research communications
Crystal structures of bis- and hexakis[(6,6′-dihydroxybipyridine)copper(II)] nitrate coordination complexes
aDepartment of Chemistry, University of Alabama, 250 Hackberry Lane, Tuscaloosa, AL 35487-0336, USA, bDepartment of Chemistry, Drexel University, 3141 Chestnut St., Philadelphia, PA 19104, USA, cDepartment of Chemistry, Illinois State University, Campus Box 4160, Normal, IL 61790-4160, USA, and dDepartment of Chemistry, Youngstown State University, One University Plaza, Youngstown, OH 44555, USA
*Correspondence e-mail: etpapish@ua.edu
Two multinuclear complexes synthesized from Cu(NO3)2 and 6,6′-dihydroxybipyridine (dhbp) exhibit bridging nitrate and hydroxide ligands. The dinuclear complex (6,6′-dihydroxybipyridine-2κ2N,N′)[μ-6-(6-hydroxypyridin-2-yl)pyridin-2-olato-1:2κ3N,N′:O2](μ-hydroxido-1:2κ2O:O′)(μ-nitrato-1:2κ2O:O′)(nitrato-1κO)dicopper(II), [Cu2(C10H7N2O2)(OH)(NO3)2(C10H8N2O2)] or [Cu(6-OH-6′-O-bpy)(NO3)(μ-OH)(μ-NO3)Cu(6,6′-dhbp)], (I), with a 2:1 ratio of nitrate to hydroxide anions and one partially deprotonated dhbp ligand, forms from a water–ethanol mixture at neutral pH. The hexanuclear complex bis(μ3-bipyridine-2,2′-diolato-κ3O:N,N′:O′)tetrakis(6,6′-dihydroxybipyridine-κ2N,N′)tetrakis(μ-hydroxido-κ2O:O′)bis(methanol-κO)tetrakis(μ-nitrato-κ2O:O′)hexacopper(II), [Cu6(C10H6N2O2)2(CH4O)2(OH)4(NO3)4(C10H8N2O2)4] or [Cu(6,6′-dhbp)(μ-NO3)2(μ-OH)Cu(6,6′-O-bpy)(μ-OH)Cu(6,6′dhbp)(CH3OH)]2, (II), with a 1:1 NO3–OH ratio and two fully protonated and fully deprotonated dhbp ligands, was obtained by methanol recrystallization of material obtained at pH 3. Complex (II) lies across an inversion center. Complexes (I) and (II) both display intramolecular O—H⋯O hydrogen bonding. Intermolecular O—H⋯O hydrogen bonding links symmetry-related molecules forming chains along [100] for complex (I) with π-stacking along [010] and [001]. Complex (II) forms intermolecular O—H⋯O hydrogen-bonded chains along [010] with π-stacking along [100] and [001].
1. Chemical context
Catalytic processes in nature are often facilitated by enzymes that feature transition metals in their active sites. Many of these reactions would be of tremendous interest could they be copied using simpler and technologically feasible conditions. One such process is water oxidation as observed in photosynthesis, and the use of transition metal complexes to mimic the reactivity of photosystem II have captured the attention of an increasing number of research groups over the last few years (Kikuchi & Tanaka, 2014; Singh & Spiccia, 2013). One complex that especially caught our interest was [Cp*Ir(bpy)Cl]+ (Blakemore et al., 2010) which features a bipyridine (bpy) type ligand. In our research into catalytic water oxidation, we are trying to enhance proton-coupled (PCET) in metal-complex catalysts by incorporating hydrogen-bond donors and acceptors in near proximity to the potentially catalytic metal atoms to mimic the active center of a protein–metal complex. When applying this principal to the Blakemore-type [Cp*Ir(bpy)Cl]+ complex by swapping normal bipyridine for dihydroxybipyridine (6,6′-dhbp), we were indeed able to increase the catalytic turnover rate and control water oxidation rates by adjusting pH levels (DePasquale et al., 2013). The ligand 6,6′-dhbp has also been used in combination with ruthenium terpyridine (tpy) fragments to yield the complex [(tpy)Ru(6,6′-dhbp)(H2O)] (Marelius et al., 2014).
Our focus has most recently shifted to the investigation of copper(II) bipyridine complexes analogous to [(bpy)Cu(OH)2]22+ (Barnett et al., 2012). We isolated discrete mono-copper complexes from copper(II) sulfate with a selection of modified bipyridine ligands and investigated the compounds spectroscopically, crystallographically and for their catalytic water oxidation capacity (Gerlach et al., 2014). When swapping sulfate for nitrate as the counter-ion we found that the resulting complexes are no longer mononuclear. Instead, larger aggregates with two or six copper(II) atoms formed that feature coordinating nitrate as well as hydroxyl ligands. As a result of their aggregation and the varied coordination environment of their copper atoms, these complexes are not ideally suited for homogenous water oxidation catalysis. Instead they feature quite intriguing and fascinating solid structures which we would like to describe and present.
2. Structural commentary
The dinuclear copper(II) dhbp complex (I) contains nitrate as a co-ligand with both a fully protonated and a mono-deprotonated dhbp ligand (see Fig. 1). Two unique 6,6′-dhbp binding modes were observed for this copper(II) nitrate complex illustrating the structural flexibility of this ligand. The [6,6′-(OH)2bpy] ligand exhibits the typically observed bipyridine (N,N) coordination mode through N3 and N4 binding to Cu2. A new coordination mode is observed for the mono-deprotonated (6-O-6′-OH-bpy) ligand in which it bridges two metals, through (N,N) coordination of N1,N2 to Cu1 and through bridging to Cu2 via the pyridinolate oxygen O2 [1.946 (3) Å]. The C—O bond lengths (Å) for the dhbp ligands are 1.335 (5) (C1—O1), 1.322 (5) (C11—O3), and 1.316 (4) (C20—O4) for the protonated hydroxyl groups and slightly shorter at 1.310 (4) (C10—O2) for the pyridinolate, reflecting double-bond character. Both copper atoms have a distorted square-pyramidal geometry with τ = 0.394 at Cu1 and τ = 0.119 at Cu2 (Addison et al., 1984). This structure has a close Cu⋯Cu distance of 3.158 (9) Å. Complex (I) features three strong intramolecular hydrogen bonds (Jeffrey, 2003) with O⋯O distances (Å) as follows: 2.583 (4) for O1 to O6 (dhbp to nitrate) with bond angle O—H⋯O of 163 (5)°, 2.528 (4) for O4 to O2 (dhbp to deprotonated dhbp) with bond angle of 161 (5)°, and 2.510 (4) for O3 to O5 (dhbp to hydroxyl) with bond angle of 164 (5)°. One intermolecular hydrogen bond tethers one dimer of complex (I) to the next in a head-to-tail fashion via a 2.802 (4) Å hydrogen bond from O5 to O11 (hydroxyl to nitrate) with a bond angle of 164 (4)°. Numerical details of the hydrogen bonds are given in Table 1.
The hexanuclear copper(II) dhbp complex (II) is comprised of a dimer of the asymmetric portion of the molecule which contains three symmetry-unique copper atoms, two fully protonated and one fully deprotonated dhbp, two bridging hydroxide and two nitrate ligands (see Fig. 2). This asymmetric trinuclear unit is related through an inversion center to the full hexanuclear complex (see Fig. 3). Two copper atoms, Cu1 and Cu3, are hexa-coordinate with a distorted octahedral geometry whereas Cu2 is penta-coordinate with a distorted trigonal–pyramidal geometry with τ = 0.746 (Addison et al., 1984). Similar to the dinuclear complex, each copper atom is coordinated by one hydroxybipyridine ligand with one bridging hydroxyl ligand between Cu1 to Cu2 and Cu2 to Cu3. The dihydroxybipyridine ligand bound to Cu2 (dhbp2) is doubly deprotonated with each deprotonated oxygen bound to the flanking Cu1 and Cu3 metal sites, O3 and O4, respectively. The remaining coordination sphere of Cu1 entails one dhbp (N,N bound), one bridging hydroxide to Cu2 (O14), one bridging nitrate to Cu2 (O11), and one bridging nitrate (O7) which tethers the two asymmetric units. The coordination of Cu2 entails one deprotonated dhbp (N,N bound), one bridging nitrate to Cu1 (O12), and two bridging hydroxides to Cu1 and Cu3 (O14 and O13, respectively). The remaining coordination sphere of Cu3 entails one dhbp (N,N bound), one methanol (O15), one bridging hydroxide (O13), and one bridging nitrate (O8) which tethers the two asymmetric units. Each deprotonated oxygen of dhbp acts as an acceptor for intramolecular hydrogen bonds from the two protonated dhbp ligands, O2 to O3 at 2.499 (3) Å (O—H⋯O bond angle of 172°), and O6 to O4 at 2.495 (3) Å (O—H⋯O bond angle of 168°) shown in Fig. 4. The remaining hydroxyl groups of the protonated dhbps form strong hydrogen bonds to the bridging hydroxides where O1 donates to O14 [2.448 (3) Å, O—H⋯O bond angle of 175°] of the hydroxide bridging Cu1 and Cu2, and O5 donates to O13 [2.536 (3) Å, O—H⋯O bond angle of 170°] of the hydroxide bridging Cu2 and Cu3 (Table 2). Interestingly, both Cu—Cu bridging hydroxides form an intermediate strength intramolecular hydrogen bond to the bridging nitrate linking the two asymmetric units of the hexamer, with O⋯O distances (Å) of O13 and O14 to O9 being 2.763 (3) [O—H⋯O angle of 158 (4)°] and 2.738 (3) [O—H⋯O angle of 163 (4)°], respectively. C—O bond lengths of the protonated and deprotonated dhbp ligands of the hexa and dinuclear complexes are similar; C⋯O distances (Å) are 1.302 (4) and 1.312 (4) for the copper coordinating oxygen atoms, and 1.324 (4), 1.304 (4), 1.330 (4), and 1.321 (4) for the hydroxyl O atoms, with the longer of the four values belonging to the hydroxyl groups hydrogen-bound to the neighboring deprotonated dhbp ligand, and the shorter two being associated with those hydrogen-bound to the bridging hydroxyl groups. These reduced lengths reflect increased C—O double-bond character upon deprotonation. One intermolecular hydrogen bond of intermediate strength connects the bound methanol to the non-coordinating oxygen of the Cu1–Cu2 bridging nitrate of another molecule, O15 to O10 at 2.790 (4) Å [O—H⋯O bond angle of 107 (4)°].
|
Comparison of complex (I) to the asymmetric component of complex (II) indicates some structural similarities, Fig. 5. The overall structure of complex (I) can be reasonably well overlaid with the dinuclear component of (II) including Cu2 and Cu3, with the main differences resulting from one nitrate ligand that is bridging between the two copper ions in complex (I) being rotated so that in complex (II) it instead bridges one of these copper ions to the third that has no counterpart in complex (I). The two copper ions that are bridged by a nitrate ion in complex (I) are thus not bridged in complex (II) (featuring a methanol molecule and a nitrate bridging to the third copper instead), leading to a larger distance between the copper ions in complex (II) and a different tilt angle of the fully protonated dhbp ligand (left dhbp in Fig. 5).
The bridging oxygen species for both complexes (I) and (II) are correctly assigned as hydroxides to balance the overall neutral charge of the complex. Complex (I) with two CuII ions is charge balanced with one terminal and one bridging nitrate each with a single negative charge, one deprotonated hydroxyl group of dhbp, and one bridging hydroxide. The bond lengths to the bridging hydroxide from Cu1 to O5 is 1.964 (3) Å and Cu2 to O5 is 1.939 (3) Å where the proton of O5 hydrogen bonds to one acceptor. A comparable bond length is 1.946 (3) Å from Cu2 to O2 of the deprotonated dhbp ligand. The remaining oxygen atoms of the dhbp ligands are each protonated and engaged in hydrogen bonding as described above. The of complex (II) balances similarly with three Cu (II) ions against one bridging nitrate, one nitrate bridging the two asymmetric units, two deprotonated dhbp hydroxyl groups, and two bridging hydroxides. The bond lengths to the bridging hydroxide, Cu2 and Cu3 to O13: 1.933 (2) and 1.951 (2) Å, respectively, are comparable to those observed in complex (I) where each of these hydroxides have one hydrogen bond. Alternatively, the bond lengths to the bridging hydroxide are longer where Cu1 and Cu2 to O14 are 1.970 (2) and 2.062 (3) Å, respectively, likely due to the two hydrogen-bonding interactions described above weakening the orbital overlap with the copper and lengthening these bonds. The two copper–hydroxyl dhbp bonds in complex (II) are comparable to this bond in complex (I) at 1.966 (3) Å from Cu1 to O3 of dhbp and 1.960 (2) Å from Cu3 to O4 of dhbp.
3. Supramolecular features
Some intermolecular hydrogen-bonding interactions in both complexes have already been discussed, vide supra. The dinuclear complex (I) also features intermolecular parallel offset π-stacking of both dhbp ligands. The dhbp ligand coordinating to Cu1 is π-stacked with its symmetry counterpart alternating across two inversion centers, one for each ring of this dhbp ligand. These alternating π–π interactions form chains in the [010] direction. The pyridine ring containing N2 interacts with the symmetry-equivalent ring of a neighboring molecule across the 1 − x, −y, −z at a distance of 3.894 (3) Å between the centroids of the rings. The pyridine ring containing N1 interacts with its symmetry-equivalent ring across the 1 − x, 1 − y, −z with a centroid-to-centroid distance of 3.969 (3) Å. The dhbp ligand coordinating to Cu2 also shows π-stacking via two alternating inversion-symmetry operations, forming chains along [100]. The pyridine rings containing N3 and N4 intercross by the 1 − x, −y, 1 − z where the centroid of the ring defined by N3 is at a distance of 3.604 (2) Å from the centroid of the ring defined as N4 on side of the dhbp plane with the bridging hydroxide. These rings also π-stack on the opposite face of the plane at a distance of 3.768 (2) Å from the centroid of the ring defined by N3 to N4 through the −x, −y, 1 − z. Intermolecular hydrogen bonding from the bridging hydroxide ligand to the terminal oxygen of the bridging nitrate ligand interlinks neighboring molecules primarily along [100]. See Fig. 6 for extended intermolecular interactions of complex (I).
The hexanuclear complex (II) progresses along [010] through two symmetry-related hydrogen bonds between O15 of the bound methanol molecule of Cu3 to O10 of the Cu1–Cu2 bridging nitrate (Fig. 7). The dhbp ligands are primarily within the ac plane and exhibit π-stacking but in a less regular fashion than for complex (I), primarily in the [010] direction without forming chains. Off-set π-stacking of the dhbp ligand bound to Cu1 are related through the 1 − x, −y, −z with a centroid-to-centroid distance of 3.784 (2) Å of the pyridine rings containing N1 to the ring containing N2 and vice versa. A single ring of each dhbp ligand bound to Cu2 and Cu3 π-stack via translation at a distance of 3.551 (2) Å between the centroids of the pyridine rings defined by N3 and N5, respectively. Additionally, the Cu3 dhbp ligand π-stacks via the symmetry-equivalent ring defined by N5 of a neighboring molecule across the −x, −y, 1 − z at a centroid-to-centroid distance of 3.887 (2) Å. Close proximity occurs in plane between the pyridine ring containing N4 of the dhbp ligand bound to Cu2 at a distance of 3.818 (2) Å between C18 to C19 and vice versa across the 1 − x, 1 − y, −z.
4. Database survey
Although many structures have been reported featuring a hydroxide anion bridging two copper(II) ions each bound by 2,2′-bipyridine, no analogous structure has been reported with a 6,6′-dihydroxy-2,2′-bipyridine ligand. A search of the Cambridge Structural Database (Version 5.36, May 2015; Groom & Allen, 2014) for the of copper ligated by 6-hydroxy-2,2′-bipyridine, where the hydroxyl group (–OH) further ligates to a second copper atom, resulted in several structures. These primarily planar structures are reported either with co-crystallized metal-containing counter-ions: CSD refcode QEXHUX (Guo et al., 2007), VIHZIX (Zhong, Li et al., 2013), WUJGUE (Wang et al., 2009), XIQGAH (Zhong, Feng et al., 2013); or with a bridging molecule linking two of these planar copper dimers: IYOWOI (He & Lu, 2004), MISPUZ (Zhang, Tong & Chen, 2002), REMMAY (Luo et al., 2006), SESDAW (Sun et al., 2006), XOVTEH (Zhang, Tong, Gong et al., 2002).
The most relevant structure reported in the database contains a dinuclear copper 6-hydroxybipyridine complex with a nitrate ligand bridging the copper ions, IBOXAZ (Zhang et al., 2004). No examples of hydroxybipyridine-ligated copper compounds with oxide or hydroxide bridges have been reported.
5. Synthesis and crystallization
The neutral copper dinuclear complex (I) Copper(II) nitrate trihydrate (128 mg, 0.530 mmol) and 6,6′-dhbp (100 mg, 0.531 mmol) were combined in 50/50 ethanol and water solvent (10 mL) and stirred two days. Green plate crystals were grown from an ethanol solution in a freezer. This complex was analyzed exclusively by X-ray diffraction.
The neutral copper hexanuclear complex (II) Copper(II) nitrate hemipentahydrate (124 mg, 0.533 mmol) and 6,6′-dhbp (100 mg, 0.531 mmol) were combined in 10 mL of 0.1 M NaOAc adjusted to pH 3 by acetic acid. The mixture was stirred for three days at room temperature. The resulting solution was dried under high vacuum and recrystallized twice from methanol to afford green prismatic crystals. This complex was analyzed exclusively by x-ray diffraction.
6. Refinement
Crystal data, data collection, and structure .
details are summarized in Table 3
|
The crystal under investigation for complex (II) was found to be split with two major domains not related by any obvious The orientation matrices for the two components were identified using the program Cell Now (Sheldrick, 2008), with the two components being related by a 2.9° rotation about either the reciprocal axis 1.000 − 0.363 − 0.339 or the real axis 1.000 − 0.178 − 0.265. The two components were integrated using SAINT (Bruker, 2012), resulting in the following statistics: 17535 data (5769 unique) involve domain 1 only, mean I/σ 8.6, 17271 data (5689 unique) involve domain 2 only, mean I/σ 8.2, 34813 data (9811 unique) involve 2 domains, mean I/sigma 9.5, 11 data (11 unique) involve 3 domains, mean I/σ 8.7 and 4 data (2 unique) involve 4 domains, mean I/σ 57.6 The exact correlation matrix as identified by the integration program was found to be 1.00336 0.02923 −0.02720, −0.01894 1.02272 −0.04903, 0.02520 0.05747 0.97055. The data were corrected for absorption using TWINABS (Sheldrick, 2009), and the structure was solved using with only the non-overlapping reflections of component 1. The structure was refined using the HKLF5 routine with all reflections of component 1 (including the overlapping ones), resulting in a BASF value of 0.486 (1). The Rint value given is for all reflections and is based on agreement between observed single and composite intensities and those calculated from refined unique intensities and twin fractions (TWINABS; Sheldrick, 2009).
C- and O-bound H atoms were placed in calculated positions and allowed to ride on their carrier atoms: aromatic C—Harom = 0.95 Å with Uiso(H) = 1.2Ueq(C), C—Hmethyl = 0.98 Å with Uiso(H) = 1.5Ueq(C). O—H were refined for complex (I) and for hydroxide and methanol H atoms of complex (II), with O—H distances restrained to 0.84 (2) Å for O1, O3 and O4 of complex (I), and O13 and O14 of complex (II) yielding O—H distances of 0.748–0.828 Å. The remainder of the hydroxyl atoms were placed in calculated positions with O—H = 0.84 Å, and all Uiso(HOH) were set to 1.5Ueq(O).
