research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2-{[(E)-(4-anilinophen­yl)iminium­yl]meth­yl}-5-(di­ethyl­amino)­phenolate

aDepartment of Chemistry, Indian Institute of Technology Kanpur, Kanpur, UP 208 016, India, and bNational Taras Shevchenko University, Department of Chemistry, Volodymyrska str. 64, 01601 Kyiv, Ukraine
*Correspondence e-mail: katerina_241992@ukr.net

Edited by A. J. Lough, University of Toronto, Canada (Received 24 September 2015; accepted 14 October 2015; online 4 November 2015)

The title compound, C23H25N3O, crystallized with one single mol­ecule in the asymmetric unit and is present in the zwitterionic form. There is an intra­molecular N—H⋯O hydrogen bond in the mol­ecule with the phenol ring being inclined to the central benzene ring by 20.67 (14)°. The terminal amino­phenyl ring forms a dihedral angle of 54.21 (14)° with the central benzene ring. The two outer aromatic rings are inclined to one another by 74.54 (14)°. In the crystal, the mol­ecules are connected by N—H⋯O hydrogen bonds, with adjacent molecules related by a 21 screw axis, generating –A–B–A–B– zigzag chains extending along [010]. The chains are linked via C—H⋯π and ππ inter­actions [with a centroid–centroid distance of 3.444 (3) Å] between the benzene ring and the imino group of symmetry-related mol­ecules, forming slabs lying parallel to (100).

1. Chemical context

Our research inter­est focuses on study of Schiff bases derived from 4-di­ethyl­amino-2-hy­droxy­benzaldehyde. It is well known that Schiff bases of salicyl­aldehyde derivative may exhibit thermochromism or photochromism, depending on the planarity or non-planarity of the mol­ecule, respectively (Cohen & Schmidt, 1964[Cohen, M. D. & Schmidt, G. M. J. (1964). J. Chem. Soc. pp. 1996-2000.]; Amimoto & Kawato, 2005[Amimoto, K. & Kawato, T. (2005). J. Photochem. Photobiol. Photochem. Rev. 6, 207-226.]). Schiff bases often exhibit various biological activities and in many cases have been shown to possess anti­bacterial, anti­cancer, anti-inflammatory and anti­toxic properties (Lozier et al., 1975[Lozier, R. H., Bogomolni, R. A. & Stoeckenius, W. (1975). Biophys. J. 15, 955-962.]). They are used as anion sensors (Dalapati et al., 2011[Dalapati, S., Alam, M. A., Jana, S. & Guchhait, N. (2011). J. Fluorine Chem. 132, 536-540.]), as non-linear optical compounds (Sun et al., 2012[Sun, Y., Wang, Y., Liu, Z., Huang, C. & Yu, C. (2012). Spectrochim. Acta Part A, 96, 42-50.]) and as versatile polynuclear ligands for multinuclear magnetic exchange clusters (Moroz et al., 2012[Moroz, Y. S., Demeshko, S., Haukka, M., Mokhir, A., Mitra, U., Stocker, M., Müller, P., Meyer, F. & Fritsky, I. O. (2012). Inorg. Chem. 51, 7445-7447.]). Schiff bases have also been used to prepare metal complexes (Faizi & Sen, 2014[Faizi, M. S. H. & Sen, P. (2014). Acta Cryst. E70, m173.]; Faizi & Hussain, 2014[Faizi, M. S. H. & Hussain, S. (2014). Acta Cryst. E70, m197.]; Penkova et al., 2010[Penkova, L., Demeshko, S., Pavlenko, V. A., Dechert, S., Meyer, F. & Fritsky, I. O. (2010). Inorg. Chim. Acta, 363, 3036-3040.]). We report herein on the crystal structure of the title compound synthesized by the condensation reaction of 4-di­ethyl­amino-2-hy­droxy­benzaldehyde and N-phenyl-p-phenyl­enedi­amine.

[Scheme 1]

2. Structural commentary

In the solid state, the title compound (Fig. 1[link]) exists in the zwitterionic form. An intra­molecular N—H⋯O hydrogen bond stabilizes the mol­ecular structure (Table 1[link] and Fig. 2[link]); this is an uncommon feature in related imine-phenol compounds. The imine group, which displays a C6—C11—N2—C12 torsion angle of −178.3 (2)°, contributes to the general non-planarity of the mol­ecule. The phenol ring (C1–C6) is inclined to the central benzene ring (C12–C17) by 20.67 (14)°.

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯O1 0.90 (2) 1.83 (2) 2.609 (2) 143 (2)
N3—H3H⋯O1i 0.85 (2) 2.05 (2) 2.900 (3) 175 (2)
C7—H7ACgii 0.97 2.87 3.465 (3) 121
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling and the intra­molecular N—H⋯O hydrogen bond as a dashed line (see Table 1[link] for details). Displacement ellipsoids are drawn at the 40% probability level.
[Figure 2]
Figure 2
A view of the one-dimensional –A–B–A–B– zigzag hydrogen-bonded chain extending along the b axis. Hydrogen bonds are shown as dashed lines; see Table 1[link] for details.

The conformation of the mol­ecule is determined by the orientation of the terminal amino­phenyl ring (C18–C23) with respect to the central benzene ring (C12–C17); the dihedral angle between them is 54.21 (14)°. The two outer aromatic rings (C18–C23 and C1–C6) are inclined to one another by 74.54 (14)°. The C—N, C=N and C—C bond lengths are normal and close to the values observed in related structures (Sliva et al., 1997[Sliva, T. Yu., Duda, A. M., Głowiak, T., Fritsky, I. O., Amirkhanov, V. M., Mokhir, A. A. & Kozłowski, H. (1997). J. Chem. Soc. Dalton Trans. pp. 273-276.]; Petrusenko et al., 1997[Petrusenko, S. R., Kokozay, V. N. & Fritsky, I. O. (1997). Polyhedron, 16, 267-274.]; Fritsky et al., 2006[Fritsky, I. O., Kozłowski, H., Kanderal, O. M., Haukka, M., Świątek-Kozłowska, J., Gumienna-Kontecka, E. & Meyer, F. (2006). Chem. Commun. pp. 4125-4127.]).

3. Supra­molecular features

In the crystal, mol­ecules are connected by N—H⋯O hydrogen bonds generating –ABAB– zigzag chains extending along [010]; Table 1[link] and Fig. 3[link]. The chains are linked via C—H⋯π inter­actions and ππ inter­actions between the benzene ring and the imino group of neighbouring mol­ecules, forming slabs lying parallel to (100); see Table 1[link] and Fig. 3[link]. The ππ inter­actions are defined by Cg1⋯Cg2i = 3.444 (3) Å, where Cg1 and Cg2 are the centroids of atoms C1–C6 and the midpoint of atoms N2/C11, respectively [symmetry code: (i) x, −y + [{1\over 2}], z − [{1\over 2}]].

[Figure 3]
Figure 3
A view along the c axis of the crystal packing of the title compound. The hydrogen bonds, C—H⋯π inter­actions and ππ inter­actions between the benzene ring and the imino group are shown as dashed lines (see Table 1[link] for details; for the latter inter­actions, the atoms involved are shown).

4. Database survey

There are very few examples of similar compounds in the literature although some metal complexes of similar ligands have been reported (Xie et al., 2013[Xie, Y.-Z., Shan, G.-G., Li, P., Zhou, Z.-Y. & Su, Z.-M. (2013). Dyes Pigments, 96, 467-474.]; Safin et al., 2012[Safin, D. A., Robeyns, K. & Garcia, Y. (2012). RSC Adv. 2, 11379-11388.]). A search of the Cambridge Structural Database (Version 5.35, May 2014; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) revealed the structure of one very similar compound, viz. N-[(E)-4-chloro­benzyl­idene]-N′-phenyl­benzene-1,4-di­amine (Nor Hashim et al., 2010[Nor Hashim, N. Z., Kassim, K. & Yamin, B. M. (2010). Acta Cryst. E66, o2039.], in which the 2-phenol ring in the title compound is replaced by a 4-chloro­benzene ring. The central six-membered ring makes a dihedral angle of 12.26 (10)° with the 4-chloro­phenyl ring. The corresponding dihedral angle in the title compound is 20.67 (14)°.

5. Synthesis and crystallization

100 mg (1 mmol) of N-phenyl-p-phenyl­enedi­amine was dissolved in 10 ml of absolute ethanol. To this solution, 85 mg (1 mmol) of 4-di­ethyl­amino-2-hy­droxy­benzaldehyde in 5 ml of absolute ethanol was dropwisely added under stirring. This mixture was stirred for 10 min, two drops of glacial acetic acid were then added and the mixture was further refluxed for 2 h. The resulting yellow precipitate was recovered by filtration, washed several times with a small portions of EtOH and then with diethyl ether to give 150 mg (88%) of 5-di­ethyl­amino-2-[(E)-{[4-(phenyl­amino)­phen­yl]imino­meth­yl}phenol] (DPIM). Crystals of the title compound suitable for X-ray analysis were obtained within three days by slow evaporation of the DMF solvent.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The N—H and H atoms were located in a difference Fourier map. Their positional and isotropic thermal parameters were included in further stages of the refinement. All C-bound H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.97 Å and with Uiso(H) = 1.2–1.5Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C23H25N3O
Mr 359.46
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 18.0358 (16), 11.3851 (8), 9.4815 (9)
β (°) 104.560 (3)
V3) 1884.4 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.20 × 0.15 × 0.12
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.984, 0.991
No. of measured, independent and observed [I > 2σ(I)'] reflections 14768, 3322, 2186
Rint 0.078
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.138, 1.00
No. of reflections 3322
No. of parameters 254
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.24, −0.30
Computer programs: SMART and SAINT (Bruker, 2003[Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), DIAMOND (Brandenberg & Putz, 2006[Brandenberg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenberg & Putz, 2006) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

2-{[(E)-(4-Anilinophenyl)iminiumyl]methyl}-5-(diethylamino)phenolate top
Crystal data top
C23H25N3OF(000) = 768
Mr = 359.46Dx = 1.267 Mg m3
Monoclinic, P21/cMelting point: 270 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 18.0358 (16) ÅCell parameters from 2553 reflections
b = 11.3851 (8) Åθ = 2.7–23.7°
c = 9.4815 (9) ŵ = 0.08 mm1
β = 104.560 (3)°T = 100 K
V = 1884.4 (3) Å3Needle, dark yellow
Z = 40.20 × 0.15 × 0.12 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
3322 independent reflections
Radiation source: fine-focus sealed tube2186 reflections with I > 2σ(I)'
Graphite monochromatorRint = 0.078
ω–scansθmax = 25.0°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1921
Tmin = 0.984, Tmax = 0.991k = 1313
14768 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0763P)2]
where P = (Fo2 + 2Fc2)/3
3322 reflections(Δ/σ)max < 0.001
254 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.30 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.16973 (12)0.14061 (19)0.0731 (3)0.0162 (5)
C20.22412 (11)0.10711 (19)0.1497 (2)0.0168 (5)
H20.23190.02750.16240.020*
C30.26674 (11)0.18820 (19)0.2072 (2)0.0160 (5)
C40.25415 (12)0.31118 (19)0.1877 (3)0.0174 (5)
H40.28230.36710.22350.021*
C50.20136 (12)0.34542 (19)0.1173 (3)0.0185 (5)
H50.19370.42540.10690.022*
C60.15719 (11)0.26528 (18)0.0586 (2)0.0156 (5)
C70.36691 (12)0.2388 (2)0.3332 (3)0.0220 (6)
H7A0.33550.30490.37670.026*
H7B0.38630.20180.40890.026*
C80.43420 (13)0.2845 (2)0.2161 (3)0.0284 (6)
H8A0.41570.33080.14760.043*
H8B0.46610.33220.26020.043*
H8C0.46340.21950.16660.043*
C90.33326 (15)0.0308 (2)0.3032 (3)0.0325 (7)
H9A0.35230.02290.38980.039*
H9B0.28520.01170.32030.039*
C100.39020 (15)0.0248 (2)0.1758 (3)0.0445 (8)
H10A0.43970.01020.16580.067*
H10B0.39320.10760.19270.067*
H10C0.37380.01220.08820.067*
C110.10234 (11)0.30625 (19)0.0085 (2)0.0175 (5)
H110.09700.38710.01630.021*
C120.00088 (11)0.27358 (19)0.1280 (2)0.0159 (5)
C130.00286 (12)0.38568 (19)0.1858 (3)0.0180 (6)
H130.03620.43880.18530.022*
C140.06264 (11)0.41801 (19)0.2439 (3)0.0183 (6)
H140.06390.49360.28050.022*
C150.12107 (12)0.33966 (19)0.2488 (3)0.0163 (5)
C160.11642 (12)0.22592 (19)0.1981 (3)0.0202 (6)
H160.15340.17100.20520.024*
C170.05756 (12)0.19375 (19)0.1374 (3)0.0182 (5)
H170.05580.11780.10240.022*
C180.25825 (12)0.36660 (18)0.2449 (3)0.0167 (5)
C190.30949 (12)0.41195 (19)0.3197 (3)0.0201 (6)
H190.29080.44310.41260.024*
C200.38707 (12)0.41113 (19)0.2581 (3)0.0231 (6)
H200.42010.44230.30950.028*
C210.41679 (13)0.3645 (2)0.1205 (3)0.0251 (6)
H210.46930.36460.07890.030*
C220.36671 (13)0.31798 (19)0.0465 (3)0.0241 (6)
H220.38600.28590.04570.029*
C230.28811 (12)0.31815 (19)0.1069 (3)0.0204 (6)
H230.25540.28600.05550.025*
N10.31894 (10)0.15485 (16)0.2813 (2)0.0205 (5)
N20.05736 (10)0.23777 (17)0.0618 (2)0.0170 (5)
N30.18057 (10)0.37535 (18)0.3112 (2)0.0199 (5)
O10.13165 (8)0.06417 (12)0.01909 (17)0.0187 (4)
H2N0.0678 (14)0.161 (2)0.050 (3)0.038 (8)*
H3H0.1685 (13)0.430 (2)0.374 (3)0.024 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0140 (11)0.0188 (12)0.0139 (14)0.0018 (10)0.0001 (10)0.0019 (10)
C20.0178 (12)0.0127 (12)0.0190 (15)0.0013 (9)0.0028 (11)0.0016 (10)
C30.0122 (11)0.0231 (13)0.0108 (13)0.0026 (10)0.0006 (10)0.0003 (10)
C40.0147 (12)0.0174 (12)0.0191 (14)0.0012 (10)0.0026 (11)0.0042 (10)
C50.0168 (12)0.0165 (12)0.0204 (15)0.0024 (10)0.0012 (11)0.0018 (10)
C60.0119 (11)0.0172 (12)0.0161 (14)0.0006 (10)0.0008 (10)0.0015 (10)
C70.0190 (12)0.0279 (14)0.0209 (15)0.0008 (11)0.0086 (11)0.0013 (11)
C80.0212 (13)0.0314 (15)0.0331 (17)0.0008 (11)0.0074 (12)0.0004 (12)
C90.0409 (15)0.0240 (14)0.0423 (19)0.0041 (12)0.0286 (14)0.0026 (13)
C100.0403 (16)0.0339 (16)0.069 (2)0.0145 (13)0.0320 (17)0.0186 (16)
C110.0166 (12)0.0146 (12)0.0191 (15)0.0008 (10)0.0004 (11)0.0022 (10)
C120.0134 (11)0.0201 (13)0.0138 (14)0.0018 (10)0.0024 (10)0.0015 (10)
C130.0139 (12)0.0185 (13)0.0200 (15)0.0027 (10)0.0015 (11)0.0003 (10)
C140.0166 (12)0.0172 (12)0.0200 (15)0.0010 (10)0.0026 (11)0.0029 (10)
C150.0144 (11)0.0195 (13)0.0142 (14)0.0019 (10)0.0021 (10)0.0000 (10)
C160.0164 (12)0.0177 (13)0.0264 (16)0.0027 (10)0.0054 (11)0.0016 (11)
C170.0173 (12)0.0152 (12)0.0206 (15)0.0005 (10)0.0021 (11)0.0027 (10)
C180.0161 (12)0.0121 (11)0.0222 (15)0.0000 (10)0.0054 (11)0.0052 (10)
C190.0207 (12)0.0173 (13)0.0232 (15)0.0022 (10)0.0073 (11)0.0002 (11)
C200.0174 (13)0.0212 (13)0.0336 (18)0.0009 (10)0.0120 (12)0.0020 (12)
C210.0134 (12)0.0228 (13)0.0367 (18)0.0020 (10)0.0019 (12)0.0015 (12)
C220.0227 (13)0.0225 (13)0.0238 (16)0.0027 (11)0.0003 (12)0.0014 (11)
C230.0198 (12)0.0176 (13)0.0246 (16)0.0018 (10)0.0069 (11)0.0012 (11)
N10.0204 (10)0.0201 (11)0.0232 (13)0.0025 (9)0.0095 (9)0.0008 (9)
N20.0165 (10)0.0148 (11)0.0202 (13)0.0016 (9)0.0056 (9)0.0002 (9)
N30.0138 (10)0.0225 (12)0.0238 (13)0.0010 (9)0.0052 (9)0.0077 (10)
O10.0161 (8)0.0164 (8)0.0241 (10)0.0014 (7)0.0064 (7)0.0021 (7)
Geometric parameters (Å, º) top
C1—O11.292 (2)C11—H110.9300
C1—C21.412 (3)C12—C171.387 (3)
C1—C61.449 (3)C12—C131.393 (3)
C2—C31.397 (3)C12—N21.413 (3)
C2—H20.9300C13—C141.378 (3)
C3—N11.363 (3)C13—H130.9300
C3—C41.438 (3)C14—C151.390 (3)
C4—C51.351 (3)C14—H140.9300
C4—H40.9300C15—C161.391 (3)
C5—C61.414 (3)C15—N31.409 (3)
C5—H50.9300C16—C171.378 (3)
C6—C111.385 (3)C16—H160.9300
C7—N11.455 (3)C17—H170.9300
C7—C81.516 (3)C18—N31.388 (3)
C7—H7A0.9700C18—C231.397 (3)
C7—H7B0.9700C18—C191.398 (3)
C8—H8A0.9600C19—C201.374 (3)
C8—H8B0.9600C19—H190.9300
C8—H8C0.9600C20—C211.385 (3)
C9—N11.460 (3)C20—H200.9300
C9—C101.513 (4)C21—C221.381 (3)
C9—H9A0.9700C21—H210.9300
C9—H9B0.9700C22—C231.389 (3)
C10—H10A0.9600C22—H220.9300
C10—H10B0.9600C23—H230.9300
C10—H10C0.9600N2—H2N0.90 (2)
C11—N21.314 (3)N3—H3H0.85 (2)
O1—C1—C2122.0 (2)C17—C12—C13118.9 (2)
O1—C1—C6120.73 (19)C17—C12—N2118.80 (19)
C2—C1—C6117.29 (19)C13—C12—N2122.34 (19)
C3—C2—C1123.0 (2)C14—C13—C12120.1 (2)
C3—C2—H2118.5C14—C13—H13119.9
C1—C2—H2118.5C12—C13—H13119.9
N1—C3—C2122.4 (2)C13—C14—C15121.2 (2)
N1—C3—C4119.32 (19)C13—C14—H14119.4
C2—C3—C4118.23 (19)C15—C14—H14119.4
C5—C4—C3119.9 (2)C14—C15—C16118.27 (19)
C5—C4—H4120.0C14—C15—N3119.5 (2)
C3—C4—H4120.0C16—C15—N3122.1 (2)
C4—C5—C6123.0 (2)C17—C16—C15120.8 (2)
C4—C5—H5118.5C17—C16—H16119.6
C6—C5—H5118.5C15—C16—H16119.6
C11—C6—C5120.1 (2)C16—C17—C12120.7 (2)
C11—C6—C1121.3 (2)C16—C17—H17119.7
C5—C6—C1118.54 (19)C12—C17—H17119.7
N1—C7—C8114.40 (19)N3—C18—C23124.1 (2)
N1—C7—H7A108.7N3—C18—C19117.7 (2)
C8—C7—H7A108.7C23—C18—C19118.2 (2)
N1—C7—H7B108.7C20—C19—C18120.9 (2)
C8—C7—H7B108.7C20—C19—H19119.5
H7A—C7—H7B107.6C18—C19—H19119.5
C7—C8—H8A109.5C19—C20—C21121.0 (2)
C7—C8—H8B109.5C19—C20—H20119.5
H8A—C8—H8B109.5C21—C20—H20119.5
C7—C8—H8C109.5C22—C21—C20118.5 (2)
H8A—C8—H8C109.5C22—C21—H21120.7
H8B—C8—H8C109.5C20—C21—H21120.7
N1—C9—C10113.6 (2)C21—C22—C23121.3 (2)
N1—C9—H9A108.9C21—C22—H22119.3
C10—C9—H9A108.9C23—C22—H22119.3
N1—C9—H9B108.9C22—C23—C18120.0 (2)
C10—C9—H9B108.9C22—C23—H23120.0
H9A—C9—H9B107.7C18—C23—H23120.0
C9—C10—H10A109.5C3—N1—C7122.52 (19)
C9—C10—H10B109.5C3—N1—C9120.85 (19)
H10A—C10—H10B109.5C7—N1—C9116.48 (18)
C9—C10—H10C109.5C11—N2—C12126.83 (19)
H10A—C10—H10C109.5C11—N2—H2N110.9 (15)
H10B—C10—H10C109.5C12—N2—H2N122.3 (16)
N2—C11—C6123.9 (2)C18—N3—C15125.3 (2)
N2—C11—H11118.0C18—N3—H3H114.8 (15)
C6—C11—H11118.0C15—N3—H3H114.7 (16)
O1—C1—C2—C3179.1 (2)N2—C12—C17—C16178.5 (2)
C6—C1—C2—C31.7 (3)N3—C18—C19—C20177.1 (2)
C1—C2—C3—N1179.8 (2)C23—C18—C19—C201.3 (3)
C1—C2—C3—C40.3 (3)C18—C19—C20—C210.5 (3)
N1—C3—C4—C5178.5 (2)C19—C20—C21—C220.4 (3)
C2—C3—C4—C51.0 (3)C20—C21—C22—C230.5 (3)
C3—C4—C5—C60.8 (3)C21—C22—C23—C180.4 (3)
C4—C5—C6—C11178.0 (2)N3—C18—C23—C22177.1 (2)
C4—C5—C6—C10.8 (3)C19—C18—C23—C221.2 (3)
O1—C1—C6—C112.4 (3)C2—C3—N1—C7175.9 (2)
C2—C1—C6—C11176.8 (2)C4—C3—N1—C74.5 (3)
O1—C1—C6—C5178.8 (2)C2—C3—N1—C90.5 (3)
C2—C1—C6—C52.0 (3)C4—C3—N1—C9180.0 (2)
C5—C6—C11—N2177.8 (2)C8—C7—N1—C377.6 (3)
C1—C6—C11—N20.9 (3)C8—C7—N1—C998.1 (2)
C17—C12—C13—C143.6 (3)C10—C9—N1—C384.0 (3)
N2—C12—C13—C14177.3 (2)C10—C9—N1—C791.7 (3)
C12—C13—C14—C151.3 (3)C6—C11—N2—C12178.3 (2)
C13—C14—C15—C162.2 (3)C17—C12—N2—C11160.3 (2)
C13—C14—C15—N3179.0 (2)C13—C12—N2—C1120.5 (3)
C14—C15—C16—C173.4 (3)C23—C18—N3—C151.5 (3)
N3—C15—C16—C17179.9 (2)C19—C18—N3—C15176.8 (2)
C15—C16—C17—C121.2 (4)C14—C15—N3—C18127.6 (2)
C13—C12—C17—C162.3 (3)C16—C15—N3—C1855.7 (3)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N2—H2N···O10.90 (2)1.83 (2)2.609 (2)143 (2)
N3—H3H···O1i0.85 (2)2.05 (2)2.900 (3)175 (2)
C7—H7A···Cgii0.972.873.465 (3)121
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z1/2.
 

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAmimoto, K. & Kawato, T. (2005). J. Photochem. Photobiol. Photochem. Rev. 6, 207–226.  Web of Science CrossRef CAS Google Scholar
First citationBrandenberg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCohen, M. D. & Schmidt, G. M. J. (1964). J. Chem. Soc. pp. 1996–2000.  CrossRef Web of Science Google Scholar
First citationDalapati, S., Alam, M. A., Jana, S. & Guchhait, N. (2011). J. Fluorine Chem. 132, 536–540.  Web of Science CrossRef CAS Google Scholar
First citationFaizi, M. S. H. & Hussain, S. (2014). Acta Cryst. E70, m197.  CSD CrossRef IUCr Journals Google Scholar
First citationFaizi, M. S. H. & Sen, P. (2014). Acta Cryst. E70, m173.  CSD CrossRef IUCr Journals Google Scholar
First citationFritsky, I. O., Kozłowski, H., Kanderal, O. M., Haukka, M., Świątek-Kozłowska, J., Gumienna-Kontecka, E. & Meyer, F. (2006). Chem. Commun. pp. 4125–4127.  Web of Science CSD CrossRef Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationLozier, R. H., Bogomolni, R. A. & Stoeckenius, W. (1975). Biophys. J. 15, 955–962.  CrossRef PubMed CAS Web of Science Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMoroz, Y. S., Demeshko, S., Haukka, M., Mokhir, A., Mitra, U., Stocker, M., Müller, P., Meyer, F. & Fritsky, I. O. (2012). Inorg. Chem. 51, 7445–7447.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationNor Hashim, N. Z., Kassim, K. & Yamin, B. M. (2010). Acta Cryst. E66, o2039.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPenkova, L., Demeshko, S., Pavlenko, V. A., Dechert, S., Meyer, F. & Fritsky, I. O. (2010). Inorg. Chim. Acta, 363, 3036–3040.  Web of Science CSD CrossRef CAS Google Scholar
First citationPetrusenko, S. R., Kokozay, V. N. & Fritsky, I. O. (1997). Polyhedron, 16, 267–274.  CSD CrossRef CAS Web of Science Google Scholar
First citationSafin, D. A., Robeyns, K. & Garcia, Y. (2012). RSC Adv. 2, 11379–11388.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSliva, T. Yu., Duda, A. M., Głowiak, T., Fritsky, I. O., Amirkhanov, V. M., Mokhir, A. A. & Kozłowski, H. (1997). J. Chem. Soc. Dalton Trans. pp. 273–276.  CSD CrossRef Web of Science Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Y., Wang, Y., Liu, Z., Huang, C. & Yu, C. (2012). Spectrochim. Acta Part A, 96, 42–50.  Web of Science CSD CrossRef CAS Google Scholar
First citationXie, Y.-Z., Shan, G.-G., Li, P., Zhou, Z.-Y. & Su, Z.-M. (2013). Dyes Pigments, 96, 467–474.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds