organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 1-{3-(4-methyl­phen­yl)-5-[(E)-2-phenyl­ethen­yl]-4,5-di­hydro-1H-pyrazol-1-yl}ethan-1-one

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia, and bDepartment of PG Studies in Chemistry, Alva's College, Moodbidri, Karnataka 574 227, India
*Correspondence e-mail: farook@usm.my/farookdr@gmail.com

Edited by S. V. Lindeman, Marquette University, USA (Received 21 November 2015; accepted 24 December 2015; online 31 December 2015)

The title compound, C20H20N2O, was studied as a part of our work on pyrazoline derivatives. It represents a trans-isomer. The central pyrazoline ring adopts an envelope conformation with the asymmetric C atom having the largest deviation of 0.107 (1) Å from the mean plane. It forms dihedral angles of 6.2 (1) and 86.4 (1)° with the adjacent p-tolyl and styrene groups, respectively. In the crystal, C—H⋯O inter­actions link mol­ecules into infinite chains along the c axis.

1. Related literature

For background to pyrazoles, see: Samshuddin et al. (2012[Samshuddin, S., Narayana, B., Sarojini, B. K., Khan, M. T. H., Yathirajan, H. S., Raj, C. G. D. & Raghavendra, R. (2012). Med. Chem. Res. 21, 2012-2022.]); Wiley et al. (1958[Wiley, R. H., Jarboe, C. H., Hayes, F. N., Hansbury, E., Nielsen, J. T., Callahan, P. X. & Sellars, M. (1958). J. Org. Chem. 23, 732-738.]); Sarojini et al. (2010[Sarojini, B. K., Vidyagayatri, M., Darshanraj, C. G., Bharath, B. R. & Manjunatha, H. (2010). Lett. Drug. Des. Discov. 7, 214-224.]); Lu et al.(1999[Lu, Z. Y., Zhu, W. G., Jiang, Q. & Xie, M. G. (1999). Chin. Chem. Lett. 10, 679-682.]). For crystal structures of pyrazoline-derived chalcones, see: Jasinski et al. (2012[Jasinski, J. P., Golen, J. A., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2012). Crystals, 2, 1108-1115.]); Baktır et al. (2011[Baktır, Z., Akkurt, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011). Acta Cryst. E67, o1292-o1293.]). For stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C20H20N2O

  • Mr = 304.38

  • Orthorhombic, P c c n

  • a = 19.872 (2) Å

  • b = 20.304 (2) Å

  • c = 8.2924 (8) Å

  • V = 3345.9 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.38 × 0.31 × 0.17 mm

2.2. Data collection

  • Bruker APEX DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.914, Tmax = 0.960

  • 60332 measured reflections

  • 5482 independent reflections

  • 4234 reflections with I > 2σ(I)

  • Rint = 0.041

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.146

  • S = 1.04

  • 5482 reflections

  • 210 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C19—H19C⋯O1i 0.98 2.51 3.4416 (18) 158
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Introduction top

Pyrazoline derivatives exhibit numerous pharmacological activities including anti­oxidant, anti­amoebic, anti-inflammatory, analgesic, anti­microbial, anti depressant and anti­cancer activities (Sarojini et al., 2010; Samshuddin et al., 2012). Many 1,3,5-tri­aryl-2-pyrazolines were used as scintillation solutes (Wiley et al. ,1958) and as fluorescent agents (Lu et al., 1999). The crystal structures of some pyrazolines containing N-alkyl chain viz., 3,5-bis­(4-fluoro­phenyl)-4,5-di­hydro-1H-pyrazole-1-carbaldehyde (Baktir et al., 2011), 3,5-bis­(4-fluoro­phenyl)-4,5-di­hydro-1H-pyrazole-1-carboxamide and 3,5-bis­(4-fluoro­phenyl)-4,5-di­hydro-1H-pyrazole-1-carbo­thio­amide (Jasinski et al., 2012) had been reported. In view of the importance of pyrazolines, the title compound (I) is prepared and its crystal structure is reported.

