metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of di­methyl-1κ2C-bis­(μ-4-methylphenolato-1:2κ2O:O)(N,N,N′,N′-tetra­methylethylenedi­amine-2κ2N,N′)indium(III)lithium(I)

aDepartment of Chemistry and Biochemistry, Mount Allison University, Sackville, New Brunswick, E4L 1G8, Canada, and bDepartment of Chemistry, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
*Correspondence e-mail: gbriand@mta.ca

Edited by A. J. Lough, University of Toronto, Canada (Received 20 November 2015; accepted 6 December 2015; online 12 December 2015)

The mixed bimetallic title compound, [InLi(CH3)2(C7H7O)2(C6H16N2)] or [(tmeda)Li-μ-(4-MeC6H4O)2InMe2] (tmeda is N,N,N′,N′-tetra­methyl­ethylenedi­amine), exhibits a four-membered LiO2In ring core via bridging 4-methyl­phenolate groups. The Li and In atoms are in distorted tetra­hedral N2O2 and C2O2 bonding environments, respectively. The Li atom is further chelated by a tmeda group, yielding a spiro­cyclic structure.

1. Related literature

For other bimetallic alkali–triel chalcogenolates, see: Niemeyer & Power (1997[Niemeyer, M. & Power, P. P. (1997). Inorg. Chim. Acta, 263, 201-207.]); Clegg et al. (1999[Clegg, W., Lamb, E., Liddle, S. T., Snaith, R. & Wheatley, A. E. H. (1999). J. Organomet. Chem. 573, 305-312.]); Muñoz et al. (2011[Muñoz, M. T., Urbaneja, C., Temprado, M., Mosquera, M. E. G. & Cuenca, T. (2011). Chem. Commun. 47, 11757-11759.], 2014[Muñoz, M. T., Cuenca, T. & Mosquera, M. E. G. (2014). Dalton Trans. 43, 14377-14385.]); Uhl et al. (1994[Uhl, W., Vester, A., Fenske, D. & Baum, G. (1994). J. Organomet. Chem. 464, 23-34.]); Adonin et al. (2005[Adonin, N. Yu., Bardin, V. V., Flörke, U. & Frohn, H.-J. (2005). Z. Anorg. Allg. Chem. 631, 2638-2646.]); Soki et al. (2008[Soki, F., Neudörfl, J.-M. & Goldfuss, B. (2008). J. Organomet. Chem. 693, 2139-2146.]); Normand et al. (2012[Normand, M., Kirillov, E., Roisnel, T. & Carpentier, J.-F. (2012). Organometallics, 31, 1448-1457.]). For metal-containing ligands, see Simmonds & Wright (2012[Simmonds, H. R. & Wright, D. S. (2012). Chem. Commun. 48, 8617-8624.]). For organometallic precusors for indium tin oxide (ITO), see: Aksu & Driess (2009[Aksu, Y. & Driess, M. (2009). Angew. Chem. Int. Ed. 48, 7778-7782.]); Veith & Kunze (1991[Veith, M. & Kunze, K. (1991). Angew. Chem. Int. Ed. Engl. 30, 95-97.]). For dimeric di­methyl­indium phenolates [Me2InOR]2, see: Briand et al. (2013[Briand, G. G., Decken, A. & Hoey, M. R. (2013). Acta Cryst. E69, m622.], 2010[Briand, G. G., Decken, A. & Hamilton, N. S. (2010). Dalton Trans. 39, 3833-3841.]); Beachley et al. (2003[Beachley, O. T. Jr, MacRae, D. J. & Kovalevsky, A. Y. (2003). Organometallics, 22, 1690-1695.]); Häusslein et al. (1999[Häusslein, M., Hausen, H.-D., Klinkhammer, K. W., Weidlein, J. & Merz, K. (1999). Z. Anorg. Allg. Chem. 625, 1608-1618.]); Blake et al. (2011[Blake, M. P., Schwarz, A. D. & Mountford, P. (2011). Organometallics, 30, 1202-1214.]); Bradley et al. (1988[Bradley, D. C., Frigo, D. M., Hursthouse, M. B. & Hussain, B. (1988). Organometallics, 7, 1112-1115.]); Trentler et al. (1997[Trentler, T. J., Goel, S. C., Hickman, K. M., Viano, A. M., Chiang, M. Y., Beatty, A. M., Gibbons, P. C. & Buhro, W. E. (1997). J. Am. Chem. Soc. 119, 2172-2181.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [InLi(CH3)2(C7H7O)2(C6H16N2)]

  • Mr = 482.29

  • Monoclinic, P 21 /c

  • a = 9.0991 (8) Å

  • b = 16.4481 (15) Å

  • c = 16.4256 (15) Å

  • β = 91.956 (1)°

  • V = 2456.9 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.98 mm−1

  • T = 188 K

  • 0.65 × 0.60 × 0.60 mm

2.2. Data collection

  • Bruker SMART1000/P4 diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008a[Sheldrick, G. M. (2008a). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.569, Tmax = 0.591

  • 16648 measured reflections

  • 5459 independent reflections

  • 4921 reflections with I > 2σ(I)

  • Rint = 0.025

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.067

  • S = 1.05

  • 5459 reflections

  • 261 parameters

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). SAINT. Bruker AXS inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: DIAMOND (Brandenburg, 2012[Brandenburg, K. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Ligands containing metal bridgeheads are useful for the generation of mixed metal species with novel physical properties and reactivity (Simmonds et al., 2012). In our efforts to generate organometallic In/Sn precusors for indium tin oxide (ITO) semiconductor species (Aksu et al., 2009; Veith et al., 1991), we have isolated the Li+ salt of the anionic ligand [(4-MeC6H4O)2InMe2]-. The structure of [(tmeda)Li-µ-(4-MeC6H4O)2InMe2] (tmeda = N,N,N',N'-tetra­methyl­ethylenedi­amine) (I) (Fig. 1) exhibits a four-membered LiO2In ring core in which Li1 and In1 centre are bridged via the oxygen atoms of two 4-MeC6H4O ligands. The In—O bond distances [In1—O1 = 2.125 (1), In1—O2 = 2.141 (1) Å] are larger than the Li—O bond distances [Li1—O1 = 1.889 (4), Li1—O2 = 1.926 (3) Å] as a result of the larger covalent radius of In versus Li. However, the LiO2In ring is nearly planar [In1—O1—Li1—O2 = -4.5 (1)°]. In addition to the In—O bonds, In1 is also bonded to the carbon atoms of two methyl groups, resulting in a distorted tetra­hedral C2O2 bonding environment for indium [O1—In1—O2 = 78.32 (5), C1—In1—C2 = 133.8 (1)°]. Li1 is also bonded to two nitro­gen atoms of a chelating tmeda ligand, resulting in a distorted tetra­hedral N2O2 bonding environment for lithium [O1—Li1—O2 = 89.9 (2), N1—In1—N2 = 86.8 (2)°]. The overall result is a bimetallic spiro­cyclic arrangement. The 4-MeC6H5 rings are displaced slightly toward the Me2In group [C3—O1—In1 = 121.0 (1), C10—O2—In1 = 125.0 (1), C3—O1—Li1 = 142.4 (2), C10—O2—Li1 = 137.9 (2)°] and are nearly orthogonal [88.63 (6)°]. The geometries at the bridging O atoms are distorted trigonal planar [Σ X—O1—X = 360.0, Σ X—O2—X = 357.9°]. The structure resembles those of di­methyl­indium phenolates [Me2InOR]2, which form bimetallic species in the solid state via inter­molecular In—O coordinate bonding inter­actions (Briand et al., 2013; Briand et al., 2010; Beachley et al., 2003; Häußlein et al., 1999; Blake et al., 2011; Bradley et al., 1988; Trentler et al., 1997). These structures feature distorted tetra­hedral geometries at In, distorted trigonal planar or slightly pyramidal geometries at O, and near planar In2O2 ring cores. For other bimetallic alkali-triel chalcogenolates, see: Niemeyer et al. (1997); Clegg et al. (1999); Muñoz et al. (2011); Uhl et al. (1994); Adonin et al. (2005); Soki et al. (2008); Muñoz et al. (2014); Normand et al. (2012).

Synthesis and Crystallization top

Synthesis of [(tmeda)Li-µ-(4-MeC6H4O)2InMe2]. [4-MeC6H4O]Li (0.143 g, 1.25 mmol) was added to a stirrred solution of InMe3 (0.200 g, 1.25 mmol) in di­ethyl ether (10 mL). After1 h, 4-MeC6H4OH (0.064 g, 0.60 mmol) in di­ethyl ether (3 mL) was added. After 2 h, tmeda (0.145 g, 1.25 mmol) was added. After 1 h, the reaction mixture was filtered, and the filtrate concentrated to 5 mL and allowed to sit at 277 K. After 1 d, the solution was filtered to yield colourless crystals of I (0.188 g, 0.490 mmol, 82 %). Anal. Calc. for C22H36InLiN2O2: C, 54.78; H, 7.52; N, 5.81. Found: C, 54.56; H, 8.01; N, 5.67. Mp 426-428 K. FT-Raman (cm-1): 127 s, 170 m, 297 w, 342 w, 502 vs [νsym (Me—In—Me)], 519 w [νasym (Me—In—Me)], 646 w, 766 m, 791 m, 857 m, 1155 m, 1212 w, 1288 w, 1383 w, 1438 w, 1607 w, 2841 w, 2921 m, 2959 m, 3045 w. 1H NMR (thf-d8, ppm): 0.00 (s, 6H, Me2In), 2.31 (s, 6H, MeC6H4), 2.33 (s, 12H, Me2N), 2.48 (s, 4H, NCH2), 6.60 (d, 3JH—H = 11 Hz, 4H, C6H4), 6.96 (d, 3JH—H = 11 Hz, 4H, C6H4). 13C{1H} NMR (thf-d8, ppm): -1.8 (Me2In), 19.8 (MeC6H4), 45.4 (Me2N), 58.2 (NCH2), 118.0 (C6H4), 129.5 (C6H4).

Related literature top

For other bimetallic alkali–triel chalcogenolates, see: Niemeyer et al. (1997); Clegg et al. (1999); Muñoz et al. (2011, 2014); Uhl et al. (1994); Adonin et al. (2005); Soki et al. (2008); Normand et al. (2012). For metal-containing ligands, see Simmonds et al. (2012). For organometallic precusors for indium tin oxide (ITO), see: Aksu et al. (2009); Veith et al. (1991). For dimeric dimethylindium phenolates [Me2InOR]2, see: Briand et al. (2013, 2010); Beachley et al. (2003); Häußlein et al. (1999); Blake et al. (2011); Bradley et al. (1988); Trentler et al. (1997).

Refinement top

H atoms were included in calculated positions and refined using a riding model.

Structure description top

Ligands containing metal bridgeheads are useful for the generation of mixed metal species with novel physical properties and reactivity (Simmonds et al., 2012). In our efforts to generate organometallic In/Sn precusors for indium tin oxide (ITO) semiconductor species (Aksu et al., 2009; Veith et al., 1991), we have isolated the Li+ salt of the anionic ligand [(4-MeC6H4O)2InMe2]-. The structure of [(tmeda)Li-µ-(4-MeC6H4O)2InMe2] (tmeda = N,N,N',N'-tetra­methyl­ethylenedi­amine) (I) (Fig. 1) exhibits a four-membered LiO2In ring core in which Li1 and In1 centre are bridged via the oxygen atoms of two 4-MeC6H4O ligands. The In—O bond distances [In1—O1 = 2.125 (1), In1—O2 = 2.141 (1) Å] are larger than the Li—O bond distances [Li1—O1 = 1.889 (4), Li1—O2 = 1.926 (3) Å] as a result of the larger covalent radius of In versus Li. However, the LiO2In ring is nearly planar [In1—O1—Li1—O2 = -4.5 (1)°]. In addition to the In—O bonds, In1 is also bonded to the carbon atoms of two methyl groups, resulting in a distorted tetra­hedral C2O2 bonding environment for indium [O1—In1—O2 = 78.32 (5), C1—In1—C2 = 133.8 (1)°]. Li1 is also bonded to two nitro­gen atoms of a chelating tmeda ligand, resulting in a distorted tetra­hedral N2O2 bonding environment for lithium [O1—Li1—O2 = 89.9 (2), N1—In1—N2 = 86.8 (2)°]. The overall result is a bimetallic spiro­cyclic arrangement. The 4-MeC6H5 rings are displaced slightly toward the Me2In group [C3—O1—In1 = 121.0 (1), C10—O2—In1 = 125.0 (1), C3—O1—Li1 = 142.4 (2), C10—O2—Li1 = 137.9 (2)°] and are nearly orthogonal [88.63 (6)°]. The geometries at the bridging O atoms are distorted trigonal planar [Σ X—O1—X = 360.0, Σ X—O2—X = 357.9°]. The structure resembles those of di­methyl­indium phenolates [Me2InOR]2, which form bimetallic species in the solid state via inter­molecular In—O coordinate bonding inter­actions (Briand et al., 2013; Briand et al., 2010; Beachley et al., 2003; Häußlein et al., 1999; Blake et al., 2011; Bradley et al., 1988; Trentler et al., 1997). These structures feature distorted tetra­hedral geometries at In, distorted trigonal planar or slightly pyramidal geometries at O, and near planar In2O2 ring cores. For other bimetallic alkali-triel chalcogenolates, see: Niemeyer et al. (1997); Clegg et al. (1999); Muñoz et al. (2011); Uhl et al. (1994); Adonin et al. (2005); Soki et al. (2008); Muñoz et al. (2014); Normand et al. (2012).