Supporting information
https://doi.org/10.1107/S205698901502037X/lh5780sup1.cif
contains datablocks I, II. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698901502037X/lh5780Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S205698901502037X/lh5780IIsup3.hkl
Data collection: APEX2 (Bruker, 2009) for (I); APEX2 (Bruker, 2012) for (II). Cell
SAINT (Bruker, 2009) for (I); SAINT (Bruker, 2012) for (II). Data reduction: SAINT (Bruker, 2009) for (I); SAINT (Bruker, 2012) for (II). For both compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 2008). Program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015), SHELXLE (Hübschle et al., 2011) for (I); SHELXL2012 (Sheldrick, 2015), SHELXLE (Hübschle et al., 2011) for (II). For both compounds, molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Cu2(C10H7N2O2)(OH)(NO3)2(C10H8N2O2)] | Z = 2 |
Mr = 643.47 | F(000) = 648 |
Triclinic, P1 | Dx = 1.941 Mg m−3 |
a = 7.358 (2) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 10.447 (3) Å | Cell parameters from 390 reflections |
c = 15.744 (4) Å | θ = 2.3–24.8° |
α = 77.610 (4)° | µ = 2.01 mm−1 |
β = 78.927 (4)° | T = 100 K |
γ = 69.938 (4)° | Plate, green |
V = 1101.1 (5) Å3 | 0.17 × 0.12 × 0.03 mm |
Bruker SMART APEX CCD diffractometer | 4302 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.050 |
ω scans | θmax = 30.7°, θmin = 1.3° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −10→10 |
Tmin = 0.605, Tmax = 0.746 | k = −14→14 |
14887 measured reflections | l = −22→21 |
6413 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.052 | Hydrogen site location: mixed |
wR(F2) = 0.125 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0555P)2 + 0.1969P] where P = (Fo2 + 2Fc2)/3 |
6413 reflections | (Δ/σ)max < 0.001 |
365 parameters | Δρmax = 1.11 e Å−3 |
3 restraints | Δρmin = −0.69 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.2710 (5) | 0.4849 (4) | −0.0150 (3) | 0.0185 (8) | |
C2 | 0.2962 (6) | 0.5280 (4) | −0.1049 (3) | 0.0216 (8) | |
H2 | 0.2206 | 0.6168 | −0.1305 | 0.026* | |
C3 | 0.4322 (6) | 0.4401 (4) | −0.1562 (3) | 0.0220 (8) | |
H3 | 0.4521 | 0.4670 | −0.2180 | 0.026* | |
C4 | 0.5418 (5) | 0.3099 (4) | −0.1166 (2) | 0.0190 (8) | |
H4 | 0.6379 | 0.2480 | −0.1510 | 0.023* | |
C5 | 0.5083 (5) | 0.2731 (4) | −0.0271 (2) | 0.0144 (7) | |
C6 | 0.6100 (5) | 0.1354 (4) | 0.0196 (2) | 0.0147 (7) | |
C7 | 0.7447 (5) | 0.0339 (4) | −0.0228 (3) | 0.0190 (8) | |
H7 | 0.7805 | 0.0511 | −0.0845 | 0.023* | |
C8 | 0.8294 (5) | −0.0964 (4) | 0.0263 (3) | 0.0187 (8) | |
H8 | 0.9244 | −0.1676 | −0.0018 | 0.022* | |
C9 | 0.7735 (5) | −0.1193 (4) | 0.1146 (3) | 0.0174 (8) | |
H9 | 0.8290 | −0.2065 | 0.1486 | 0.021* | |
C10 | 0.6315 (5) | −0.0113 (4) | 0.1552 (2) | 0.0140 (7) | |
C11 | 0.2728 (5) | 0.2782 (4) | 0.4525 (2) | 0.0169 (7) | |
C12 | 0.1854 (5) | 0.3244 (4) | 0.5324 (3) | 0.0186 (8) | |
H12 | 0.1660 | 0.4165 | 0.5392 | 0.022* | |
C13 | 0.1285 (5) | 0.2346 (4) | 0.6005 (3) | 0.0201 (8) | |
H13 | 0.0705 | 0.2638 | 0.6553 | 0.024* | |
C14 | 0.1560 (5) | 0.0991 (4) | 0.5894 (2) | 0.0175 (7) | |
H14 | 0.1177 | 0.0355 | 0.6362 | 0.021* | |
C15 | 0.2398 (5) | 0.0608 (4) | 0.5090 (2) | 0.0138 (7) | |
H15 | 0.584 (6) | 0.211 (4) | 0.257 (3) | 0.016 (12)* | |
C16 | 0.2731 (5) | −0.0791 (4) | 0.4908 (2) | 0.0147 (7) | |
C17 | 0.2193 (5) | −0.1803 (4) | 0.5517 (2) | 0.0164 (7) | |
H17 | 0.1568 | −0.1622 | 0.6085 | 0.020* | |
C18 | 0.2577 (5) | −0.3093 (4) | 0.5287 (2) | 0.0172 (7) | |
H18 | 0.2232 | −0.3806 | 0.5702 | 0.021* | |
C19 | 0.3449 (5) | −0.3331 (4) | 0.4465 (3) | 0.0191 (8) | |
H19 | 0.3704 | −0.4204 | 0.4299 | 0.023* | |
C20 | 0.3961 (5) | −0.2269 (4) | 0.3869 (2) | 0.0172 (7) | |
N1 | 0.3732 (4) | 0.3613 (3) | 0.0244 (2) | 0.0156 (6) | |
N2 | 0.5553 (4) | 0.1137 (3) | 0.10808 (19) | 0.0129 (6) | |
N3 | 0.2987 (4) | 0.1489 (3) | 0.44065 (19) | 0.0126 (6) | |
N4 | 0.3616 (4) | −0.1019 (3) | 0.40843 (19) | 0.0139 (6) | |
N5 | 0.0443 (5) | 0.4545 (4) | 0.2519 (2) | 0.0217 (7) | |
N6 | 0.0449 (4) | 0.1339 (3) | 0.2131 (2) | 0.0149 (6) | |
O1 | 0.1390 (4) | 0.5753 (3) | 0.03228 (18) | 0.0244 (6) | |
H1 | 0.140 (7) | 0.552 (5) | 0.0859 (14) | 0.037* | |
O2 | 0.5740 (4) | −0.0383 (3) | 0.23919 (17) | 0.0181 (5) | |
O3 | 0.3321 (4) | 0.3654 (3) | 0.38846 (17) | 0.0194 (6) | |
H3B | 0.380 (6) | 0.334 (5) | 0.3421 (19) | 0.029* | |
O4 | 0.4801 (4) | −0.2525 (3) | 0.30803 (18) | 0.0217 (6) | |
H4B | 0.532 (6) | −0.195 (4) | 0.280 (3) | 0.033* | |
O5 | 0.4755 (4) | 0.2277 (3) | 0.26553 (17) | 0.0159 (5) | |
O6 | 0.1872 (4) | 0.4522 (3) | 0.19101 (18) | 0.0208 (6) | |
O7 | 0.0328 (4) | 0.3455 (3) | 0.29893 (19) | 0.0294 (7) | |
O8 | −0.0797 (4) | 0.5672 (3) | 0.2623 (2) | 0.0367 (8) | |
O9 | 0.1131 (4) | 0.2090 (3) | 0.15141 (17) | 0.0205 (6) | |
O10 | 0.1392 (4) | 0.0637 (3) | 0.2725 (2) | 0.0290 (7) | |
O11 | −0.1223 (4) | 0.1285 (3) | 0.21196 (19) | 0.0260 (7) | |
Cu1 | 0.36658 (6) | 0.27682 (5) | 0.15407 (3) | 0.01478 (12) | |
Cu2 | 0.41333 (6) | 0.06500 (5) | 0.33097 (3) | 0.01386 (12) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0167 (17) | 0.0172 (19) | 0.024 (2) | −0.0082 (15) | −0.0056 (15) | −0.0011 (16) |
C2 | 0.0243 (19) | 0.0138 (19) | 0.027 (2) | −0.0079 (15) | −0.0079 (16) | 0.0036 (16) |
C3 | 0.027 (2) | 0.023 (2) | 0.0168 (19) | −0.0125 (17) | −0.0023 (15) | 0.0030 (16) |
C4 | 0.0224 (19) | 0.020 (2) | 0.0154 (18) | −0.0094 (16) | −0.0001 (15) | −0.0017 (15) |
C5 | 0.0112 (15) | 0.0162 (19) | 0.0183 (18) | −0.0070 (14) | −0.0005 (13) | −0.0045 (15) |
C6 | 0.0107 (15) | 0.0180 (19) | 0.0172 (18) | −0.0076 (14) | −0.0024 (13) | −0.0010 (15) |
C7 | 0.0167 (17) | 0.020 (2) | 0.0198 (19) | −0.0075 (15) | 0.0012 (14) | −0.0027 (16) |
C8 | 0.0131 (16) | 0.0170 (19) | 0.025 (2) | −0.0026 (14) | −0.0009 (14) | −0.0059 (16) |
C9 | 0.0140 (16) | 0.0138 (18) | 0.025 (2) | −0.0032 (14) | −0.0032 (14) | −0.0045 (15) |
C10 | 0.0134 (16) | 0.0148 (18) | 0.0160 (18) | −0.0070 (14) | 0.0003 (13) | −0.0045 (14) |
C11 | 0.0169 (17) | 0.0137 (18) | 0.0212 (19) | −0.0045 (14) | −0.0071 (14) | −0.0013 (15) |
C12 | 0.0181 (17) | 0.0148 (19) | 0.024 (2) | −0.0034 (14) | −0.0059 (15) | −0.0064 (16) |
C13 | 0.0196 (18) | 0.024 (2) | 0.0180 (19) | −0.0063 (16) | −0.0011 (14) | −0.0077 (16) |
C14 | 0.0155 (17) | 0.019 (2) | 0.0184 (18) | −0.0062 (15) | −0.0027 (14) | −0.0034 (15) |
C15 | 0.0117 (15) | 0.0145 (18) | 0.0155 (17) | −0.0044 (13) | −0.0026 (13) | −0.0015 (14) |
C16 | 0.0110 (15) | 0.0150 (18) | 0.0178 (18) | −0.0027 (13) | −0.0032 (13) | −0.0028 (14) |
C17 | 0.0165 (17) | 0.0191 (19) | 0.0142 (17) | −0.0083 (15) | −0.0011 (13) | −0.0003 (15) |
C18 | 0.0154 (17) | 0.0164 (19) | 0.0203 (19) | −0.0080 (14) | −0.0030 (14) | 0.0014 (15) |
C19 | 0.0198 (18) | 0.0096 (18) | 0.028 (2) | −0.0055 (14) | −0.0022 (15) | −0.0036 (15) |
C20 | 0.0170 (17) | 0.0154 (19) | 0.0189 (19) | −0.0037 (14) | −0.0045 (14) | −0.0027 (15) |
N1 | 0.0141 (14) | 0.0139 (15) | 0.0193 (16) | −0.0065 (12) | −0.0032 (12) | 0.0006 (13) |
N2 | 0.0117 (13) | 0.0128 (15) | 0.0139 (15) | −0.0040 (11) | −0.0006 (11) | −0.0025 (12) |
N3 | 0.0120 (13) | 0.0114 (15) | 0.0143 (14) | −0.0028 (11) | −0.0021 (11) | −0.0030 (12) |
N4 | 0.0126 (14) | 0.0133 (15) | 0.0156 (15) | −0.0035 (11) | −0.0029 (11) | −0.0020 (12) |
N5 | 0.0220 (16) | 0.0194 (18) | 0.0257 (18) | −0.0022 (14) | −0.0097 (14) | −0.0092 (15) |
N6 | 0.0140 (14) | 0.0127 (15) | 0.0178 (16) | −0.0039 (12) | 0.0004 (12) | −0.0050 (13) |
O1 | 0.0309 (15) | 0.0146 (14) | 0.0209 (15) | 0.0007 (12) | −0.0024 (12) | −0.0024 (12) |
O2 | 0.0208 (13) | 0.0147 (13) | 0.0151 (13) | −0.0051 (10) | 0.0007 (10) | 0.0016 (11) |
O3 | 0.0295 (15) | 0.0160 (14) | 0.0154 (13) | −0.0103 (11) | −0.0021 (11) | −0.0036 (11) |
O4 | 0.0325 (15) | 0.0169 (14) | 0.0171 (14) | −0.0110 (12) | 0.0049 (11) | −0.0076 (11) |
O5 | 0.0151 (13) | 0.0151 (13) | 0.0186 (14) | −0.0067 (11) | −0.0021 (10) | −0.0019 (11) |
O6 | 0.0240 (14) | 0.0142 (14) | 0.0225 (14) | −0.0041 (11) | −0.0024 (11) | −0.0027 (11) |
O7 | 0.0319 (16) | 0.0290 (17) | 0.0274 (16) | −0.0131 (13) | 0.0039 (13) | −0.0061 (14) |
O8 | 0.0320 (17) | 0.0305 (18) | 0.0410 (19) | 0.0030 (14) | 0.0008 (14) | −0.0180 (15) |
O9 | 0.0215 (13) | 0.0256 (15) | 0.0160 (13) | −0.0125 (12) | 0.0007 (10) | −0.0013 (12) |
O10 | 0.0244 (15) | 0.0310 (17) | 0.0330 (17) | −0.0126 (13) | −0.0151 (13) | 0.0083 (14) |
O11 | 0.0140 (13) | 0.0296 (16) | 0.0354 (17) | −0.0104 (12) | −0.0033 (12) | −0.0012 (14) |
Cu1 | 0.0146 (2) | 0.0141 (2) | 0.0145 (2) | −0.00367 (17) | −0.00074 (16) | −0.00225 (18) |
Cu2 | 0.0155 (2) | 0.0128 (2) | 0.0137 (2) | −0.00583 (17) | −0.00062 (16) | −0.00191 (17) |
C1—O1 | 1.335 (5) | C15—C16 | 1.478 (5) |
C1—N1 | 1.336 (5) | C16—N4 | 1.366 (4) |
C1—C2 | 1.388 (6) | C16—C17 | 1.378 (5) |
C2—C3 | 1.369 (6) | C17—C18 | 1.391 (5) |
C2—H2 | 0.9500 | C17—H17 | 0.9500 |
C3—C4 | 1.402 (5) | C18—C19 | 1.363 (5) |
C3—H3 | 0.9500 | C18—H18 | 0.9500 |
C4—C5 | 1.376 (5) | C19—C20 | 1.399 (5) |
C4—H4 | 0.9500 | C19—H19 | 0.9500 |
C5—N1 | 1.370 (4) | C20—O4 | 1.316 (4) |
C5—C6 | 1.480 (5) | C20—N4 | 1.346 (5) |
C6—N2 | 1.366 (5) | N1—Cu1 | 2.042 (3) |
C6—C7 | 1.372 (5) | N2—Cu1 | 1.969 (3) |
C7—C8 | 1.411 (5) | N3—Cu2 | 2.011 (3) |
C7—H7 | 0.9500 | N4—Cu2 | 2.009 (3) |
C8—C9 | 1.366 (5) | N5—O8 | 1.238 (4) |
C8—H8 | 0.9500 | N5—O7 | 1.239 (4) |
C9—C10 | 1.420 (5) | N5—O6 | 1.276 (4) |
C9—H9 | 0.9500 | N6—O10 | 1.225 (4) |
C10—O2 | 1.310 (4) | N6—O9 | 1.251 (4) |
C10—N2 | 1.346 (5) | N6—O11 | 1.254 (4) |
C11—O3 | 1.322 (5) | O1—H1 | 0.827 (19) |
C11—N3 | 1.347 (5) | O2—Cu2 | 1.946 (3) |
C11—C12 | 1.402 (5) | O3—H3B | 0.829 (19) |
C12—C13 | 1.367 (5) | O4—H4B | 0.827 (19) |
C12—H12 | 0.9500 | O5—Cu2 | 1.939 (3) |
C13—C14 | 1.404 (5) | O5—Cu1 | 1.964 (3) |
C13—H13 | 0.9500 | O5—H15 | 0.75 (4) |
C14—C15 | 1.374 (5) | O6—Cu1 | 1.985 (3) |
C14—H14 | 0.9500 | O9—Cu1 | 2.221 (3) |
C15—N3 | 1.365 (5) | O10—Cu2 | 2.377 (3) |
O1—C1—N1 | 120.4 (3) | C18—C19—C20 | 119.0 (4) |
O1—C1—C2 | 116.4 (3) | C18—C19—H19 | 120.5 |
N1—C1—C2 | 123.2 (4) | C20—C19—H19 | 120.5 |
C3—C2—C1 | 118.7 (4) | O4—C20—N4 | 120.3 (3) |
C3—C2—H2 | 120.7 | O4—C20—C19 | 117.8 (3) |
C1—C2—H2 | 120.7 | N4—C20—C19 | 121.9 (3) |
C2—C3—C4 | 119.3 (4) | C1—N1—C5 | 118.0 (3) |
C2—C3—H3 | 120.3 | C1—N1—Cu1 | 130.4 (3) |
C4—C3—H3 | 120.3 | C5—N1—Cu1 | 111.6 (2) |
C5—C4—C3 | 119.1 (4) | C10—N2—C6 | 119.6 (3) |
C5—C4—H4 | 120.5 | C10—N2—Cu1 | 126.3 (2) |
C3—C4—H4 | 120.5 | C6—N2—Cu1 | 114.1 (2) |
N1—C5—C4 | 121.7 (3) | C11—N3—C15 | 118.6 (3) |
N1—C5—C6 | 115.6 (3) | C11—N3—Cu2 | 127.8 (2) |
C4—C5—C6 | 122.7 (3) | C15—N3—Cu2 | 113.6 (2) |
N2—C6—C7 | 121.8 (3) | C20—N4—C16 | 118.6 (3) |
N2—C6—C5 | 115.4 (3) | C20—N4—Cu2 | 127.7 (2) |
C7—C6—C5 | 122.7 (3) | C16—N4—Cu2 | 113.7 (2) |
C6—C7—C8 | 119.1 (3) | O8—N5—O7 | 121.6 (4) |
C6—C7—H7 | 120.4 | O8—N5—O6 | 118.6 (4) |
C8—C7—H7 | 120.4 | O7—N5—O6 | 119.8 (3) |
C9—C8—C7 | 119.4 (3) | O10—N6—O9 | 121.6 (3) |
C9—C8—H8 | 120.3 | O10—N6—O11 | 119.9 (3) |
C7—C8—H8 | 120.3 | O9—N6—O11 | 118.5 (3) |
C8—C9—C10 | 119.3 (4) | C1—O1—H1 | 114 (3) |
C8—C9—H9 | 120.4 | C10—O2—Cu2 | 137.1 (2) |
C10—C9—H9 | 120.4 | C11—O3—H3B | 114 (3) |
O2—C10—N2 | 121.2 (3) | C20—O4—H4B | 114 (3) |
O2—C10—C9 | 117.9 (3) | Cu2—O5—Cu1 | 108.02 (13) |
N2—C10—C9 | 120.9 (3) | Cu2—O5—H15 | 108 (3) |
O3—C11—N3 | 120.3 (3) | Cu1—O5—H15 | 110 (3) |
O3—C11—C12 | 117.9 (3) | N5—O6—Cu1 | 121.9 (2) |
N3—C11—C12 | 121.8 (3) | N6—O9—Cu1 | 124.9 (2) |
C13—C12—C11 | 118.9 (4) | N6—O10—Cu2 | 135.9 (2) |
C13—C12—H12 | 120.5 | O5—Cu1—N2 | 92.97 (12) |
C11—C12—H12 | 120.5 | O5—Cu1—O6 | 89.59 (11) |
C12—C13—C14 | 119.9 (4) | N2—Cu1—O6 | 174.53 (12) |
C12—C13—H13 | 120.0 | O5—Cu1—N1 | 150.90 (12) |
C14—C13—H13 | 120.0 | N2—Cu1—N1 | 82.98 (12) |
C15—C14—C13 | 118.3 (4) | O6—Cu1—N1 | 92.44 (12) |
C15—C14—H14 | 120.8 | O5—Cu1—O9 | 116.83 (10) |
C13—C14—H14 | 120.8 | N2—Cu1—O9 | 92.96 (11) |
N3—C15—C14 | 122.4 (3) | O6—Cu1—O9 | 90.19 (11) |
N3—C15—C16 | 115.4 (3) | N1—Cu1—O9 | 92.20 (11) |
C14—C15—C16 | 122.2 (3) | O5—Cu2—O2 | 89.00 (11) |
N4—C16—C17 | 121.7 (3) | O5—Cu2—N4 | 174.31 (12) |
N4—C16—C15 | 115.1 (3) | O2—Cu2—N4 | 93.75 (11) |
C17—C16—C15 | 123.2 (3) | O5—Cu2—N3 | 94.05 (12) |
C16—C17—C18 | 119.0 (3) | O2—Cu2—N3 | 167.14 (11) |
C16—C17—H17 | 120.5 | N4—Cu2—N3 | 82.20 (12) |
C18—C17—H17 | 120.5 | O5—Cu2—O10 | 104.96 (11) |
C19—C18—C17 | 119.8 (3) | O2—Cu2—O10 | 86.67 (11) |
C19—C18—H18 | 120.1 | N4—Cu2—O10 | 80.20 (11) |
C17—C18—H18 | 120.1 | N3—Cu2—O10 | 104.54 (11) |
O1—C1—C2—C3 | 178.8 (3) | C4—C5—N1—C1 | 1.1 (5) |
N1—C1—C2—C3 | 0.0 (6) | C6—C5—N1—C1 | −177.1 (3) |
C1—C2—C3—C4 | −0.2 (6) | C4—C5—N1—Cu1 | −178.2 (3) |
C2—C3—C4—C5 | 0.7 (6) | C6—C5—N1—Cu1 | 3.6 (4) |
C3—C4—C5—N1 | −1.2 (5) | O2—C10—N2—C6 | −176.0 (3) |
C3—C4—C5—C6 | 176.9 (3) | C9—C10—N2—C6 | 2.4 (5) |
N1—C5—C6—N2 | 0.3 (5) | O2—C10—N2—Cu1 | 4.4 (5) |
C4—C5—C6—N2 | −177.8 (3) | C9—C10—N2—Cu1 | −177.2 (3) |
N1—C5—C6—C7 | 177.9 (3) | C7—C6—N2—C10 | −1.5 (5) |
C4—C5—C6—C7 | −0.3 (6) | C5—C6—N2—C10 | 176.0 (3) |
N2—C6—C7—C8 | −0.2 (5) | C7—C6—N2—Cu1 | 178.1 (3) |
C5—C6—C7—C8 | −177.5 (3) | C5—C6—N2—Cu1 | −4.3 (4) |
C6—C7—C8—C9 | 1.0 (5) | O3—C11—N3—C15 | 178.4 (3) |
C7—C8—C9—C10 | −0.1 (5) | C12—C11—N3—C15 | −0.8 (5) |
C8—C9—C10—O2 | 176.8 (3) | O3—C11—N3—Cu2 | −2.6 (5) |
C8—C9—C10—N2 | −1.6 (5) | C12—C11—N3—Cu2 | 178.2 (3) |
O3—C11—C12—C13 | −177.9 (3) | C14—C15—N3—C11 | −0.3 (5) |
N3—C11—C12—C13 | 1.3 (5) | C16—C15—N3—C11 | 180.0 (3) |
C11—C12—C13—C14 | −0.7 (6) | C14—C15—N3—Cu2 | −179.4 (3) |
C12—C13—C14—C15 | −0.3 (5) | C16—C15—N3—Cu2 | 0.9 (4) |
C13—C14—C15—N3 | 0.8 (5) | O4—C20—N4—C16 | 179.6 (3) |
C13—C14—C15—C16 | −179.5 (3) | C19—C20—N4—C16 | −0.3 (5) |
N3—C15—C16—N4 | 1.1 (4) | O4—C20—N4—Cu2 | 2.8 (5) |
C14—C15—C16—N4 | −178.6 (3) | C19—C20—N4—Cu2 | −177.1 (3) |
N3—C15—C16—C17 | −178.7 (3) | C17—C16—N4—C20 | 0.0 (5) |
C14—C15—C16—C17 | 1.6 (5) | C15—C16—N4—C20 | −179.8 (3) |
N4—C16—C17—C18 | 0.6 (5) | C17—C16—N4—Cu2 | 177.3 (3) |
C15—C16—C17—C18 | −179.6 (3) | C15—C16—N4—Cu2 | −2.5 (4) |
C16—C17—C18—C19 | −0.9 (5) | N2—C10—O2—Cu2 | −9.7 (5) |
C17—C18—C19—C20 | 0.7 (6) | C9—C10—O2—Cu2 | 171.9 (3) |
C18—C19—C20—O4 | 180.0 (3) | O8—N5—O6—Cu1 | −168.6 (3) |
C18—C19—C20—N4 | −0.1 (6) | O7—N5—O6—Cu1 | 11.6 (5) |
O1—C1—N1—C5 | −179.2 (3) | O10—N6—O9—Cu1 | −18.1 (5) |
C2—C1—N1—C5 | −0.4 (5) | O11—N6—O9—Cu1 | 163.9 (2) |
O1—C1—N1—Cu1 | −0.2 (5) | O9—N6—O10—Cu2 | 20.0 (5) |
C2—C1—N1—Cu1 | 178.6 (3) | O11—N6—O10—Cu2 | −162.0 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H15···O11i | 0.75 (4) | 2.08 (4) | 2.802 (4) | 164 (4) |
O1—H1···O6 | 0.83 (2) | 1.78 (2) | 2.583 (4) | 163 (5) |
O3—H3B···O5 | 0.83 (2) | 1.70 (2) | 2.510 (4) | 164 (5) |
O4—H4B···O2 | 0.83 (2) | 1.73 (2) | 2.528 (4) | 161 (5) |
Symmetry code: (i) x+1, y, z. |
[Cu6(C10H6N2O2)2(CH4O)2(OH)4(NO3)4(C10H8N2O2)4] | Z = 1 |
Mr = 1886.53 | F(000) = 954 |
Triclinic, P1 | Dx = 1.866 Mg m−3 |
a = 10.2135 (7) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 13.3707 (8) Å | Cell parameters from 1117 reflections |
c = 14.0565 (10) Å | θ = 3.0–29.1° |
α = 64.591 (4)° | µ = 1.97 mm−1 |
β = 75.659 (5)° | T = 100 K |
γ = 82.262 (5)° | Prism, green |
V = 1679.0 (2) Å3 | 0.26 × 0.22 × 0.07 mm |
Bruker APEXII CCD diffractometer | 7847 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.068 |
Absorption correction: multi-scan (TWINABS; Sheldrick, 2009) | θmax = 32.0°, θmin = 1.6° |
Tmin = 0.622, Tmax = 0.746 | h = −14→14 |
20719 measured reflections | k = −16→19 |
10920 independent reflections | l = 0→20 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.044 | Hydrogen site location: mixed |
wR(F2) = 0.119 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.00 | w = 1/[σ2(Fo2) + (0.068P)2] where P = (Fo2 + 2Fc2)/3 |
10920 reflections | (Δ/σ)max = 0.001 |
529 parameters | Δρmax = 0.90 e Å−3 |
2 restraints | Δρmin = −1.08 e Å−3 |
Experimental. The crystal under investigation was found to be split with two major domains not related by any obvious twin operation. The orientation matrices for the two components were identified using the program Cell_Now, with the two components being related by a 2.9 degrees rotation about either the reciprocal axis 1.000 - 0.363 - 0.339 or the real axis 1.000 - 0.178 - 0.265 degree. The two components were integrated using Saint, resulting in in the following statistics: 17535 data (5769 unique) involve domain 1 only, mean I/sigma 8.6 17271 data (5689 unique) involve domain 2 only, mean I/sigma 8.2 34813 data (9811 unique) involve 2 domains, mean I/sigma 9.5 11 data (11 unique) involve 3 domains, mean I/sigma 8.7 4 data (2 unique) involve 4 domains, mean I/sigma 57.6 The exact correlation matrix was identified by the integration program was found to be Transforms h1.1(1)->h1.2(2) 1.00336 0.02923 - 0.02720 - 0.01894 1.02272 - 0.04903 0.02520 0.05747 0.97055. The data were corrected for absorption using twinabs, and the structure was solved using direct methods with only the non-overlapping reflections of component 1. The structure was refined using the hklf 5 routine with all reflections of component 1 (including the overlapping ones), resulting in a BASF value of 0.486 (1). The Rint value given is for all reflections and is based on agreement between observed single and composite intensities and those calculated from refined unique intensities and twin fractions (TWINABS (Sheldrick, 2009)). |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refined as a 2-component twin. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.41028 (4) | 0.22335 (3) | 0.75942 (3) | 0.01004 (9) | |
Cu2 | 0.48719 (4) | 0.28424 (3) | 0.49234 (3) | 0.01009 (9) | |
Cu3 | 0.79681 (4) | 0.28550 (3) | 0.32300 (3) | 0.00978 (9) | |
O1 | 0.6858 (2) | 0.3553 (2) | 0.66647 (18) | 0.0149 (5) | |
H1 | 0.6187 | 0.3498 | 0.6447 | 0.022* | |
O2 | 0.1351 (2) | 0.0820 (2) | 0.89259 (19) | 0.0210 (6) | |
H2A | 0.1769 | 0.1133 | 0.8284 | 0.031* | |
O3 | 0.2766 (2) | 0.17719 (19) | 0.70803 (17) | 0.0108 (4) | |
O4 | 0.6689 (2) | 0.3846 (2) | 0.23790 (17) | 0.0154 (5) | |
O5 | 0.8343 (2) | 0.1430 (2) | 0.56936 (18) | 0.0162 (5) | |
H5 | 0.7765 | 0.1877 | 0.5382 | 0.024* | |
O6 | 0.8053 (2) | 0.3901 (2) | 0.06196 (18) | 0.0174 (5) | |
H6 | 0.7504 | 0.3859 | 0.1189 | 0.026* | |
O7 | 0.2336 (2) | 0.3684 (2) | 0.77329 (18) | 0.0169 (5) | |
O8 | 0.1064 (2) | 0.5167 (2) | 0.71865 (19) | 0.0172 (5) | |
O9 | 0.2815 (2) | 0.49085 (19) | 0.60670 (18) | 0.0166 (5) | |
O10 | 0.5101 (3) | −0.0537 (2) | 0.6858 (2) | 0.0244 (6) | |
O11 | 0.5594 (2) | 0.0977 (2) | 0.68885 (19) | 0.0160 (5) | |
O12 | 0.4932 (2) | 0.1038 (2) | 0.55029 (19) | 0.0164 (5) | |
O13 | 0.6824 (2) | 0.28679 (18) | 0.45612 (17) | 0.0103 (4) | |
H13A | 0.695 (4) | 0.347 (2) | 0.455 (3) | 0.015* | |
O14 | 0.4843 (2) | 0.33310 (19) | 0.61349 (17) | 0.0105 (4) | |
H14A | 0.432 (3) | 0.387 (2) | 0.598 (3) | 0.016* | |
O15 | 0.7227 (3) | 0.1269 (2) | 0.3314 (2) | 0.0262 (6) | |
H15 | 0.647 (4) | 0.121 (4) | 0.375 (4) | 0.039* | |
N1 | 0.5541 (2) | 0.2397 (2) | 0.8244 (2) | 0.0105 (5) | |
N2 | 0.3295 (3) | 0.1288 (2) | 0.9159 (2) | 0.0111 (5) | |
N3 | 0.2886 (2) | 0.2882 (2) | 0.5293 (2) | 0.0104 (5) | |
N4 | 0.4511 (2) | 0.3683 (2) | 0.3394 (2) | 0.0102 (5) | |
N5 | 0.9518 (3) | 0.2047 (2) | 0.3927 (2) | 0.0110 (5) | |
N6 | 0.9403 (3) | 0.3065 (2) | 0.1862 (2) | 0.0108 (5) | |
N7 | 0.2064 (3) | 0.4580 (2) | 0.7012 (2) | 0.0125 (5) | |
N8 | 0.5208 (3) | 0.0495 (2) | 0.6423 (2) | 0.0134 (6) | |
C1 | 0.6682 (3) | 0.2959 (3) | 0.7701 (3) | 0.0132 (6) | |
C2 | 0.7689 (3) | 0.2919 (3) | 0.8239 (3) | 0.0148 (7) | |
H2 | 0.8502 | 0.3303 | 0.7848 | 0.018* | |
C3 | 0.7495 (3) | 0.2321 (3) | 0.9335 (3) | 0.0174 (7) | |
H3 | 0.8176 | 0.2287 | 0.9703 | 0.021* | |
C4 | 0.6293 (3) | 0.1761 (3) | 0.9908 (3) | 0.0168 (7) | |
H4 | 0.6131 | 0.1359 | 1.0668 | 0.020* | |
C5 | 0.5354 (3) | 0.1810 (3) | 0.9336 (3) | 0.0115 (6) | |
C6 | 0.4062 (3) | 0.1227 (3) | 0.9856 (3) | 0.0124 (7) | |
C7 | 0.3656 (3) | 0.0679 (3) | 1.0958 (3) | 0.0157 (7) | |
H7 | 0.4210 | 0.0644 | 1.1423 | 0.019* | |
C8 | 0.2402 (3) | 0.0176 (3) | 1.1371 (3) | 0.0177 (7) | |
H8 | 0.2100 | −0.0214 | 1.2127 | 0.021* | |
C9 | 0.1613 (3) | 0.0243 (3) | 1.0695 (3) | 0.0173 (7) | |
H9 | 0.0750 | −0.0079 | 1.0971 | 0.021* | |
C10 | 0.2101 (3) | 0.0798 (3) | 0.9580 (3) | 0.0148 (7) | |
C11 | 0.2146 (3) | 0.2432 (3) | 0.6310 (3) | 0.0118 (6) | |
C12 | 0.0747 (3) | 0.2651 (3) | 0.6532 (3) | 0.0147 (7) | |
H12 | 0.0230 | 0.2328 | 0.7248 | 0.018* | |
C13 | 0.0135 (3) | 0.3340 (3) | 0.5699 (3) | 0.0162 (7) | |
H13 | −0.0806 | 0.3515 | 0.5841 | 0.019* | |
C14 | 0.0893 (3) | 0.3782 (3) | 0.4647 (3) | 0.0134 (6) | |
H14 | 0.0480 | 0.4249 | 0.4063 | 0.016* | |
C15 | 0.2260 (3) | 0.3523 (3) | 0.4478 (3) | 0.0107 (6) | |
C16 | 0.3161 (3) | 0.3916 (3) | 0.3392 (3) | 0.0107 (6) | |
C17 | 0.2675 (3) | 0.4448 (3) | 0.2472 (3) | 0.0136 (7) | |
H17 | 0.1728 | 0.4556 | 0.2506 | 0.016* | |
C18 | 0.3584 (3) | 0.4833 (3) | 0.1480 (3) | 0.0170 (7) | |
H18 | 0.3268 | 0.5215 | 0.0829 | 0.020* | |
C19 | 0.4939 (3) | 0.4648 (3) | 0.1461 (3) | 0.0155 (7) | |
H19 | 0.5575 | 0.4926 | 0.0795 | 0.019* | |
C20 | 0.5395 (3) | 0.4043 (3) | 0.2436 (2) | 0.0124 (6) | |
C21 | 0.9476 (3) | 0.1470 (3) | 0.4981 (3) | 0.0132 (6) | |
C22 | 1.0618 (3) | 0.0891 (3) | 0.5372 (3) | 0.0150 (7) | |
H22 | 1.0561 | 0.0473 | 0.6124 | 0.018* | |
C23 | 1.1811 (3) | 0.0938 (3) | 0.4656 (3) | 0.0163 (7) | |
H23 | 1.2598 | 0.0562 | 0.4906 | 0.020* | |
C24 | 1.1870 (3) | 0.1542 (3) | 0.3551 (3) | 0.0152 (7) | |
H24 | 1.2693 | 0.1577 | 0.3044 | 0.018* | |
C25 | 1.0716 (3) | 0.2084 (3) | 0.3209 (3) | 0.0120 (6) | |
C26 | 1.0664 (3) | 0.2698 (3) | 0.2063 (3) | 0.0121 (6) | |
C27 | 1.1783 (3) | 0.2865 (3) | 0.1232 (3) | 0.0169 (7) | |
H27 | 1.2658 | 0.2639 | 0.1385 | 0.020* | |
C28 | 1.1625 (3) | 0.3365 (3) | 0.0176 (3) | 0.0175 (7) | |
H28 | 1.2391 | 0.3471 | −0.0398 | 0.021* | |
C29 | 1.0370 (3) | 0.3706 (3) | −0.0045 (3) | 0.0165 (7) | |
H29 | 1.0243 | 0.4034 | −0.0765 | 0.020* | |
C30 | 0.9276 (3) | 0.3557 (3) | 0.0827 (3) | 0.0136 (7) | |
C31 | 0.7846 (4) | 0.0935 (4) | 0.2443 (3) | 0.0308 (9) | |
H31A | 0.8829 | 0.1003 | 0.2282 | 0.046* | |
H31B | 0.7492 | 0.1413 | 0.1800 | 0.046* | |
H31C | 0.7636 | 0.0164 | 0.2659 | 0.046* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.00874 (18) | 0.0129 (2) | 0.00790 (18) | −0.00220 (14) | −0.00128 (13) | −0.00351 (15) |
Cu2 | 0.00726 (17) | 0.0145 (2) | 0.00810 (18) | −0.00063 (13) | −0.00178 (13) | −0.00408 (15) |
Cu3 | 0.00937 (18) | 0.0123 (2) | 0.00782 (18) | 0.00178 (14) | −0.00247 (13) | −0.00451 (15) |
O1 | 0.0088 (10) | 0.0228 (14) | 0.0133 (11) | −0.0060 (9) | −0.0021 (8) | −0.0062 (10) |
O2 | 0.0149 (12) | 0.0354 (17) | 0.0115 (12) | −0.0138 (11) | −0.0006 (9) | −0.0061 (12) |
O3 | 0.0098 (10) | 0.0145 (12) | 0.0072 (10) | −0.0033 (8) | −0.0019 (8) | −0.0028 (9) |
O4 | 0.0101 (11) | 0.0237 (14) | 0.0083 (10) | 0.0025 (9) | −0.0031 (8) | −0.0030 (10) |
O5 | 0.0126 (11) | 0.0195 (13) | 0.0129 (11) | 0.0018 (9) | −0.0040 (9) | −0.0033 (10) |
O6 | 0.0135 (11) | 0.0266 (15) | 0.0115 (11) | 0.0047 (10) | −0.0033 (9) | −0.0084 (11) |
O7 | 0.0218 (12) | 0.0130 (13) | 0.0113 (11) | 0.0030 (9) | −0.0016 (9) | −0.0027 (10) |
O8 | 0.0127 (11) | 0.0189 (13) | 0.0217 (13) | 0.0050 (9) | −0.0035 (9) | −0.0115 (11) |
O9 | 0.0205 (12) | 0.0140 (12) | 0.0109 (11) | 0.0007 (9) | 0.0025 (9) | −0.0046 (10) |
O10 | 0.0251 (13) | 0.0103 (13) | 0.0334 (15) | −0.0018 (10) | −0.0150 (11) | 0.0000 (12) |
O11 | 0.0130 (11) | 0.0183 (13) | 0.0194 (12) | −0.0009 (9) | −0.0042 (9) | −0.0098 (11) |
O12 | 0.0171 (12) | 0.0158 (13) | 0.0159 (12) | 0.0013 (9) | −0.0061 (9) | −0.0051 (10) |
O13 | 0.0088 (10) | 0.0124 (12) | 0.0098 (10) | 0.0007 (8) | −0.0029 (8) | −0.0047 (9) |
O14 | 0.0096 (10) | 0.0110 (11) | 0.0111 (10) | 0.0008 (8) | −0.0029 (8) | −0.0046 (9) |
O15 | 0.0306 (15) | 0.0195 (15) | 0.0308 (16) | −0.0048 (12) | −0.0132 (12) | −0.0076 (13) |
N1 | 0.0096 (12) | 0.0133 (14) | 0.0089 (12) | 0.0012 (10) | −0.0016 (10) | −0.0055 (11) |
N2 | 0.0104 (12) | 0.0113 (14) | 0.0097 (12) | −0.0029 (10) | −0.0018 (10) | −0.0022 (11) |
N3 | 0.0096 (12) | 0.0122 (14) | 0.0117 (13) | −0.0002 (9) | −0.0020 (10) | −0.0074 (11) |
N4 | 0.0100 (12) | 0.0109 (13) | 0.0103 (12) | 0.0008 (10) | −0.0044 (10) | −0.0042 (11) |
N5 | 0.0111 (12) | 0.0104 (13) | 0.0115 (13) | 0.0007 (10) | −0.0023 (10) | −0.0049 (11) |
N6 | 0.0130 (13) | 0.0100 (14) | 0.0099 (12) | 0.0015 (10) | −0.0026 (10) | −0.0051 (11) |
N7 | 0.0151 (13) | 0.0130 (14) | 0.0111 (13) | −0.0017 (10) | −0.0009 (10) | −0.0073 (11) |
N8 | 0.0107 (13) | 0.0095 (14) | 0.0179 (14) | −0.0001 (10) | −0.0046 (11) | −0.0029 (12) |
C1 | 0.0140 (15) | 0.0133 (17) | 0.0138 (15) | 0.0006 (12) | −0.0024 (12) | −0.0077 (13) |
C2 | 0.0085 (14) | 0.0195 (19) | 0.0196 (17) | −0.0022 (12) | −0.0028 (12) | −0.0108 (15) |
C3 | 0.0151 (16) | 0.0193 (19) | 0.0204 (18) | −0.0002 (13) | −0.0081 (13) | −0.0085 (15) |
C4 | 0.0187 (17) | 0.021 (2) | 0.0120 (15) | 0.0006 (14) | −0.0055 (13) | −0.0075 (14) |
C5 | 0.0102 (14) | 0.0146 (17) | 0.0126 (15) | 0.0018 (12) | −0.0039 (12) | −0.0082 (13) |
C6 | 0.0125 (15) | 0.0115 (17) | 0.0118 (15) | 0.0019 (12) | −0.0033 (12) | −0.0039 (13) |
C7 | 0.0185 (17) | 0.0177 (19) | 0.0101 (15) | 0.0015 (13) | −0.0032 (12) | −0.0055 (14) |
C8 | 0.0225 (18) | 0.0147 (18) | 0.0115 (15) | −0.0025 (13) | 0.0008 (13) | −0.0031 (14) |
C9 | 0.0147 (16) | 0.020 (2) | 0.0141 (16) | −0.0062 (13) | 0.0032 (13) | −0.0059 (15) |
C10 | 0.0126 (15) | 0.0181 (18) | 0.0141 (16) | −0.0011 (13) | −0.0026 (12) | −0.0069 (14) |
C11 | 0.0106 (14) | 0.0118 (16) | 0.0122 (15) | −0.0034 (11) | −0.0001 (11) | −0.0045 (13) |
C12 | 0.0116 (15) | 0.0191 (18) | 0.0152 (16) | −0.0013 (12) | −0.0005 (12) | −0.0097 (14) |
C13 | 0.0102 (14) | 0.0206 (18) | 0.0197 (17) | 0.0006 (12) | −0.0013 (12) | −0.0113 (15) |
C14 | 0.0130 (15) | 0.0147 (17) | 0.0136 (15) | 0.0017 (12) | −0.0051 (12) | −0.0061 (13) |
C15 | 0.0101 (14) | 0.0117 (16) | 0.0123 (15) | −0.0001 (11) | −0.0043 (11) | −0.0059 (13) |
C16 | 0.0118 (14) | 0.0093 (15) | 0.0136 (15) | 0.0012 (11) | −0.0039 (11) | −0.0069 (13) |
C17 | 0.0139 (15) | 0.0135 (17) | 0.0148 (16) | 0.0030 (12) | −0.0055 (12) | −0.0067 (14) |
C18 | 0.0197 (17) | 0.021 (2) | 0.0119 (15) | 0.0066 (14) | −0.0076 (13) | −0.0075 (14) |
C19 | 0.0161 (16) | 0.0209 (19) | 0.0069 (14) | 0.0047 (13) | −0.0035 (12) | −0.0042 (14) |
C20 | 0.0129 (15) | 0.0151 (17) | 0.0091 (14) | 0.0026 (12) | −0.0034 (11) | −0.0051 (13) |
C21 | 0.0148 (15) | 0.0116 (16) | 0.0143 (15) | −0.0009 (12) | −0.0033 (12) | −0.0059 (13) |
C22 | 0.0175 (16) | 0.0135 (17) | 0.0139 (15) | 0.0004 (12) | −0.0079 (12) | −0.0035 (13) |
C23 | 0.0151 (16) | 0.0149 (17) | 0.0189 (17) | 0.0051 (12) | −0.0077 (13) | −0.0063 (14) |
C24 | 0.0112 (15) | 0.0180 (18) | 0.0194 (17) | 0.0028 (12) | −0.0036 (12) | −0.0112 (15) |
C25 | 0.0128 (15) | 0.0114 (16) | 0.0138 (15) | 0.0025 (11) | −0.0025 (12) | −0.0083 (13) |
C26 | 0.0125 (15) | 0.0116 (16) | 0.0167 (16) | 0.0014 (12) | −0.0053 (12) | −0.0093 (13) |
C27 | 0.0137 (16) | 0.0205 (19) | 0.0196 (17) | 0.0022 (13) | −0.0031 (13) | −0.0121 (15) |
C28 | 0.0150 (16) | 0.021 (2) | 0.0174 (16) | −0.0005 (13) | 0.0017 (13) | −0.0118 (15) |
C29 | 0.0191 (17) | 0.0209 (19) | 0.0107 (15) | 0.0016 (14) | −0.0031 (12) | −0.0083 (14) |
C30 | 0.0149 (16) | 0.0116 (17) | 0.0136 (15) | 0.0032 (12) | −0.0021 (12) | −0.0060 (13) |
C31 | 0.036 (2) | 0.030 (2) | 0.032 (2) | −0.0003 (18) | −0.0100 (18) | −0.016 (2) |
Cu1—O3 | 1.966 (2) | C1—C2 | 1.403 (5) |
Cu1—O14 | 1.970 (2) | C2—C3 | 1.373 (5) |
Cu1—N1 | 1.991 (3) | C2—H2 | 0.9500 |
Cu1—N2 | 2.028 (3) | C3—C4 | 1.399 (5) |
Cu1—O11 | 2.474 (2) | C3—H3 | 0.9500 |
Cu1—O7 | 2.503 (2) | C4—C5 | 1.374 (5) |
Cu2—O13 | 1.933 (2) | C4—H4 | 0.9500 |
Cu2—N3 | 1.964 (2) | C5—C6 | 1.481 (5) |
Cu2—N4 | 2.056 (3) | C6—C7 | 1.377 (4) |
Cu2—O14 | 2.062 (2) | C7—C8 | 1.399 (5) |
Cu2—O12 | 2.188 (2) | C7—H7 | 0.9500 |
Cu3—O13 | 1.951 (2) | C8—C9 | 1.358 (5) |
Cu3—O4 | 1.960 (2) | C8—H8 | 0.9500 |
Cu3—N5 | 2.008 (3) | C9—C10 | 1.404 (5) |
Cu3—N6 | 2.044 (2) | C9—H9 | 0.9500 |
Cu3—O15 | 2.292 (3) | C11—C12 | 1.404 (4) |
O1—C1 | 1.304 (4) | C12—C13 | 1.376 (5) |
O1—H1 | 0.8400 | C12—H12 | 0.9500 |
O2—C10 | 1.324 (4) | C13—C14 | 1.393 (4) |
O2—H2A | 0.8400 | C13—H13 | 0.9500 |
O3—C11 | 1.312 (4) | C14—C15 | 1.380 (4) |
O4—C20 | 1.302 (4) | C14—H14 | 0.9500 |
O5—C21 | 1.321 (4) | C15—C16 | 1.483 (4) |
O5—H5 | 0.8400 | C16—C17 | 1.363 (4) |
O6—C30 | 1.330 (4) | C17—C18 | 1.394 (5) |
O6—H6 | 0.8400 | C17—H17 | 0.9500 |
O7—N7 | 1.244 (3) | C18—C19 | 1.369 (4) |
O8—N7 | 1.243 (3) | C18—H18 | 0.9500 |
O9—N7 | 1.277 (3) | C19—C20 | 1.418 (4) |
O10—N8 | 1.255 (4) | C19—H19 | 0.9500 |
O11—N8 | 1.247 (4) | C21—C22 | 1.404 (4) |
O12—N8 | 1.265 (4) | C22—C23 | 1.364 (4) |
O13—H13A | 0.828 (19) | C22—H22 | 0.9500 |
O14—H14A | 0.823 (18) | C23—C24 | 1.400 (5) |
O15—C31 | 1.452 (5) | C23—H23 | 0.9500 |
O15—H15 | 0.85 (4) | C24—C25 | 1.377 (4) |
N1—C1 | 1.345 (4) | C24—H24 | 0.9500 |
N1—C5 | 1.368 (4) | C25—C26 | 1.472 (4) |
N2—C10 | 1.338 (4) | C26—C27 | 1.379 (4) |
N2—C6 | 1.369 (4) | C27—C28 | 1.385 (5) |
N3—C11 | 1.352 (4) | C27—H27 | 0.9500 |
N3—C15 | 1.352 (4) | C28—C29 | 1.365 (5) |
N4—C20 | 1.349 (4) | C28—H28 | 0.9500 |
N4—C16 | 1.373 (4) | C29—C30 | 1.401 (4) |
N5—C21 | 1.337 (4) | C29—H29 | 0.9500 |
N5—C25 | 1.372 (4) | C31—H31A | 0.9800 |
N6—C30 | 1.346 (4) | C31—H31B | 0.9800 |
N6—C26 | 1.368 (4) | C31—H31C | 0.9800 |
O3—Cu1—O14 | 92.09 (9) | C5—C4—H4 | 121.0 |
O3—Cu1—N1 | 169.20 (10) | C3—C4—H4 | 121.0 |
O14—Cu1—N1 | 94.74 (10) | N1—C5—C4 | 122.7 (3) |
O3—Cu1—N2 | 92.42 (10) | N1—C5—C6 | 114.8 (3) |
O14—Cu1—N2 | 171.80 (10) | C4—C5—C6 | 122.6 (3) |
N1—Cu1—N2 | 81.86 (11) | N2—C6—C7 | 122.7 (3) |
O3—Cu1—O11 | 81.68 (8) | N2—C6—C5 | 114.9 (3) |
O14—Cu1—O11 | 81.22 (8) | C7—C6—C5 | 122.4 (3) |
N1—Cu1—O11 | 91.10 (9) | C6—C7—C8 | 118.1 (3) |
N2—Cu1—O11 | 106.22 (9) | C6—C7—H7 | 121.0 |
O3—Cu1—O7 | 83.89 (9) | C8—C7—H7 | 121.0 |
O14—Cu1—O7 | 86.60 (8) | C9—C8—C7 | 120.3 (3) |
N1—Cu1—O7 | 104.84 (9) | C9—C8—H8 | 119.8 |
N2—Cu1—O7 | 87.07 (9) | C7—C8—H8 | 119.8 |
O11—Cu1—O7 | 160.71 (8) | C8—C9—C10 | 118.6 (3) |
O13—Cu2—N3 | 177.44 (10) | C8—C9—H9 | 120.7 |
O13—Cu2—N4 | 98.59 (10) | C10—C9—H9 | 120.7 |
N3—Cu2—N4 | 81.24 (10) | O2—C10—N2 | 119.2 (3) |
O13—Cu2—O14 | 90.04 (9) | O2—C10—C9 | 118.2 (3) |
N3—Cu2—O14 | 88.22 (9) | N2—C10—C9 | 122.6 (3) |
N4—Cu2—O14 | 132.65 (10) | O3—C11—N3 | 118.3 (3) |
O13—Cu2—O12 | 91.19 (9) | O3—C11—C12 | 121.0 (3) |
N3—Cu2—O12 | 91.20 (10) | N3—C11—C12 | 120.8 (3) |
N4—Cu2—O12 | 114.24 (10) | C13—C12—C11 | 119.1 (3) |
O14—Cu2—O12 | 112.01 (9) | C13—C12—H12 | 120.5 |
O13—Cu3—O4 | 91.56 (9) | C11—C12—H12 | 120.5 |
O13—Cu3—N5 | 93.98 (10) | C12—C13—C14 | 120.1 (3) |
O4—Cu3—N5 | 169.81 (11) | C12—C13—H13 | 119.9 |
O13—Cu3—N6 | 168.03 (10) | C14—C13—H13 | 119.9 |
O4—Cu3—N6 | 91.13 (10) | C15—C14—C13 | 118.1 (3) |
N5—Cu3—N6 | 81.74 (10) | C15—C14—H14 | 120.9 |
O13—Cu3—O15 | 98.82 (10) | C13—C14—H14 | 120.9 |
O4—Cu3—O15 | 94.90 (10) | N3—C15—C14 | 122.5 (3) |
N5—Cu3—O15 | 92.70 (10) | N3—C15—C16 | 114.5 (3) |
N6—Cu3—O15 | 92.58 (11) | C14—C15—C16 | 122.9 (3) |
C1—O1—H1 | 109.5 | C17—C16—N4 | 123.2 (3) |
C10—O2—H2A | 109.5 | C17—C16—C15 | 122.3 (3) |
C11—O3—Cu1 | 125.2 (2) | N4—C16—C15 | 114.5 (3) |
C20—O4—Cu3 | 140.7 (2) | C16—C17—C18 | 119.2 (3) |
C21—O5—H5 | 109.5 | C16—C17—H17 | 120.4 |
C30—O6—H6 | 109.5 | C18—C17—H17 | 120.4 |
N7—O7—Cu1 | 128.98 (17) | C19—C18—C17 | 118.7 (3) |
N8—O11—Cu1 | 123.07 (18) | C19—C18—H18 | 120.6 |
N8—O12—Cu2 | 115.9 (2) | C17—C18—H18 | 120.6 |
Cu2—O13—Cu3 | 125.46 (12) | C18—C19—C20 | 120.1 (3) |
Cu2—O13—H13A | 101 (3) | C18—C19—H19 | 120.0 |
Cu3—O13—H13A | 105 (3) | C20—C19—H19 | 120.0 |
Cu1—O14—Cu2 | 114.21 (11) | O4—C20—N4 | 121.0 (3) |
Cu1—O14—H14A | 109 (3) | O4—C20—C19 | 118.2 (3) |
Cu2—O14—H14A | 101 (3) | N4—C20—C19 | 120.9 (3) |
C31—O15—Cu3 | 117.3 (2) | O5—C21—N5 | 120.4 (3) |
C31—O15—H15 | 137 (3) | O5—C21—C22 | 117.6 (3) |
Cu3—O15—H15 | 100 (3) | N5—C21—C22 | 122.0 (3) |
C1—N1—C5 | 119.1 (3) | C23—C22—C21 | 118.9 (3) |
C1—N1—Cu1 | 125.9 (2) | C23—C22—H22 | 120.6 |
C5—N1—Cu1 | 114.8 (2) | C21—C22—H22 | 120.6 |
C10—N2—C6 | 117.8 (3) | C22—C23—C24 | 119.7 (3) |
C10—N2—Cu1 | 128.6 (2) | C22—C23—H23 | 120.1 |
C6—N2—Cu1 | 113.5 (2) | C24—C23—H23 | 120.1 |
C11—N3—C15 | 119.4 (3) | C25—C24—C23 | 119.0 (3) |
C11—N3—Cu2 | 124.0 (2) | C25—C24—H24 | 120.5 |
C15—N3—Cu2 | 116.1 (2) | C23—C24—H24 | 120.5 |
C20—N4—C16 | 117.8 (3) | N5—C25—C24 | 121.4 (3) |
C20—N4—Cu2 | 129.6 (2) | N5—C25—C26 | 115.6 (3) |
C16—N4—Cu2 | 112.6 (2) | C24—C25—C26 | 123.0 (3) |
C21—N5—C25 | 118.9 (3) | N6—C26—C27 | 121.2 (3) |
C21—N5—Cu3 | 127.1 (2) | N6—C26—C25 | 115.3 (3) |
C25—N5—Cu3 | 113.9 (2) | C27—C26—C25 | 123.5 (3) |
C30—N6—C26 | 118.0 (3) | C26—C27—C28 | 119.7 (3) |
C30—N6—Cu3 | 129.0 (2) | C26—C27—H27 | 120.2 |
C26—N6—Cu3 | 112.9 (2) | C28—C27—H27 | 120.2 |
O8—N7—O7 | 121.4 (3) | C29—C28—C27 | 120.2 (3) |
O8—N7—O9 | 118.7 (3) | C29—C28—H28 | 119.9 |
O7—N7—O9 | 119.9 (2) | C27—C28—H28 | 119.9 |
O11—N8—O10 | 120.4 (3) | C28—C29—C30 | 117.8 (3) |
O11—N8—O12 | 120.5 (3) | C28—C29—H29 | 121.1 |
O10—N8—O12 | 119.1 (3) | C30—C29—H29 | 121.1 |
O1—C1—N1 | 120.0 (3) | O6—C30—N6 | 118.7 (3) |
O1—C1—C2 | 119.4 (3) | O6—C30—C29 | 118.2 (3) |
N1—C1—C2 | 120.6 (3) | N6—C30—C29 | 123.1 (3) |
C3—C2—C1 | 119.8 (3) | O15—C31—H31A | 109.5 |
C3—C2—H2 | 120.1 | O15—C31—H31B | 109.5 |
C1—C2—H2 | 120.1 | H31A—C31—H31B | 109.5 |
C2—C3—C4 | 119.8 (3) | O15—C31—H31C | 109.5 |
C2—C3—H3 | 120.1 | H31A—C31—H31C | 109.5 |
C4—C3—H3 | 120.1 | H31B—C31—H31C | 109.5 |
C5—C4—C3 | 118.0 (3) | ||
Cu1—O7—N7—O8 | 172.8 (2) | C13—C14—C15—C16 | 178.1 (3) |
Cu1—O7—N7—O9 | −6.8 (4) | C20—N4—C16—C17 | 2.7 (5) |
Cu1—O11—N8—O10 | −111.9 (3) | Cu2—N4—C16—C17 | −178.7 (3) |
Cu1—O11—N8—O12 | 68.9 (3) | C20—N4—C16—C15 | −178.2 (3) |
Cu2—O12—N8—O11 | −9.2 (3) | Cu2—N4—C16—C15 | 0.4 (3) |
Cu2—O12—N8—O10 | 171.6 (2) | N3—C15—C16—C17 | 171.4 (3) |
C5—N1—C1—O1 | −177.7 (3) | C14—C15—C16—C17 | −8.2 (5) |
Cu1—N1—C1—O1 | 7.1 (4) | N3—C15—C16—N4 | −7.7 (4) |
C5—N1—C1—C2 | 1.9 (4) | C14—C15—C16—N4 | 172.7 (3) |
Cu1—N1—C1—C2 | −173.2 (2) | N4—C16—C17—C18 | −3.5 (5) |
O1—C1—C2—C3 | 178.2 (3) | C15—C16—C17—C18 | 177.5 (3) |
N1—C1—C2—C3 | −1.5 (5) | C16—C17—C18—C19 | 0.9 (5) |
C1—C2—C3—C4 | −0.3 (5) | C17—C18—C19—C20 | 2.1 (5) |
C2—C3—C4—C5 | 1.7 (5) | Cu3—O4—C20—N4 | 19.3 (5) |
C1—N1—C5—C4 | −0.5 (4) | Cu3—O4—C20—C19 | −160.8 (3) |
Cu1—N1—C5—C4 | 175.1 (3) | C16—N4—C20—O4 | −179.6 (3) |
C1—N1—C5—C6 | 179.7 (3) | Cu2—N4—C20—O4 | 2.1 (5) |
Cu1—N1—C5—C6 | −4.6 (3) | C16—N4—C20—C19 | 0.5 (5) |
C3—C4—C5—N1 | −1.3 (5) | Cu2—N4—C20—C19 | −177.8 (2) |
C3—C4—C5—C6 | 178.5 (3) | C18—C19—C20—O4 | 177.2 (3) |
C10—N2—C6—C7 | 0.5 (5) | C18—C19—C20—N4 | −2.9 (5) |
Cu1—N2—C6—C7 | 176.2 (2) | C25—N5—C21—O5 | 179.1 (3) |
C10—N2—C6—C5 | −178.6 (3) | Cu3—N5—C21—O5 | −3.4 (5) |
Cu1—N2—C6—C5 | −2.8 (3) | C25—N5—C21—C22 | −0.8 (5) |
N1—C5—C6—N2 | 4.9 (4) | Cu3—N5—C21—C22 | 176.7 (2) |
C4—C5—C6—N2 | −174.8 (3) | O5—C21—C22—C23 | −178.6 (3) |
N1—C5—C6—C7 | −174.1 (3) | N5—C21—C22—C23 | 1.4 (5) |
C4—C5—C6—C7 | 6.2 (5) | C21—C22—C23—C24 | −1.1 (5) |
N2—C6—C7—C8 | −0.5 (5) | C22—C23—C24—C25 | 0.3 (5) |
C5—C6—C7—C8 | 178.5 (3) | C21—N5—C25—C24 | 0.0 (5) |
C6—C7—C8—C9 | −0.7 (5) | Cu3—N5—C25—C24 | −177.8 (3) |
C7—C8—C9—C10 | 1.8 (5) | C21—N5—C25—C26 | 177.6 (3) |
C6—N2—C10—O2 | −178.4 (3) | Cu3—N5—C25—C26 | −0.2 (4) |
Cu1—N2—C10—O2 | 6.6 (5) | C23—C24—C25—N5 | 0.2 (5) |
C6—N2—C10—C9 | 0.7 (5) | C23—C24—C25—C26 | −177.2 (3) |
Cu1—N2—C10—C9 | −174.3 (2) | C30—N6—C26—C27 | 2.6 (5) |
C8—C9—C10—O2 | 177.3 (3) | Cu3—N6—C26—C27 | −173.8 (3) |
C8—C9—C10—N2 | −1.8 (5) | C30—N6—C26—C25 | −175.0 (3) |
Cu1—O3—C11—N3 | 67.6 (4) | Cu3—N6—C26—C25 | 8.6 (3) |
Cu1—O3—C11—C12 | −113.4 (3) | N5—C25—C26—N6 | −5.7 (4) |
C15—N3—C11—O3 | 176.9 (3) | C24—C25—C26—N6 | 171.9 (3) |
Cu2—N3—C11—O3 | −12.0 (4) | N5—C25—C26—C27 | 176.8 (3) |
C15—N3—C11—C12 | −2.0 (5) | C24—C25—C26—C27 | −5.7 (5) |
Cu2—N3—C11—C12 | 169.1 (2) | N6—C26—C27—C28 | −3.2 (5) |
O3—C11—C12—C13 | −179.4 (3) | C25—C26—C27—C28 | 174.2 (3) |
N3—C11—C12—C13 | −0.5 (5) | C26—C27—C28—C29 | 1.0 (6) |
C11—C12—C13—C14 | 2.1 (5) | C27—C28—C29—C30 | 1.6 (5) |
C12—C13—C14—C15 | −1.1 (5) | C26—N6—C30—O6 | 178.8 (3) |
C11—N3—C15—C14 | 3.1 (5) | Cu3—N6—C30—O6 | −5.5 (5) |
Cu2—N3—C15—C14 | −168.7 (3) | C26—N6—C30—C29 | 0.2 (5) |
C11—N3—C15—C16 | −176.5 (3) | Cu3—N6—C30—C29 | 175.9 (3) |
Cu2—N3—C15—C16 | 11.7 (3) | C28—C29—C30—O6 | 179.1 (3) |
C13—C14—C15—N3 | −1.5 (5) | C28—C29—C30—N6 | −2.2 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O14 | 0.84 | 1.61 | 2.448 (3) | 175 |
O2—H2A···O3 | 0.84 | 1.66 | 2.499 (3) | 172 |
O5—H5···O13 | 0.84 | 1.70 | 2.536 (3) | 170 |
O6—H6···O4 | 0.84 | 1.67 | 2.495 (3) | 168 |
O13—H13A···O9i | 0.83 (2) | 1.98 (2) | 2.763 (3) | 158 (4) |
O14—H14A···O9 | 0.82 (2) | 1.94 (2) | 2.738 (3) | 163 (4) |
O15—H15···O10ii | 0.85 (5) | 2.42 (5) | 2.790 (4) | 107 (4) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y, −z+1. |
Acknowledgements
The X-ray diffractometer was funded by NSF Grant 0087210, Ohio Board of Regents Grant CAP-491, and by Youngstown State University. NSF CAREER (Grant CHE-0846383 and CHE-1360802) provided funding to ETP and her group. NSF Grant CHE-1039689 provided funding for the X-ray diffractometer at Illinois State University.
References
Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. J. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356. CSD CrossRef Web of Science Google Scholar
Barnett, S. M., Goldberg, K. I. & Mayer, J. M. (2012). Nat. Chem. 4, 498–502. Web of Science CrossRef CAS PubMed Google Scholar
Blakemore, J. D., Schley, N. D., Balcells, D., Hull, J. F., Olack, G. W., Incarvito, C. D., Eisenstein, O., Brudvig, G. W. & Crabtree, R. H. (2010). J. Am. Chem. Soc. 132, 16017–16029. Web of Science CSD CrossRef CAS PubMed Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Version 2009.7-0. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2012). APEX2 and SAINT. Version 2012.4-3. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
DePasquale, J., Nieto, I., Reuther, L. E., Herbst-Gervasoni, C. J., Paul, J. J., Mochalin, V., Zeller, M., Thomas, C. M., Addison, A. W. & Papish, E. T. (2013). Inorg. Chem. 52, 9175–9183. Web of Science CSD CrossRef CAS PubMed Google Scholar
Gerlach, D. L., Bhagan, S., Cruce, A. A., Burks, D. B., Nieto, I., Truong, H. T., Kelley, S. P., Herbst-Gervasoni, C. J., Jernigan, K. L., Bowman, M. K., Pan, S., Zeller, M. & Papish, E. T. (2014). Inorg. Chem. 53, 12689–12698. Web of Science CSD CrossRef CAS PubMed Google Scholar
Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. Web of Science CSD CrossRef CAS Google Scholar
Guo, H.-X., Rao, Z.-M. & Wang, Q.-H. (2007). Acta Cryst. E63, m637–m638. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
He, X. & Lu, C.-Z. (2004). Z. Anorg. Allg. Chem. 630, 756–759. Web of Science CSD CrossRef CAS Google Scholar
Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284. Web of Science CrossRef IUCr Journals Google Scholar
Jeffrey, G. A. (2003). Crystallogr. Rev. 9, 135–176. CrossRef CAS Google Scholar
Kikuchi, T. & Tanaka, K. (2014). Eur. J. Inorg. Chem. 2014, 607–618. Web of Science CrossRef CAS Google Scholar
Luo, F., Che, Y.-X. & Zheng, J.-M. (2006). Inorg. Chem. Commun. 9, 848–851. Web of Science CSD CrossRef CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Marelius, D. C., Bhagan, S., Charboneau, D. J., Schroeder, K. M., Kamdar, J. M., McGettigan, A. R., Freeman, B. J., Moore, C. E., Rheingold, A. L., Cooksy, A. L., Smith, D. K., Paul, J. J., Papish, E. T. & Grotjahn, D. B. (2014). Eur. J. Inorg. Chem. pp. 676–689. Web of Science CSD CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2009). TWINABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Singh, A. & Spiccia, L. (2013). Coord. Chem. Rev. 257, 2607–2622. Web of Science CrossRef CAS Google Scholar
Sun, Y.-H., Yu, J.-H., Jin, X.-J., Song, J.-F., Xu, J.-Q. & Ye, L. (2006). Inorg. Chem. Commun. 9, 1087–1090. Web of Science CSD CrossRef CAS Google Scholar
Wang, C.-M., Zheng, S.-T. & Yang, G.-Y. (2009). J. Clust Sci. 20, 489–501. Web of Science CSD CrossRef CAS Google Scholar
Zhang, J.-P., Han, Z.-B., Chen, X.-M. & Xuebao, W. H. (2004). Chin. J. Inorg. Chem. 20, 1213–1216. CAS Google Scholar
Zhang, X.-M., Tong, M.-L. & Chen, X.-M. (2002). Angew. Chem. Int. Ed. 41, 1029–1031. Web of Science CrossRef CAS Google Scholar
Zhang, X.-M., Tong, M.-L., Gong, M.-L., Lee, H.-K., Luo, L., Li, K.-F., Tong, Y.-X. & Chen, X.-M. (2002). Chem. Eur. J. 8, 3187–3194. CrossRef PubMed CAS Google Scholar
Zhong, Z.-G., Li, J. & Song, J.-F. (2013). Z. Kristallogr. New Cryst. Struct. 228, 261–262. Web of Science CSD CrossRef CAS Google Scholar
Zhong, Z.-G., Feng, Y.-Q. & Zhang, P. (2013). Acta Cryst. C69, 833–836. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.