Experimental top

A mixture of (2E,4E)-1-(4-methyl­phenyl)-5-phenyl­penta-2,4-dien-1-one (2.48 g, 0.01 mol) and hydrazine hydrate (1 ml) in 30 ml acetic acid was refluxed for 6 h.The reaction mixture was cooled and poured into 100 ml ice-cold water. The precipitate was collected by filtration and purified by recrystallization from ethanol.

Synthesis and crystallization top

Single crystals were grown from ethanol by slow evaporation method. m.p.: 386-390 K .Yield: 71 %.

Refinement top

All H atoms were placed in calculated positions and refined with riding model [Uiso (H) = 1.2 × Ueq(C methyl­ene or methine) or 1.5 × Ueq (C methyl), C—H = 0.95 Å, 0.98 Å, 0.99 Å and 1.00 Å]. A rotating group model (AFIX 137) is applied to methyl groups.

related literature top

For background of pyrazoles, see: Samshuddin et al. (2012); Wiley et al. (1958); Sarojini et al. (2010); Lu et al. (1999). For crystal structures of pyrazoline derived chalcone, see: Jasinski et al. (2012); Baktir et al. (2011). For stability of the temperature controller used for data collection, see: Cosier & Glazer (1986). For ring conformations, see: Cremer & Pople (1975).

Results and discussion top

The asymmetric unit of (I) consists of a single crystallographic independent molecule as shown in Fig. 1. The C6/C7/C8/C9 carbon chains adopts a trans configuration with respect to C7—C8 double bond. The pyrazoline ring (N1/N2/C9/C10/C11) adopts an envelope conformation on atom C9 [Q2 = 0.1772 (12) Å and φ2 = 317.3 (4)°] with maximum deviation of 0.107 (1) Å from its mean plane. The p-tolyl ring and styrene group make dihedral angles of 6.19 (7)° and 86.39 (7)° with central pyrazoline ring. In crystal, molecules are connected by weak C—H···O hydrogen bond into one-dimensional chains (Fig. 2), propagating along crystallographic c-axis.

Related literature top

For background to pyrazoles, see: Samshuddin et al. (2012); Wiley et al. (1958); Sarojini et al. (2010); Lu et al.(1999). For crystal structures of pyrazoline-derived chalcones, see: Jasinski et al. (2012); Baktir et al. (2011). For stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Structure description top

Pyrazoline derivatives exhibit numerous pharmacological activities including anti­oxidant, anti­amoebic, anti-inflammatory, analgesic, anti­microbial, anti depressant and anti­cancer activities (Sarojini et al., 2010; Samshuddin et al., 2012). Many 1,3,5-tri­aryl-2-pyrazolines were used as scintillation solutes (Wiley et al. ,1958) and as fluorescent agents (Lu et al., 1999). The crystal structures of some pyrazolines containing N-alkyl chain viz., 3,5-bis­(4-fluoro­phenyl)-4,5-di­hydro-1H-pyrazole-1-carbaldehyde (Baktir et al., 2011), 3,5-bis­(4-fluoro­phenyl)-4,5-di­hydro-1H-pyrazole-1-carboxamide and 3,5-bis­(4-fluoro­phenyl)-4,5-di­hydro-1H-pyrazole-1-carbo­thio­amide (Jasinski et al., 2012) had been reported. In view of the importance of pyrazolines, the title compound (I) is prepared and its crystal structure is reported.

A mixture of (2E,4E)-1-(4-methyl­phenyl)-5-phenyl­penta-2,4-dien-1-one (2.48 g, 0.01 mol) and hydrazine hydrate (1 ml) in 30 ml acetic acid was refluxed for 6 h.The reaction mixture was cooled and poured into 100 ml ice-cold water. The precipitate was collected by filtration and purified by recrystallization from ethanol.

For background of pyrazoles, see: Samshuddin et al. (2012); Wiley et al. (1958); Sarojini et al. (2010); Lu et al. (1999). For crystal structures of pyrazoline derived chalcone, see: Jasinski et al. (2012); Baktir et al. (2011). For stability of the temperature controller used for data collection, see: Cosier & Glazer (1986). For ring conformations, see: Cremer & Pople (1975).

The asymmetric unit of (I) consists of a single crystallographic independent molecule as shown in Fig. 1. The C6/C7/C8/C9 carbon chains adopts a trans configuration with respect to C7—C8 double bond. The pyrazoline ring (N1/N2/C9/C10/C11) adopts an envelope conformation on atom C9 [Q2 = 0.1772 (12) Å and φ2 = 317.3 (4)°] with maximum deviation of 0.107 (1) Å from its mean plane. The p-tolyl ring and styrene group make dihedral angles of 6.19 (7)° and 86.39 (7)° with central pyrazoline ring. In crystal, molecules are connected by weak C—H···O hydrogen bond into one-dimensional chains (Fig. 2), propagating along crystallographic c-axis.

For background to pyrazoles, see: Samshuddin et al. (2012); Wiley et al. (1958); Sarojini et al. (2010); Lu et al.(1999). For crystal structures of pyrazoline-derived chalcones, see: Jasinski et al. (2012); Baktir et al. (2011). For stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Synthesis and crystallization top

Single crystals were grown from ethanol by slow evaporation method. m.p.: 386-390 K .Yield: 71 %.

Refinement details top

All H atoms were placed in calculated positions and refined with riding model [Uiso (H) = 1.2 × Ueq(C methyl­ene or methine) or 1.5 × Ueq (C methyl), C—H = 0.95 Å, 0.98 Å, 0.99 Å and 1.00 Å]. A rotating group model (AFIX 137) is applied to methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound (I) with atom labels and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of title compound (I) viewed along the a-axis.
1-{3-(4-Methylphenyl)-5-[(E)-2-phenylethenyl]-4,5-dihydro-1H-pyrazol-1-yl}ethan-1-one top
Crystal data top
C20H20N2ODx = 1.208 Mg m3
Mr = 304.38Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PccnCell parameters from 9875 reflections
a = 19.872 (2) Åθ = 2.8–31.0°
b = 20.304 (2) ŵ = 0.08 mm1
c = 8.2924 (8) ÅT = 100 K
V = 3345.9 (6) Å3Block, colourless
Z = 80.38 × 0.31 × 0.17 mm
F(000) = 1296
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
5482 independent reflections
Radiation source: fine-focus sealed tube4234 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
φ and ω scansθmax = 31.4°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2828
Tmin = 0.914, Tmax = 0.960k = 2929
60332 measured reflectionsl = 1212
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.146 w = 1/[σ2(Fo2) + (0.0673P)2 + 1.4451P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
5482 reflectionsΔρmax = 0.37 e Å3
210 parametersΔρmin = 0.27 e Å3
Crystal data top
C20H20N2OV = 3345.9 (6) Å3
Mr = 304.38Z = 8
Orthorhombic, PccnMo Kα radiation
a = 19.872 (2) ŵ = 0.08 mm1
b = 20.304 (2) ÅT = 100 K
c = 8.2924 (8) Å0.38 × 0.31 × 0.17 mm
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
5482 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4234 reflections with I > 2σ(I)
Tmin = 0.914, Tmax = 0.960Rint = 0.041
60332 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.146H-atom parameters constrained
S = 1.04Δρmax = 0.37 e Å3
5482 reflectionsΔρmin = 0.27 e Å3
210 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.07312 (5)0.73524 (5)0.64575 (12)0.0353 (2)
N10.00679 (5)0.64670 (5)0.61909 (12)0.0251 (2)
N20.01613 (5)0.58545 (5)0.66989 (12)0.0240 (2)
C10.18906 (6)0.81809 (7)0.65242 (17)0.0309 (3)
H1A0.19380.77410.69000.037*
C20.23498 (6)0.86562 (7)0.70037 (18)0.0347 (3)
H2A0.27070.85410.77120.042*
C30.22917 (7)0.92989 (7)0.64565 (16)0.0339 (3)
H3A0.26100.96220.67800.041*
C40.17664 (7)0.94670 (7)0.54333 (16)0.0332 (3)
H4A0.17240.99070.50550.040*
C50.13015 (7)0.89918 (7)0.49601 (15)0.0285 (3)
H5A0.09420.91120.42660.034*
C60.13563 (6)0.83413 (6)0.54917 (14)0.0244 (2)
C70.08568 (6)0.78511 (6)0.49662 (14)0.0248 (2)
H7A0.05220.79980.42320.030*
C80.08281 (6)0.72257 (7)0.54150 (15)0.0275 (2)
H8A0.11510.70790.61800.033*
C90.03274 (6)0.67307 (6)0.48142 (14)0.0258 (2)
H9A0.00290.69220.39640.031*
C100.06773 (7)0.61000 (6)0.42244 (15)0.0292 (3)
H10A0.04560.59220.32470.035*
H10B0.11590.61790.39930.035*
C110.05888 (6)0.56455 (6)0.56448 (14)0.0232 (2)
C120.09411 (6)0.50166 (6)0.58275 (14)0.0234 (2)
C130.08359 (7)0.46040 (7)0.71578 (16)0.0311 (3)
H13A0.05270.47310.79750.037*
C140.11770 (8)0.40148 (7)0.72904 (18)0.0360 (3)
H14A0.10930.37390.81940.043*
C150.16411 (7)0.38152 (6)0.61306 (18)0.0315 (3)
C160.17496 (7)0.42273 (7)0.48225 (17)0.0317 (3)
H16A0.20680.41040.40230.038*
C170.14018 (6)0.48161 (6)0.46596 (16)0.0288 (3)
H17A0.14790.50860.37410.035*
C180.05635 (6)0.68098 (6)0.69553 (15)0.0276 (2)
C190.08727 (7)0.64978 (7)0.84270 (17)0.0339 (3)
H19A0.07180.60410.85190.051*
H19B0.13640.65050.83300.051*
H19C0.07370.67440.93900.051*
C200.20029 (8)0.31682 (7)0.6276 (2)0.0421 (4)
H20A0.18840.29590.73030.063*
H20B0.24900.32430.62370.063*
H20C0.18710.28800.53830.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0345 (5)0.0360 (5)0.0353 (5)0.0065 (4)0.0006 (4)0.0001 (4)
N10.0237 (5)0.0295 (5)0.0222 (5)0.0003 (4)0.0008 (4)0.0024 (4)
N20.0230 (4)0.0269 (5)0.0220 (4)0.0028 (4)0.0009 (4)0.0010 (4)
C10.0213 (5)0.0345 (6)0.0368 (7)0.0047 (5)0.0022 (5)0.0026 (5)
C20.0192 (5)0.0454 (8)0.0395 (7)0.0026 (5)0.0021 (5)0.0081 (6)
C30.0270 (6)0.0434 (7)0.0313 (6)0.0069 (5)0.0075 (5)0.0094 (5)
C40.0396 (7)0.0344 (7)0.0255 (6)0.0059 (5)0.0057 (5)0.0008 (5)
C50.0307 (6)0.0338 (6)0.0211 (5)0.0004 (5)0.0010 (4)0.0007 (5)
C60.0203 (5)0.0321 (6)0.0207 (5)0.0016 (4)0.0032 (4)0.0014 (4)
C70.0212 (5)0.0323 (6)0.0210 (5)0.0016 (4)0.0009 (4)0.0014 (4)
C80.0224 (5)0.0358 (6)0.0244 (5)0.0011 (5)0.0027 (4)0.0053 (5)
C90.0241 (5)0.0320 (6)0.0214 (5)0.0003 (4)0.0001 (4)0.0049 (4)
C100.0304 (6)0.0334 (6)0.0237 (5)0.0011 (5)0.0055 (5)0.0045 (5)
C110.0209 (5)0.0277 (5)0.0212 (5)0.0043 (4)0.0013 (4)0.0012 (4)
C120.0215 (5)0.0255 (5)0.0233 (5)0.0052 (4)0.0011 (4)0.0002 (4)
C130.0363 (7)0.0303 (6)0.0267 (6)0.0032 (5)0.0050 (5)0.0017 (5)
C140.0461 (8)0.0291 (6)0.0327 (7)0.0024 (6)0.0013 (6)0.0054 (5)
C150.0290 (6)0.0248 (6)0.0406 (7)0.0038 (5)0.0060 (5)0.0015 (5)
C160.0260 (6)0.0313 (6)0.0378 (7)0.0027 (5)0.0031 (5)0.0045 (5)
C170.0266 (6)0.0305 (6)0.0293 (6)0.0039 (5)0.0040 (5)0.0010 (5)
C180.0245 (5)0.0341 (6)0.0242 (5)0.0021 (5)0.0011 (4)0.0041 (5)
C190.0323 (6)0.0402 (7)0.0291 (6)0.0032 (5)0.0081 (5)0.0042 (5)
C200.0385 (8)0.0285 (6)0.0593 (10)0.0013 (6)0.0065 (7)0.0007 (6)
Geometric parameters (Å, º) top
O1—C181.2228 (16)C10—C111.5066 (17)
N1—C181.3625 (16)C10—H10A0.9900
N1—N21.3898 (14)C10—H10B0.9900
N1—C91.4855 (15)C11—C121.4642 (17)
N2—C111.2907 (15)C12—C171.3934 (17)
C1—C21.3865 (19)C12—C131.4008 (17)
C1—C61.4023 (17)C13—C141.3795 (19)
C1—H1A0.9500C13—H13A0.9500
C2—C31.386 (2)C14—C151.393 (2)
C2—H2A0.9500C14—H14A0.9500
C3—C41.388 (2)C15—C161.387 (2)
C3—H3A0.9500C15—C201.5025 (19)
C4—C51.3923 (19)C16—C171.3876 (19)
C4—H4A0.9500C16—H16A0.9500
C5—C61.3967 (18)C17—H17A0.9500
C5—H5A0.9500C18—C191.5061 (18)
C6—C71.4717 (17)C19—H19A0.9800
C7—C81.3244 (17)C19—H19B0.9800
C7—H7A0.9500C19—H19C0.9800
C8—C91.4995 (17)C20—H20A0.9800
C8—H8A0.9500C20—H20B0.9800
C9—C101.5370 (18)C20—H20C0.9800
C9—H9A1.0000
C18—N1—N2123.57 (10)C9—C10—H10B111.4
C18—N1—C9123.76 (10)H10A—C10—H10B109.2
N2—N1—C9112.47 (9)N2—C11—C12122.10 (11)
C11—N2—N1107.73 (10)N2—C11—C10113.89 (11)
C2—C1—C6120.78 (13)C12—C11—C10124.00 (10)
C2—C1—H1A119.6C17—C12—C13118.08 (12)
C6—C1—H1A119.6C17—C12—C11119.80 (11)
C3—C2—C1120.43 (13)C13—C12—C11122.11 (11)
C3—C2—H2A119.8C14—C13—C12120.53 (13)
C1—C2—H2A119.8C14—C13—H13A119.7
C2—C3—C4119.62 (13)C12—C13—H13A119.7
C2—C3—H3A120.2C13—C14—C15121.52 (13)
C4—C3—H3A120.2C13—C14—H14A119.2
C3—C4—C5120.07 (13)C15—C14—H14A119.2
C3—C4—H4A120.0C16—C15—C14117.87 (12)
C5—C4—H4A120.0C16—C15—C20121.06 (13)
C4—C5—C6120.97 (12)C14—C15—C20121.06 (13)
C4—C5—H5A119.5C15—C16—C17121.24 (12)
C6—C5—H5A119.5C15—C16—H16A119.4
C5—C6—C1118.13 (12)C17—C16—H16A119.4
C5—C6—C7119.57 (11)C16—C17—C12120.75 (12)
C1—C6—C7122.29 (12)C16—C17—H17A119.6
C8—C7—C6126.46 (11)C12—C17—H17A119.6
C8—C7—H7A116.8O1—C18—N1120.02 (12)
C6—C7—H7A116.8O1—C18—C19122.77 (12)
C7—C8—C9125.30 (11)N1—C18—C19117.19 (12)
C7—C8—H8A117.3C18—C19—H19A109.5
C9—C8—H8A117.3C18—C19—H19B109.5
N1—C9—C8109.70 (10)H19A—C19—H19B109.5
N1—C9—C10100.58 (9)C18—C19—H19C109.5
C8—C9—C10111.35 (10)H19A—C19—H19C109.5
N1—C9—H9A111.6H19B—C19—H19C109.5
C8—C9—H9A111.6C15—C20—H20A109.5
C10—C9—H9A111.6C15—C20—H20B109.5
C11—C10—C9102.04 (10)H20A—C20—H20B109.5
C11—C10—H10A111.4C15—C20—H20C109.5
C9—C10—H10A111.4H20A—C20—H20C109.5
C11—C10—H10B111.4H20B—C20—H20C109.5
C18—N1—N2—C11174.87 (11)N1—N2—C11—C102.35 (14)
C9—N1—N2—C1110.15 (13)C9—C10—C11—N212.88 (14)
C6—C1—C2—C30.6 (2)C9—C10—C11—C12168.09 (11)
C1—C2—C3—C40.6 (2)N2—C11—C12—C17179.52 (11)
C2—C3—C4—C50.0 (2)C10—C11—C12—C171.53 (18)
C3—C4—C5—C60.45 (19)N2—C11—C12—C130.05 (18)
C4—C5—C6—C10.41 (18)C10—C11—C12—C13179.00 (12)
C4—C5—C6—C7179.89 (11)C17—C12—C13—C140.50 (19)
C2—C1—C6—C50.11 (19)C11—C12—C13—C14179.97 (12)
C2—C1—C6—C7179.58 (12)C12—C13—C14—C151.0 (2)
C5—C6—C7—C8177.26 (13)C13—C14—C15—C160.3 (2)
C1—C6—C7—C82.4 (2)C13—C14—C15—C20179.17 (13)
C6—C7—C8—C9177.71 (11)C14—C15—C16—C170.8 (2)
C18—N1—C9—C874.84 (14)C20—C15—C16—C17178.07 (13)
N2—N1—C9—C8100.12 (12)C15—C16—C17—C121.3 (2)
C18—N1—C9—C10167.76 (11)C13—C12—C17—C160.58 (18)
N2—N1—C9—C1017.27 (12)C11—C12—C17—C16178.90 (11)
C7—C8—C9—N1120.45 (14)N2—N1—C18—O1178.64 (11)
C7—C8—C9—C10129.11 (13)C9—N1—C18—O14.22 (18)
N1—C9—C10—C1116.55 (11)N2—N1—C18—C190.05 (17)
C8—C9—C10—C1199.63 (11)C9—N1—C18—C19174.47 (11)
N1—N2—C11—C12178.60 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19C···O1i0.982.513.4416 (18)158
Symmetry code: (i) x, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19C···O1i0.98002.51003.4416 (18)158.00
Symmetry code: (i) x, y+3/2, z+1/2.
 

Acknowledgements

FA would like to thank University Sains Malaysia for the RU research Grant (No. PKIMIA/846017 and 1001/PKIMIA/811269) which partly supported the work. SS thanks to Alva's Education Foundation, Moodbidri, for the research facilities.

References

First citationBaktır, Z., Akkurt, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011). Acta Cryst. E67, o1292–o1293.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJasinski, J. P., Golen, J. A., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2012). Crystals, 2, 1108–1115.  Web of Science CrossRef CAS Google Scholar
First citationLu, Z. Y., Zhu, W. G., Jiang, Q. & Xie, M. G. (1999). Chin. Chem. Lett. 10, 679–682.  CAS Google Scholar
First citationSamshuddin, S., Narayana, B., Sarojini, B. K., Khan, M. T. H., Yathirajan, H. S., Raj, C. G. D. & Raghavendra, R. (2012). Med. Chem. Res. 21, 2012–2022.  Web of Science CSD CrossRef CAS Google Scholar
First citationSarojini, B. K., Vidyagayatri, M., Darshanraj, C. G., Bharath, B. R. & Manjunatha, H. (2010). Lett. Drug. Des. Discov. 7, 214–224.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWiley, R. H., Jarboe, C. H., Hayes, F. N., Hansbury, E., Nielsen, J. T., Callahan, P. X. & Sellars, M. (1958). J. Org. Chem. 23, 732–738.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds