | 0.0253 (3) | |
H13A | 0.1168 | 0.6202 | 0.5006 | 0.038* | |
H13B | 0.3054 | 0.6291 | 0.5146 | 0.038* | |
H13C | 0.2260 | 0.5208 | 0.5231 | 0.038* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0167 (2) | 0.01427 (19) | 0.0235 (2) | 0.00006 (13) | 0.01113 (15) | 0.00050 (13) |
S2 | 0.0224 (2) | 0.01129 (19) | 0.0307 (2) | 0.00183 (14) | 0.01520 (16) | 0.00151 (14) |
O1 | 0.0207 (5) | 0.0153 (5) | 0.0264 (6) | −0.0009 (4) | 0.0156 (4) | −0.0009 (4) |
O2 | 0.0195 (5) | 0.0094 (5) | 0.0276 (6) | −0.0009 (4) | 0.0135 (4) | −0.0018 (4) |
O3 | 0.0208 (5) | 0.0106 (5) | 0.0367 (6) | −0.0004 (4) | 0.0161 (5) | 0.0010 (4) |
N1 | 0.0136 (6) | 0.0098 (6) | 0.0214 (6) | −0.0017 (5) | 0.0091 (5) | 0.0004 (5) |
N2 | 0.0143 (6) | 0.0147 (6) | 0.0195 (6) | −0.0011 (5) | 0.0085 (5) | 0.0010 (5) |
C1 | 0.0111 (6) | 0.0128 (7) | 0.0140 (6) | 0.0004 (5) | 0.0027 (5) | 0.0004 (5) |
C2 | 0.0143 (6) | 0.0125 (7) | 0.0135 (6) | 0.0020 (5) | 0.0026 (5) | −0.0002 (5) |
C3 | 0.0171 (7) | 0.0112 (6) | 0.0160 (7) | −0.0008 (5) | 0.0043 (5) | 0.0001 (5) |
C4 | 0.0140 (7) | 0.0180 (7) | 0.0137 (6) | −0.0007 (6) | 0.0048 (5) | 0.0023 (5) |
C5 | 0.0163 (7) | 0.0148 (7) | 0.0174 (7) | 0.0018 (5) | 0.0069 (6) | −0.0019 (5) |
C6 | 0.0167 (7) | 0.0102 (6) | 0.0173 (7) | 0.0000 (5) | 0.0044 (5) | −0.0005 (5) |
C7 | 0.0212 (8) | 0.0198 (7) | 0.0284 (8) | 0.0029 (6) | 0.0162 (6) | −0.0001 (6) |
C8 | 0.0125 (7) | 0.0134 (7) | 0.0154 (6) | −0.0001 (5) | 0.0024 (5) | −0.0001 (5) |
C9 | 0.0148 (7) | 0.0124 (7) | 0.0164 (6) | −0.0002 (5) | 0.0043 (5) | 0.0018 (5) |
C10 | 0.0175 (7) | 0.0136 (7) | 0.0221 (7) | −0.0015 (6) | 0.0073 (6) | −0.0003 (6) |
C11 | 0.0207 (8) | 0.0219 (8) | 0.0242 (8) | −0.0059 (6) | 0.0071 (6) | 0.0020 (6) |
C12 | 0.0170 (7) | 0.0144 (7) | 0.0242 (7) | 0.0042 (6) | 0.0048 (6) | −0.0018 (6) |
C13 | 0.0302 (9) | 0.0225 (8) | 0.0259 (8) | −0.0003 (7) | 0.0121 (7) | −0.0043 (6) |
S1—C9 | 1.7485 (14) | C4—C5 | 1.397 (2) |
S1—C10 | 1.8115 (15) | C5—C6 | 1.380 (2) |
S2—C9 | 1.7678 (15) | C5—H5A | 0.9300 |
S2—C12 | 1.8151 (15) | C6—H6A | 0.9300 |
O1—C4 | 1.3591 (17) | C7—H7A | 0.9600 |
O1—C7 | 1.4276 (17) | C7—H7B | 0.9600 |
O2—C2 | 1.3588 (17) | C7—H7C | 0.9600 |
O2—H2A | 0.82 (2) | C10—C11 | 1.516 (2) |
O3—C8 | 1.2430 (17) | C10—H10A | 0.9700 |
N1—C8 | 1.3448 (18) | C10—H10B | 0.9700 |
N1—N2 | 1.3804 (16) | C11—H11A | 0.9600 |
N1—H1A | 0.836 (19) | C11—H11B | 0.9600 |
N2—C9 | 1.2837 (18) | C11—H11C | 0.9600 |
C1—C6 | 1.3932 (19) | C12—C13 | 1.519 (2) |
C1—C2 | 1.4176 (19) | C12—H12A | 0.9700 |
C1—C8 | 1.4827 (19) | C12—H12B | 0.9700 |
C2—C3 | 1.382 (2) | C13—H13A | 0.9600 |
C3—C4 | 1.387 (2) | C13—H13B | 0.9600 |
C3—H3A | 0.9300 | C13—H13C | 0.9600 |
C9—S1—C10 | 101.15 (7) | H7B—C7—H7C | 109.5 |
C9—S2—C12 | 105.35 (7) | O3—C8—N1 | 120.63 (13) |
C4—O1—C7 | 117.17 (11) | O3—C8—C1 | 121.87 (12) |
C2—O2—H2A | 111.7 (14) | N1—C8—C1 | 117.49 (12) |
C8—N1—N2 | 118.51 (12) | N2—C9—S1 | 118.17 (11) |
C8—N1—H1A | 118.4 (13) | N2—C9—S2 | 123.89 (11) |
N2—N1—H1A | 122.7 (13) | S1—C9—S2 | 117.94 (8) |
C9—N2—N1 | 116.59 (12) | C11—C10—S1 | 107.85 (10) |
C6—C1—C2 | 117.53 (12) | C11—C10—H10A | 110.1 |
C6—C1—C8 | 116.99 (12) | S1—C10—H10A | 110.1 |
C2—C1—C8 | 125.48 (12) | C11—C10—H10B | 110.1 |
O2—C2—C3 | 120.66 (12) | S1—C10—H10B | 110.1 |
O2—C2—C1 | 118.91 (12) | H10A—C10—H10B | 108.4 |
C3—C2—C1 | 120.42 (13) | C10—C11—H11A | 109.5 |
C2—C3—C4 | 120.25 (13) | C10—C11—H11B | 109.5 |
C2—C3—H3A | 119.9 | H11A—C11—H11B | 109.5 |
C4—C3—H3A | 119.9 | C10—C11—H11C | 109.5 |
O1—C4—C3 | 114.98 (12) | H11A—C11—H11C | 109.5 |
O1—C4—C5 | 124.37 (13) | H11B—C11—H11C | 109.5 |
C3—C4—C5 | 120.65 (13) | C13—C12—S2 | 114.24 (11) |
C6—C5—C4 | 118.46 (13) | C13—C12—H12A | 108.7 |
C6—C5—H5A | 120.8 | S2—C12—H12A | 108.7 |
C4—C5—H5A | 120.8 | C13—C12—H12B | 108.7 |
C5—C6—C1 | 122.69 (13) | S2—C12—H12B | 108.7 |
C5—C6—H6A | 118.7 | H12A—C12—H12B | 107.6 |
C1—C6—H6A | 118.7 | C12—C13—H13A | 109.5 |
O1—C7—H7A | 109.5 | C12—C13—H13B | 109.5 |
O1—C7—H7B | 109.5 | H13A—C13—H13B | 109.5 |
H7A—C7—H7B | 109.5 | C12—C13—H13C | 109.5 |
O1—C7—H7C | 109.5 | H13A—C13—H13C | 109.5 |
H7A—C7—H7C | 109.5 | H13B—C13—H13C | 109.5 |
C8—N1—N2—C9 | 177.63 (12) | C8—C1—C6—C5 | 179.98 (12) |
C6—C1—C2—O2 | −179.53 (12) | N2—N1—C8—O3 | 1.9 (2) |
C8—C1—C2—O2 | 0.6 (2) | N2—N1—C8—C1 | −179.09 (11) |
C6—C1—C2—C3 | −0.1 (2) | C6—C1—C8—O3 | 8.5 (2) |
C8—C1—C2—C3 | −179.96 (12) | C2—C1—C8—O3 | −171.64 (13) |
O2—C2—C3—C4 | 179.25 (12) | C6—C1—C8—N1 | −170.50 (12) |
C1—C2—C3—C4 | −0.2 (2) | C2—C1—C8—N1 | 9.4 (2) |
C7—O1—C4—C3 | −179.94 (12) | N1—N2—C9—S1 | 179.01 (9) |
C7—O1—C4—C5 | −0.2 (2) | N1—N2—C9—S2 | −1.42 (18) |
C2—C3—C4—O1 | −179.83 (12) | C10—S1—C9—N2 | −6.72 (13) |
C2—C3—C4—C5 | 0.4 (2) | C10—S1—C9—S2 | 173.68 (8) |
O1—C4—C5—C6 | 179.87 (12) | C12—S2—C9—N2 | 170.45 (12) |
C3—C4—C5—C6 | −0.4 (2) | C12—S2—C9—S1 | −9.98 (10) |
C4—C5—C6—C1 | 0.1 (2) | C9—S1—C10—C11 | −178.68 (10) |
C2—C1—C6—C5 | 0.1 (2) | C9—S2—C12—C13 | 88.23 (12) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2A···O3i | 0.82 (2) | 1.80 (2) | 2.6118 (15) | 177 (2) |
N1—H1A···O2 | 0.836 (19) | 1.957 (19) | 2.6384 (16) | 137.9 (17) |
C3—H3A···O3i | 0.93 | 2.52 | 3.1975 (18) | 130 |
Symmetry code: (i) −x+3/2, y+1/2, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2A···O3i | 0.82 (2) | 1.80 (2) | 2.6118 (15) | 177 (2) |
N1—H1A···O2 | 0.836 (19) | 1.957 (19) | 2.6384 (16) | 137.9 (17) |
C3—H3A···O3i | 0.93 | 2.52 | 3.1975 (18) | 129.9 |
Symmetry code: (i) −x+3/2, y+1/2, −z+1/2. |
Acknowledgements
This work was supported by the Department of Science and Technology (DST), New Delhi, India (Young Scientist Project No. SR/FT/CS-63/2011). We express our sincere thanks to Professor Ray J. Butcher for useful discussions.
References
Ali, M. A., Mirza, A. H., Butcher, R. J., Tarafder, M. T. H. & Ali, M. A. (2001). Inorg. Chim. Acta, 320, 1–6. Google Scholar
Ali, M. A., Mirza, A. H., Hamid, M. H. S. A., Bernhardt, P. V., Atchade, O., Song, X., Eng, G. & May, L. (2008). Polyhedron, 27, 977–984. Web of Science CSD CrossRef CAS Google Scholar
Bharti, N., Maurya, M. R., Naqvi, F., Bhattcharya, A., Bhattacharya, S. & Azam, A. (2000). Eur. J. Med. Chem. 35, 481–486. Web of Science PubMed Google Scholar
Bharty, M. K., Bharti, A., Dani, R. K., Dulare, R., Bharati, P. & Singh, N. K. (2012). J. Mol. Struct. 1011, 34–41. Web of Science CSD CrossRef CAS Google Scholar
Butcher, R. J., Jasinski, J. P., Kushawaha, S. K., Bharty, M. K. & Singh, N. K. (2007). Acta Cryst. E63, o4590–o4591. Web of Science CSD CrossRef IUCr Journals Google Scholar
Jasinski, J. P., Butcher, R. J., Kushawaha, S. K., Bharty, M. K. & Singh, N. K. (2010). Acta Cryst. E66, o1899. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rigaku (2011). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Singh, N. K., Bharty, M. K., Kushawaha, S. K., Singh, U. P. & Tyagi, P. (2010). Polyhedron, 29, 1902–1909. CSD CrossRef CAS Google Scholar
Singh, M., Bharty, M. K., Singh, A., Kashyap, S., Singh, U. P. & Singh, N. K. (2012). Transition Met. Chem. 37, 695–703. Web of Science CSD CrossRef CAS Google Scholar
Singh, M., Butcher, R. J. & Singh, N. K. (2008). Polyhedron, 27, 3451–3460. Web of Science CSD CrossRef CAS Google Scholar
Singh, N. K., Kushawaha, S. K., Bharty, M. K., Dulare, R. & Butcher, R. J. (2009). J. Mol. Struct. 936, 257–263. Web of Science CSD CrossRef CAS Google Scholar
Tarafder, M. T. H., Ali, M. A., Saravanan, N., Weng, W. Y., Kumar, S., Umar-Tsafe, N. & Crouse, K. A. (2000). Transition Met. Chem. 25, 295–298. Web of Science CrossRef CAS Google Scholar
Tayamon, S., Ravoof, T. B. S. A., Tahir, M. I. M., Crouse, K. A. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o1640–o1641. CSD CrossRef IUCr Journals Google Scholar
Wang, X., Deng, Z., Jin, B., Tian, Y. & Lin, X. (2002). Bull. Chem. Soc. Jpn, 75, 1269–1273. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.