For other bimetallic alkali–triel chalcogenolates, see: Niemeyer et al. (1997); Clegg et al. (1999); Muñoz et al. (2011, 2014); Uhl et al. (1994); Adonin et al. (2005); Soki et al. (2008); Normand et al. (2012). For metal-containing ligands, see Simmonds et al. (2012). For organometallic precusors for indium tin oxide (ITO), see: Aksu et al. (2009); Veith et al. (1991). For dimeric dimethylindium phenolates [Me2InOR]2, see: Briand et al. (2013, 2010); Beachley et al. (2003); Häußlein et al. (1999); Blake et al. (2011); Bradley et al. (1988); Trentler et al. (1997).

Synthesis and crystallization top

Synthesis of [(tmeda)Li-µ-(4-MeC6H4O)2InMe2]. [4-MeC6H4O]Li (0.143 g, 1.25 mmol) was added to a stirrred solution of InMe3 (0.200 g, 1.25 mmol) in di­ethyl ether (10 mL). After1 h, 4-MeC6H4OH (0.064 g, 0.60 mmol) in di­ethyl ether (3 mL) was added. After 2 h, tmeda (0.145 g, 1.25 mmol) was added. After 1 h, the reaction mixture was filtered, and the filtrate concentrated to 5 mL and allowed to sit at 277 K. After 1 d, the solution was filtered to yield colourless crystals of I (0.188 g, 0.490 mmol, 82 %). Anal. Calc. for C22H36InLiN2O2: C, 54.78; H, 7.52; N, 5.81. Found: C, 54.56; H, 8.01; N, 5.67. Mp 426-428 K. FT-Raman (cm-1): 127 s, 170 m, 297 w, 342 w, 502 vs [νsym (Me—In—Me)], 519 w [νasym (Me—In—Me)], 646 w, 766 m, 791 m, 857 m, 1155 m, 1212 w, 1288 w, 1383 w, 1438 w, 1607 w, 2841 w, 2921 m, 2959 m, 3045 w. 1H NMR (thf-d8, ppm): 0.00 (s, 6H, Me2In), 2.31 (s, 6H, MeC6H4), 2.33 (s, 12H, Me2N), 2.48 (s, 4H, NCH2), 6.60 (d, 3JH—H = 11 Hz, 4H, C6H4), 6.96 (d, 3JH—H = 11 Hz, 4H, C6H4). 13C{1H} NMR (thf-d8, ppm): -1.8 (Me2In), 19.8 (MeC6H4), 45.4 (Me2N), 58.2 (NCH2), 118.0 (C6H4), 129.5 (C6H4).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: Diamond (Brandenburg, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted for clarity.
Dimethyl-1κ2C-bis(µ-4-methylphenolato-1:2κ2O:O)(N,N,N',N'-tetramethylethylenediamine-2κ2N,N')indium(III)lithium(I) top
Crystal data top
[InLi(CH3)2(C7H7O)2(C6H16N2)]F(000) = 1000
Mr = 482.29Dx = 1.304 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.0991 (8) ÅCell parameters from 5977 reflections
b = 16.4481 (15) Åθ = 2.5–28.4°
c = 16.4256 (15) ŵ = 0.98 mm1
β = 91.956 (1)°T = 188 K
V = 2456.9 (4) Å3Irregular, colourless
Z = 40.65 × 0.60 × 0.60 mm
Data collection top
Bruker SMART1000/P4
diffractometer
5459 independent reflections
Radiation source: fine-focus sealed tube, K7604921 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
φ and ω scansθmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
h = 1111
Tmin = 0.569, Tmax = 0.591k = 2121
16648 measured reflectionsl = 2120
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.067H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0318P)2 + 1.1193P]
where P = (Fo2 + 2Fc2)/3
5459 reflections(Δ/σ)max = 0.002
261 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
[InLi(CH3)2(C7H7O)2(C6H16N2)]V = 2456.9 (4) Å3
Mr = 482.29Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.0991 (8) ŵ = 0.98 mm1
b = 16.4481 (15) ÅT = 188 K
c = 16.4256 (15) Å0.65 × 0.60 × 0.60 mm
β = 91.956 (1)°
Data collection top
Bruker SMART1000/P4
diffractometer
5459 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
4921 reflections with I > 2σ(I)
Tmin = 0.569, Tmax = 0.591Rint = 0.025
16648 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.067H-atom parameters constrained
S = 1.05Δρmax = 0.56 e Å3
5459 reflectionsΔρmin = 0.27 e Å3
261 parameters
Special details top

Experimental. Crystal decay was monitored by repeating the initial 50 frames at the end of the data collection and analyzing duplicate reflections

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
In10.26596 (2)0.05874 (2)0.78772 (2)0.03548 (6)
O10.37283 (15)0.14787 (8)0.71713 (8)0.0396 (3)
O20.12094 (14)0.16051 (8)0.79780 (8)0.0390 (3)
Li10.2425 (4)0.2341 (2)0.7385 (2)0.0375 (7)
N10.3343 (2)0.34149 (12)0.79061 (12)0.0511 (5)
N20.1764 (2)0.30590 (12)0.63874 (11)0.0489 (4)
C10.3935 (4)0.04698 (19)0.89888 (16)0.0686 (8)
H1A0.49790.05430.88790.103*
H1B0.37830.00720.92200.103*
H1C0.36280.08840.93760.103*
C20.1651 (2)0.02775 (13)0.70346 (14)0.0475 (5)
H2A0.05810.02080.70240.071*
H2B0.18990.08310.72110.071*
H2C0.20160.01850.64880.071*
C30.4953 (2)0.12953 (11)0.67653 (11)0.0333 (4)
C40.6347 (2)0.13756 (12)0.71342 (11)0.0382 (4)
H40.64430.15580.76820.046*
C50.7597 (2)0.11910 (13)0.67083 (12)0.0408 (4)
H50.85370.12520.69710.049*
C60.7502 (2)0.09210 (13)0.59107 (12)0.0415 (4)
C70.6121 (2)0.08379 (13)0.55467 (12)0.0426 (5)
H70.60320.06530.49990.051*
C80.4854 (2)0.10193 (12)0.59630 (12)0.0384 (4)
H80.39170.09550.56990.046*
C90.8866 (3)0.06967 (18)0.54574 (16)0.0625 (7)
H9A0.90760.01170.55340.094*
H9B0.97020.10180.56690.094*
H9C0.87020.08100.48760.094*
C100.0086 (2)0.16495 (12)0.84883 (11)0.0334 (4)
C110.0424 (2)0.09752 (13)0.89039 (13)0.0415 (4)
H110.00190.04600.88240.050*
C120.1578 (3)0.10467 (14)0.94352 (14)0.0502 (5)
H120.19100.05750.97080.060*
C130.2252 (2)0.17834 (15)0.95769 (13)0.0471 (5)
C140.1765 (2)0.24514 (14)0.91485 (13)0.0458 (5)
H140.22270.29630.92200.055*
C150.0617 (2)0.23886 (13)0.86159 (12)0.0407 (4)
H150.03050.28590.83330.049*
C160.3460 (3)0.18714 (19)1.01892 (18)0.0705 (8)
H16A0.43060.21510.99310.106*
H16B0.30900.21881.06580.106*
H16C0.37620.13311.03720.106*
C170.2618 (4)0.37967 (17)0.64916 (18)0.0716 (8)
H17A0.21490.42360.61640.086*
H17B0.36150.37060.62850.086*
C180.2747 (4)0.40580 (16)0.7358 (2)0.0719 (8)
H18A0.33960.45400.73990.086*
H18B0.17640.42210.75400.086*
C190.2068 (4)0.2688 (2)0.55914 (15)0.0742 (8)
H19A0.17750.30650.51540.111*
H19B0.15090.21810.55280.111*
H19C0.31210.25710.55650.111*
C200.0174 (3)0.3218 (2)0.64082 (18)0.0748 (8)
H20A0.00560.34620.69330.112*
H20B0.03650.27050.63390.112*
H20C0.01150.35920.59670.112*
C210.4918 (3)0.3336 (2)0.7846 (3)0.1069 (14)
H21A0.51490.31710.72910.160*
H21B0.52840.29240.82330.160*
H21C0.53890.38590.79720.160*
C220.2953 (4)0.3605 (2)0.87428 (18)0.0885 (10)
H22A0.33770.31940.91140.133*
H22B0.18810.36060.87810.133*
H22C0.33410.41420.88940.133*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
In10.03663 (9)0.03030 (8)0.04007 (8)0.00028 (5)0.00951 (6)0.00208 (5)
O10.0382 (7)0.0336 (7)0.0480 (7)0.0027 (6)0.0178 (6)0.0033 (6)
O20.0386 (7)0.0350 (7)0.0443 (7)0.0027 (6)0.0159 (6)0.0039 (6)
Li10.0400 (17)0.0319 (16)0.0410 (16)0.0002 (13)0.0065 (13)0.0024 (13)
N10.0498 (11)0.0399 (10)0.0635 (12)0.0054 (8)0.0004 (9)0.0099 (9)
N20.0563 (11)0.0452 (10)0.0454 (9)0.0051 (9)0.0050 (8)0.0086 (8)
C10.0794 (19)0.079 (2)0.0467 (13)0.0079 (15)0.0064 (13)0.0139 (13)
C20.0454 (12)0.0363 (11)0.0613 (13)0.0092 (9)0.0056 (10)0.0113 (10)
C30.0357 (9)0.0257 (9)0.0390 (9)0.0004 (7)0.0109 (7)0.0026 (7)
C40.0403 (10)0.0406 (10)0.0338 (9)0.0028 (8)0.0047 (8)0.0026 (8)
C50.0340 (10)0.0437 (11)0.0449 (10)0.0035 (8)0.0025 (8)0.0018 (9)
C60.0427 (11)0.0387 (11)0.0441 (10)0.0097 (9)0.0145 (9)0.0038 (9)
C70.0524 (12)0.0421 (11)0.0337 (9)0.0043 (9)0.0078 (8)0.0047 (8)
C80.0375 (10)0.0367 (10)0.0411 (9)0.0021 (8)0.0027 (8)0.0021 (8)
C90.0531 (14)0.0774 (18)0.0584 (14)0.0221 (13)0.0217 (12)0.0033 (13)
C100.0319 (9)0.0356 (10)0.0329 (8)0.0025 (7)0.0048 (7)0.0049 (7)
C110.0453 (11)0.0326 (10)0.0475 (10)0.0047 (8)0.0158 (9)0.0079 (9)
C120.0567 (13)0.0429 (12)0.0525 (12)0.0154 (10)0.0244 (10)0.0091 (10)
C130.0376 (10)0.0536 (13)0.0512 (11)0.0087 (9)0.0145 (9)0.0189 (10)
C140.0381 (10)0.0452 (12)0.0546 (12)0.0059 (9)0.0073 (9)0.0123 (10)
C150.0388 (10)0.0376 (10)0.0461 (10)0.0028 (8)0.0073 (8)0.0001 (9)
C160.0580 (15)0.0729 (18)0.0832 (18)0.0151 (13)0.0398 (14)0.0275 (15)
C170.093 (2)0.0459 (14)0.0762 (18)0.0046 (14)0.0121 (16)0.0229 (13)
C180.092 (2)0.0334 (12)0.091 (2)0.0066 (13)0.0130 (17)0.0044 (13)
C190.100 (2)0.077 (2)0.0470 (13)0.0161 (17)0.0141 (14)0.0074 (13)
C200.0626 (16)0.100 (2)0.0619 (15)0.0196 (16)0.0017 (13)0.0061 (16)
C210.0563 (18)0.080 (2)0.184 (4)0.0067 (16)0.005 (2)0.043 (3)
C220.117 (3)0.085 (2)0.0633 (17)0.023 (2)0.0025 (17)0.0287 (17)
Geometric parameters (Å, º) top
In1—O12.1252 (13)C9—H9B0.9800
In1—C12.138 (3)C9—H9C0.9800
In1—O22.1414 (13)C10—C111.391 (3)
In1—C22.167 (2)C10—C151.393 (3)
O1—C31.352 (2)C11—C121.393 (3)
O1—Li11.889 (4)C11—H110.9500
O2—C101.346 (2)C12—C131.382 (3)
O2—Li11.926 (3)C12—H120.9500
Li1—N22.092 (4)C13—C141.386 (3)
Li1—N12.122 (4)C13—C161.522 (3)
N1—C211.446 (4)C14—C151.389 (3)
N1—C221.465 (4)C14—H140.9500
N1—C181.480 (4)C15—H150.9500
N2—C171.448 (3)C16—H16A0.9800
N2—C201.471 (3)C16—H16B0.9800
N2—C191.478 (3)C16—H16C0.9800
C1—H1A0.9800C17—C181.487 (4)
C1—H1B0.9800C17—H17A0.9900
C1—H1C0.9800C17—H17B0.9900
C2—H2A0.9800C18—H18A0.9900
C2—H2B0.9800C18—H18B0.9900
C2—H2C0.9800C19—H19A0.9800
C3—C41.393 (3)C19—H19B0.9800
C3—C81.394 (3)C19—H19C0.9800
C4—C51.389 (3)C20—H20A0.9800
C4—H40.9500C20—H20B0.9800
C5—C61.383 (3)C20—H20C0.9800
C5—H50.9500C21—H21A0.9800
C6—C71.380 (3)C21—H21B0.9800
C6—C91.514 (3)C21—H21C0.9800
C7—C81.392 (3)C22—H22A0.9800
C7—H70.9500C22—H22B0.9800
C8—H80.9500C22—H22C0.9800
C9—H9A0.9800
O1—In1—C1106.45 (10)C6—C9—H9C109.5
O1—In1—O278.32 (5)H9A—C9—H9C109.5
C1—In1—O2108.82 (9)H9B—C9—H9C109.5
O1—In1—C2107.23 (7)O2—C10—C11122.42 (17)
C1—In1—C2133.76 (11)O2—C10—C15120.24 (17)
O2—In1—C2108.30 (8)C11—C10—C15117.34 (17)
C3—O1—Li1142.41 (15)C10—C11—C12120.8 (2)
C3—O1—In1121.02 (11)C10—C11—H11119.6
Li1—O1—In196.57 (11)C12—C11—H11119.6
C10—O2—Li1137.92 (16)C13—C12—C11121.9 (2)
C10—O2—In1125.00 (12)C13—C12—H12119.1
Li1—O2—In194.94 (11)C11—C12—H12119.1
O1—Li1—O289.85 (15)C12—C13—C14117.28 (18)
O1—Li1—N2116.35 (17)C12—C13—C16122.0 (2)
O2—Li1—N2126.61 (19)C14—C13—C16120.7 (2)
O1—Li1—N1117.30 (18)C13—C14—C15121.4 (2)
O2—Li1—N1122.97 (18)C13—C14—H14119.3
N2—Li1—N186.82 (15)C15—C14—H14119.3
C21—N1—C22110.9 (3)C14—C15—C10121.3 (2)
C21—N1—C18111.5 (3)C14—C15—H15119.4
C22—N1—C18108.8 (2)C10—C15—H15119.4
C21—N1—Li1105.9 (2)C13—C16—H16A109.5
C22—N1—Li1116.8 (2)C13—C16—H16B109.5
C18—N1—Li1102.62 (18)H16A—C16—H16B109.5
C17—N2—C20111.9 (2)C13—C16—H16C109.5
C17—N2—C19109.5 (2)H16A—C16—H16C109.5
C20—N2—C19107.9 (2)H16B—C16—H16C109.5
C17—N2—Li1103.99 (18)N2—C17—C18112.3 (2)
C20—N2—Li1109.79 (18)N2—C17—H17A109.1
C19—N2—Li1113.73 (18)C18—C17—H17A109.1
In1—C1—H1A109.5N2—C17—H17B109.1
In1—C1—H1B109.5C18—C17—H17B109.1
H1A—C1—H1B109.5H17A—C17—H17B107.9
In1—C1—H1C109.5N1—C18—C17113.0 (2)
H1A—C1—H1C109.5N1—C18—H18A109.0
H1B—C1—H1C109.5C17—C18—H18A109.0
In1—C2—H2A109.5N1—C18—H18B109.0
In1—C2—H2B109.5C17—C18—H18B109.0
H2A—C2—H2B109.5H18A—C18—H18B107.8
In1—C2—H2C109.5N2—C19—H19A109.5
H2A—C2—H2C109.5N2—C19—H19B109.5
H2B—C2—H2C109.5H19A—C19—H19B109.5
O1—C3—C4121.17 (17)N2—C19—H19C109.5
O1—C3—C8120.74 (17)H19A—C19—H19C109.5
C4—C3—C8118.09 (17)H19B—C19—H19C109.5
C5—C4—C3120.61 (17)N2—C20—H20A109.5
C5—C4—H4119.7N2—C20—H20B109.5
C3—C4—H4119.7H20A—C20—H20B109.5
C6—C5—C4121.43 (19)N2—C20—H20C109.5
C6—C5—H5119.3H20A—C20—H20C109.5
C4—C5—H5119.3H20B—C20—H20C109.5
C7—C6—C5117.92 (18)N1—C21—H21A109.5
C7—C6—C9120.8 (2)N1—C21—H21B109.5
C5—C6—C9121.2 (2)H21A—C21—H21B109.5
C6—C7—C8121.53 (18)N1—C21—H21C109.5
C6—C7—H7119.2H21A—C21—H21C109.5
C8—C7—H7119.2H21B—C21—H21C109.5
C7—C8—C3120.41 (19)N1—C22—H22A109.5
C7—C8—H8119.8N1—C22—H22B109.5
C3—C8—H8119.8H22A—C22—H22B109.5
C6—C9—H9A109.5N1—C22—H22C109.5
C6—C9—H9B109.5H22A—C22—H22C109.5
H9A—C9—H9B109.5H22B—C22—H22C109.5

Experimental details

Crystal data
Chemical formula[InLi(CH3)2(C7H7O)2(C6H16N2)]
Mr482.29
Crystal system, space groupMonoclinic, P21/c
Temperature (K)188
a, b, c (Å)9.0991 (8), 16.4481 (15), 16.4256 (15)
β (°) 91.956 (1)
V3)2456.9 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.98
Crystal size (mm)0.65 × 0.60 × 0.60
Data collection
DiffractometerBruker SMART1000/P4
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008a)
Tmin, Tmax0.569, 0.591
No. of measured, independent and
observed [I > 2σ(I)] reflections
16648, 5459, 4921
Rint0.025
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.067, 1.05
No. of reflections5459
No. of parameters261
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.56, 0.27

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008b), SHELXL2013 (Sheldrick, 2015), Diamond (Brandenburg, 2012), SHELXTL (Sheldrick, 2008b).

 

Acknowledgements

This work was supported by the Natural Sciences and Engin­eering Research Council of Canada, the New Brunswick Innovation Foundation, the Canadian Foundation for Innovation and Mount Allison University.

References

First citationAdonin, N. Yu., Bardin, V. V., Flörke, U. & Frohn, H.-J. (2005). Z. Anorg. Allg. Chem. 631, 2638–2646.  Web of Science CSD CrossRef CAS Google Scholar
First citationAksu, Y. & Driess, M. (2009). Angew. Chem. Int. Ed. 48, 7778–7782.  Web of Science CrossRef CAS Google Scholar
First citationBeachley, O. T. Jr, MacRae, D. J. & Kovalevsky, A. Y. (2003). Organometallics, 22, 1690–1695.  CAS Google Scholar
First citationBlake, M. P., Schwarz, A. D. & Mountford, P. (2011). Organometallics, 30, 1202–1214.  Web of Science CSD CrossRef CAS Google Scholar
First citationBradley, D. C., Frigo, D. M., Hursthouse, M. B. & Hussain, B. (1988). Organometallics, 7, 1112–1115.  CSD CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBriand, G. G., Decken, A. & Hamilton, N. S. (2010). Dalton Trans. 39, 3833–3841.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBriand, G. G., Decken, A. & Hoey, M. R. (2013). Acta Cryst. E69, m622.  CSD CrossRef IUCr Journals Google Scholar
First citationBruker (1999). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2006). SAINT. Bruker AXS inc., Madison, Wisconsin, USA.  Google Scholar
First citationClegg, W., Lamb, E., Liddle, S. T., Snaith, R. & Wheatley, A. E. H. (1999). J. Organomet. Chem. 573, 305–312.  Web of Science CSD CrossRef CAS Google Scholar
First citationHäusslein, M., Hausen, H.-D., Klinkhammer, K. W., Weidlein, J. & Merz, K. (1999). Z. Anorg. Allg. Chem. 625, 1608–1618.  Google Scholar
First citationMuñoz, M. T., Cuenca, T. & Mosquera, M. E. G. (2014). Dalton Trans. 43, 14377–14385.  Web of Science PubMed Google Scholar
First citationMuñoz, M. T., Urbaneja, C., Temprado, M., Mosquera, M. E. G. & Cuenca, T. (2011). Chem. Commun. 47, 11757–11759.  Google Scholar
First citationNiemeyer, M. & Power, P. P. (1997). Inorg. Chim. Acta, 263, 201–207.  CSD CrossRef CAS Web of Science Google Scholar
First citationNormand, M., Kirillov, E., Roisnel, T. & Carpentier, J.-F. (2012). Organometallics, 31, 1448–1457.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008a). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSimmonds, H. R. & Wright, D. S. (2012). Chem. Commun. 48, 8617–8624.  Web of Science CrossRef CAS Google Scholar
First citationSoki, F., Neudörfl, J.-M. & Goldfuss, B. (2008). J. Organomet. Chem. 693, 2139–2146.  Web of Science CSD CrossRef CAS Google Scholar
First citationTrentler, T. J., Goel, S. C., Hickman, K. M., Viano, A. M., Chiang, M. Y., Beatty, A. M., Gibbons, P. C. & Buhro, W. E. (1997). J. Am. Chem. Soc. 119, 2172–2181.  CSD CrossRef CAS Web of Science Google Scholar
First citationUhl, W., Vester, A., Fenske, D. & Baum, G. (1994). J. Organomet. Chem. 464, 23–34.  CSD CrossRef CAS Web of Science Google Scholar
First citationVeith, M. & Kunze, K. (1991). Angew. Chem. Int. Ed. Engl. 30, 95–97.  CSD CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds