metal-organic compounds
κ2C-bis(μ-4-methylphenolato-1:2κ2O:O)(N,N,N′,N′-tetramethylethylenediamine-2κ2N,N′)indium(III)lithium(I)
of dimethyl-1aDepartment of Chemistry and Biochemistry, Mount Allison University, Sackville, New Brunswick, E4L 1G8, Canada, and bDepartment of Chemistry, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
*Correspondence e-mail: gbriand@mta.ca
The mixed bimetallic title compound, [InLi(CH3)2(C7H7O)2(C6H16N2)] or [(tmeda)Li-μ-(4-MeC6H4O)2InMe2] (tmeda is N,N,N′,N′-tetramethylethylenediamine), exhibits a four-membered LiO2In ring core via bridging 4-methylphenolate groups. The Li and In atoms are in distorted tetrahedral N2O2 and C2O2 bonding environments, respectively. The Li atom is further chelated by a tmeda group, yielding a spirocyclic structure.
Keywords: crystal structure; bimetallic; indium; lithium; phenolate; spirocyclic.
CCDC reference: 1440726
1. Related literature
For other bimetallic alkali–triel chalcogenolates, see: Niemeyer & Power (1997); Clegg et al. (1999); Muñoz et al. (2011, 2014); Uhl et al. (1994); Adonin et al. (2005); Soki et al. (2008); Normand et al. (2012). For metal-containing ligands, see Simmonds & Wright (2012). For organometallic precusors for indium tin oxide (ITO), see: Aksu & Driess (2009); Veith & Kunze (1991). For dimeric dimethylindium [Me2InOR]2, see: Briand et al. (2013, 2010); Beachley et al. (2003); Häusslein et al. (1999); Blake et al. (2011); Bradley et al. (1988); Trentler et al. (1997).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
Data collection: SMART (Bruker, 1999); cell SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b).
Supporting information
CCDC reference: 1440726
https://doi.org/10.1107/S2056989015023476/lh5799sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989015023476/lh5799Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989015023476/lh5799Isup4.cdx
Ligands containing metal bridgeheads are useful for the generation of mixed metal species with novel physical properties and reactivity (Simmonds et al., 2012). In our efforts to generate organometallic In/Sn precusors for indium tin oxide (ITO) semiconductor species (Aksu et al., 2009; Veith et al., 1991), we have isolated the Li+ salt of the anionic ligand [(4-MeC6H4O)2InMe2]-. The structure of [(tmeda)Li-µ-(4-MeC6H4O)2InMe2] (tmeda = N,N,N',N'-tetramethylethylenediamine) (I) (Fig. 1) exhibits a four-membered LiO2In ring core in which Li1 and In1 centre are bridged via the oxygen atoms of two 4-MeC6H4O ligands. The In—O bond distances [In1—O1 = 2.125 (1), In1—O2 = 2.141 (1) Å] are larger than the Li—O bond distances [Li1—O1 = 1.889 (4), Li1—O2 = 1.926 (3) Å] as a result of the larger covalent radius of In versus Li. However, the LiO2In ring is nearly planar [In1—O1—Li1—O2 = -4.5 (1)°]. In addition to the In—O bonds, In1 is also bonded to the carbon atoms of two methyl groups, resulting in a distorted tetrahedral C2O2 bonding environment for indium [O1—In1—O2 = 78.32 (5), C1—In1—C2 = 133.8 (1)°]. Li1 is also bonded to two nitrogen atoms of a chelating tmeda ligand, resulting in a distorted tetrahedral N2O2 bonding environment for lithium [O1—Li1—O2 = 89.9 (2), N1—In1—N2 = 86.8 (2)°]. The overall result is a bimetallic spirocyclic arrangement. The 4-MeC6H5 rings are displaced slightly toward the Me2In group [C3—O1—In1 = 121.0 (1), C10—O2—In1 = 125.0 (1), C3—O1—Li1 = 142.4 (2), C10—O2—Li1 = 137.9 (2)°] and are nearly orthogonal [88.63 (6)°]. The geometries at the bridging O atoms are distorted trigonal planar [Σ X—O1—X = 360.0, Σ X—O2—X = 357.9°]. The structure resembles those of dimethylindium [Me2InOR]2, which form bimetallic species in the solid state via intermolecular In—O coordinate bonding interactions (Briand et al., 2013; Briand et al., 2010; Beachley et al., 2003; Häußlein et al., 1999; Blake et al., 2011; Bradley et al., 1988; Trentler et al., 1997). These structures feature distorted tetrahedral geometries at In, distorted trigonal planar or slightly pyramidal geometries at O, and near planar In2O2 ring cores. For other bimetallic alkali-triel chalcogenolates, see: Niemeyer et al. (1997); Clegg et al. (1999); Muñoz et al. (2011); Uhl et al. (1994); Adonin et al. (2005); Soki et al. (2008); Muñoz et al. (2014); Normand et al. (2012).
Synthesis of [(tmeda)Li-µ-(4-MeC6H4O)2InMe2]. [4-MeC6H4O]Li (0.143 g, 1.25 mmol) was added to a stirrred solution of InMe3 (0.200 g, 1.25 mmol) in diethyl ether (10 mL). After1 h, 4-MeC6H4OH (0.064 g, 0.60 mmol) in diethyl ether (3 mL) was added. After 2 h, tmeda (0.145 g, 1.25 mmol) was added. After 1 h, the reaction mixture was filtered, and the filtrate concentrated to 5 mL and allowed to sit at 277 K. After 1 d, the solution was filtered to yield colourless crystals of I (0.188 g, 0.490 mmol, 82 %). Anal. Calc. for C22H36InLiN2O2: C, 54.78; H, 7.52; N, 5.81. Found: C, 54.56; H, 8.01; N, 5.67. Mp 426-428 K. FT-Raman (cm-1): 127 s, 170 m, 297 w, 342 w, 502 vs [νsym (Me—In—Me)], 519 w [νasym (Me—In—Me)], 646 w, 766 m, 791 m, 857 m, 1155 m, 1212 w, 1288 w, 1383 w, 1438 w, 1607 w, 2841 w, 2921 m, 2959 m, 3045 w. 1H NMR (thf-d8, ppm): 0.00 (s, 6H, Me2In), 2.31 (s, 6H, MeC6H4), 2.33 (s, 12H, Me2N), 2.48 (s, 4H, NCH2), 6.60 (d, 3JH—H = 11 Hz, 4H, C6H4), 6.96 (d, 3JH—H = 11 Hz, 4H, C6H4). 13C{1H} NMR (thf-d8, ppm): -1.8 (Me2In), 19.8 (MeC6H4), 45.4 (Me2N), 58.2 (NCH2), 118.0 (C6H4), 129.5 (C6H4).
Ligands containing metal bridgeheads are useful for the generation of mixed metal species with novel physical properties and reactivity (Simmonds et al., 2012). In our efforts to generate organometallic In/Sn precusors for indium tin oxide (ITO) semiconductor species (Aksu et al., 2009; Veith et al., 1991), we have isolated the Li+ salt of the anionic ligand [(4-MeC6H4O)2InMe2]-. The structure of [(tmeda)Li-µ-(4-MeC6H4O)2InMe2] (tmeda = N,N,N',N'-tetramethylethylenediamine) (I) (Fig. 1) exhibits a four-membered LiO2In ring core in which Li1 and In1 centre are bridged via the oxygen atoms of two 4-MeC6H4O ligands. The In—O bond distances [In1—O1 = 2.125 (1), In1—O2 = 2.141 (1) Å] are larger than the Li—O bond distances [Li1—O1 = 1.889 (4), Li1—O2 = 1.926 (3) Å] as a result of the larger covalent radius of In versus Li. However, the LiO2In ring is nearly planar [In1—O1—Li1—O2 = -4.5 (1)°]. In addition to the In—O bonds, In1 is also bonded to the carbon atoms of two methyl groups, resulting in a distorted tetrahedral C2O2 bonding environment for indium [O1—In1—O2 = 78.32 (5), C1—In1—C2 = 133.8 (1)°]. Li1 is also bonded to two nitrogen atoms of a chelating tmeda ligand, resulting in a distorted tetrahedral N2O2 bonding environment for lithium [O1—Li1—O2 = 89.9 (2), N1—In1—N2 = 86.8 (2)°]. The overall result is a bimetallic spirocyclic arrangement. The 4-MeC6H5 rings are displaced slightly toward the Me2In group [C3—O1—In1 = 121.0 (1), C10—O2—In1 = 125.0 (1), C3—O1—Li1 = 142.4 (2), C10—O2—Li1 = 137.9 (2)°] and are nearly orthogonal [88.63 (6)°]. The geometries at the bridging O atoms are distorted trigonal planar [Σ X—O1—X = 360.0, Σ X—O2—X = 357.9°]. The structure resembles those of dimethylindium [Me2InOR]2, which form bimetallic species in the solid state via intermolecular In—O coordinate bonding interactions (Briand et al., 2013; Briand et al., 2010; Beachley et al., 2003; Häußlein et al., 1999; Blake et al., 2011; Bradley et al., 1988; Trentler et al., 1997). These structures feature distorted tetrahedral geometries at In, distorted trigonal planar or slightly pyramidal geometries at O, and near planar In2O2 ring cores. For other bimetallic alkali-triel chalcogenolates, see: Niemeyer et al. (1997); Clegg et al. (1999); Muñoz et al. (2011); Uhl et al. (1994); Adonin et al. (2005); Soki et al. (2008); Muñoz et al. (2014); Normand et al. (2012).
For other bimetallic alkali–triel chalcogenolates, see: Niemeyer et al. (1997); Clegg et al. (1999); Muñoz et al. (2011, 2014); Uhl et al. (1994); Adonin et al. (2005); Soki et al. (2008); Normand et al. (2012). For metal-containing ligands, see Simmonds et al. (2012). For organometallic precusors for indium tin oxide (ITO), see: Aksu et al. (2009); Veith et al. (1991). For dimeric dimethylindium
[Me2InOR]2, see: Briand et al. (2013, 2010); Beachley et al. (2003); Häußlein et al. (1999); Blake et al. (2011); Bradley et al. (1988); Trentler et al. (1997).Synthesis of [(tmeda)Li-µ-(4-MeC6H4O)2InMe2]. [4-MeC6H4O]Li (0.143 g, 1.25 mmol) was added to a stirrred solution of InMe3 (0.200 g, 1.25 mmol) in diethyl ether (10 mL). After1 h, 4-MeC6H4OH (0.064 g, 0.60 mmol) in diethyl ether (3 mL) was added. After 2 h, tmeda (0.145 g, 1.25 mmol) was added. After 1 h, the reaction mixture was filtered, and the filtrate concentrated to 5 mL and allowed to sit at 277 K. After 1 d, the solution was filtered to yield colourless crystals of I (0.188 g, 0.490 mmol, 82 %). Anal. Calc. for C22H36InLiN2O2: C, 54.78; H, 7.52; N, 5.81. Found: C, 54.56; H, 8.01; N, 5.67. Mp 426-428 K. FT-Raman (cm-1): 127 s, 170 m, 297 w, 342 w, 502 vs [νsym (Me—In—Me)], 519 w [νasym (Me—In—Me)], 646 w, 766 m, 791 m, 857 m, 1155 m, 1212 w, 1288 w, 1383 w, 1438 w, 1607 w, 2841 w, 2921 m, 2959 m, 3045 w. 1H NMR (thf-d8, ppm): 0.00 (s, 6H, Me2In), 2.31 (s, 6H, MeC6H4), 2.33 (s, 12H, Me2N), 2.48 (s, 4H, NCH2), 6.60 (d, 3JH—H = 11 Hz, 4H, C6H4), 6.96 (d, 3JH—H = 11 Hz, 4H, C6H4). 13C{1H} NMR (thf-d8, ppm): -1.8 (Me2In), 19.8 (MeC6H4), 45.4 (Me2N), 58.2 (NCH2), 118.0 (C6H4), 129.5 (C6H4).
Data collection: SMART (Bruker, 1999); cell
SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: Diamond (Brandenburg, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b).Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted for clarity. |
[InLi(CH3)2(C7H7O)2(C6H16N2)] | F(000) = 1000 |
Mr = 482.29 | Dx = 1.304 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 9.0991 (8) Å | Cell parameters from 5977 reflections |
b = 16.4481 (15) Å | θ = 2.5–28.4° |
c = 16.4256 (15) Å | µ = 0.98 mm−1 |
β = 91.956 (1)° | T = 188 K |
V = 2456.9 (4) Å3 | Irregular, colourless |
Z = 4 | 0.65 × 0.60 × 0.60 mm |
Bruker SMART1000/P4 diffractometer | 5459 independent reflections |
Radiation source: fine-focus sealed tube, K760 | 4921 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.025 |
φ and ω scans | θmax = 27.5°, θmin = 1.8° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2008a) | h = −11→11 |
Tmin = 0.569, Tmax = 0.591 | k = −21→21 |
16648 measured reflections | l = −21→20 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.025 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.067 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0318P)2 + 1.1193P] where P = (Fo2 + 2Fc2)/3 |
5459 reflections | (Δ/σ)max = 0.002 |
261 parameters | Δρmax = 0.56 e Å−3 |
0 restraints | Δρmin = −0.27 e Å−3 |
[InLi(CH3)2(C7H7O)2(C6H16N2)] | V = 2456.9 (4) Å3 |
Mr = 482.29 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 9.0991 (8) Å | µ = 0.98 mm−1 |
b = 16.4481 (15) Å | T = 188 K |
c = 16.4256 (15) Å | 0.65 × 0.60 × 0.60 mm |
β = 91.956 (1)° |
Bruker SMART1000/P4 diffractometer | 5459 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2008a) | 4921 reflections with I > 2σ(I) |
Tmin = 0.569, Tmax = 0.591 | Rint = 0.025 |
16648 measured reflections |
R[F2 > 2σ(F2)] = 0.025 | 0 restraints |
wR(F2) = 0.067 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.56 e Å−3 |
5459 reflections | Δρmin = −0.27 e Å−3 |
261 parameters |
Experimental. Crystal decay was monitored by repeating the initial 50 frames at the end of the data collection and analyzing duplicate reflections |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
In1 | 0.26596 (2) | 0.05874 (2) | 0.78772 (2) | 0.03548 (6) | |
O1 | 0.37283 (15) | 0.14787 (8) | 0.71713 (8) | 0.0396 (3) | |
O2 | 0.12094 (14) | 0.16051 (8) | 0.79780 (8) | 0.0390 (3) | |
Li1 | 0.2425 (4) | 0.2341 (2) | 0.7385 (2) | 0.0375 (7) | |
N1 | 0.3343 (2) | 0.34149 (12) | 0.79061 (12) | 0.0511 (5) | |
N2 | 0.1764 (2) | 0.30590 (12) | 0.63874 (11) | 0.0489 (4) | |
C1 | 0.3935 (4) | 0.04698 (19) | 0.89888 (16) | 0.0686 (8) | |
H1A | 0.4979 | 0.0543 | 0.8879 | 0.103* | |
H1B | 0.3783 | −0.0072 | 0.9220 | 0.103* | |
H1C | 0.3628 | 0.0884 | 0.9376 | 0.103* | |
C2 | 0.1651 (2) | −0.02775 (13) | 0.70346 (14) | 0.0475 (5) | |
H2A | 0.0581 | −0.0208 | 0.7024 | 0.071* | |
H2B | 0.1899 | −0.0831 | 0.7211 | 0.071* | |
H2C | 0.2016 | −0.0185 | 0.6488 | 0.071* | |
C3 | 0.4953 (2) | 0.12953 (11) | 0.67653 (11) | 0.0333 (4) | |
C4 | 0.6347 (2) | 0.13756 (12) | 0.71342 (11) | 0.0382 (4) | |
H4 | 0.6443 | 0.1558 | 0.7682 | 0.046* | |
C5 | 0.7597 (2) | 0.11910 (13) | 0.67083 (12) | 0.0408 (4) | |
H5 | 0.8537 | 0.1252 | 0.6971 | 0.049* | |
C6 | 0.7502 (2) | 0.09210 (13) | 0.59107 (12) | 0.0415 (4) | |
C7 | 0.6121 (2) | 0.08379 (13) | 0.55467 (12) | 0.0426 (5) | |
H7 | 0.6032 | 0.0653 | 0.4999 | 0.051* | |
C8 | 0.4854 (2) | 0.10193 (12) | 0.59630 (12) | 0.0384 (4) | |
H8 | 0.3917 | 0.0955 | 0.5699 | 0.046* | |
C9 | 0.8866 (3) | 0.06967 (18) | 0.54574 (16) | 0.0625 (7) | |
H9A | 0.9076 | 0.0117 | 0.5534 | 0.094* | |
H9B | 0.9702 | 0.1018 | 0.5669 | 0.094* | |
H9C | 0.8702 | 0.0810 | 0.4876 | 0.094* | |
C10 | 0.0086 (2) | 0.16495 (12) | 0.84883 (11) | 0.0334 (4) | |
C11 | −0.0424 (2) | 0.09752 (13) | 0.89039 (13) | 0.0415 (4) | |
H11 | 0.0019 | 0.0460 | 0.8824 | 0.050* | |
C12 | −0.1578 (3) | 0.10467 (14) | 0.94352 (14) | 0.0502 (5) | |
H12 | −0.1910 | 0.0575 | 0.9708 | 0.060* | |
C13 | −0.2252 (2) | 0.17834 (15) | 0.95769 (13) | 0.0471 (5) | |
C14 | −0.1765 (2) | 0.24514 (14) | 0.91485 (13) | 0.0458 (5) | |
H14 | −0.2227 | 0.2963 | 0.9220 | 0.055* | |
C15 | −0.0617 (2) | 0.23886 (13) | 0.86159 (12) | 0.0407 (4) | |
H15 | −0.0305 | 0.2859 | 0.8333 | 0.049* | |
C16 | −0.3460 (3) | 0.18714 (19) | 1.01892 (18) | 0.0705 (8) | |
H16A | −0.4306 | 0.2151 | 0.9931 | 0.106* | |
H16B | −0.3090 | 0.2188 | 1.0658 | 0.106* | |
H16C | −0.3762 | 0.1331 | 1.0372 | 0.106* | |
C17 | 0.2618 (4) | 0.37967 (17) | 0.64916 (18) | 0.0716 (8) | |
H17A | 0.2149 | 0.4236 | 0.6164 | 0.086* | |
H17B | 0.3615 | 0.3706 | 0.6285 | 0.086* | |
C18 | 0.2747 (4) | 0.40580 (16) | 0.7358 (2) | 0.0719 (8) | |
H18A | 0.3396 | 0.4540 | 0.7399 | 0.086* | |
H18B | 0.1764 | 0.4221 | 0.7540 | 0.086* | |
C19 | 0.2068 (4) | 0.2688 (2) | 0.55914 (15) | 0.0742 (8) | |
H19A | 0.1775 | 0.3065 | 0.5154 | 0.111* | |
H19B | 0.1509 | 0.2181 | 0.5528 | 0.111* | |
H19C | 0.3121 | 0.2571 | 0.5565 | 0.111* | |
C20 | 0.0174 (3) | 0.3218 (2) | 0.64082 (18) | 0.0748 (8) | |
H20A | −0.0056 | 0.3462 | 0.6933 | 0.112* | |
H20B | −0.0365 | 0.2705 | 0.6339 | 0.112* | |
H20C | −0.0115 | 0.3592 | 0.5967 | 0.112* | |
C21 | 0.4918 (3) | 0.3336 (2) | 0.7846 (3) | 0.1069 (14) | |
H21A | 0.5149 | 0.3171 | 0.7291 | 0.160* | |
H21B | 0.5284 | 0.2924 | 0.8233 | 0.160* | |
H21C | 0.5389 | 0.3859 | 0.7972 | 0.160* | |
C22 | 0.2953 (4) | 0.3605 (2) | 0.87428 (18) | 0.0885 (10) | |
H22A | 0.3377 | 0.3194 | 0.9114 | 0.133* | |
H22B | 0.1881 | 0.3606 | 0.8781 | 0.133* | |
H22C | 0.3341 | 0.4142 | 0.8894 | 0.133* |
U11 | U22 | U33 | U12 | U13 | U23 | |
In1 | 0.03663 (9) | 0.03030 (8) | 0.04007 (8) | −0.00028 (5) | 0.00951 (6) | 0.00208 (5) |
O1 | 0.0382 (7) | 0.0336 (7) | 0.0480 (7) | 0.0027 (6) | 0.0178 (6) | 0.0033 (6) |
O2 | 0.0386 (7) | 0.0350 (7) | 0.0443 (7) | 0.0027 (6) | 0.0159 (6) | 0.0039 (6) |
Li1 | 0.0400 (17) | 0.0319 (16) | 0.0410 (16) | −0.0002 (13) | 0.0065 (13) | 0.0024 (13) |
N1 | 0.0498 (11) | 0.0399 (10) | 0.0635 (12) | −0.0054 (8) | 0.0004 (9) | −0.0099 (9) |
N2 | 0.0563 (11) | 0.0452 (10) | 0.0454 (9) | 0.0051 (9) | 0.0050 (8) | 0.0086 (8) |
C1 | 0.0794 (19) | 0.079 (2) | 0.0467 (13) | 0.0079 (15) | −0.0064 (13) | 0.0139 (13) |
C2 | 0.0454 (12) | 0.0363 (11) | 0.0613 (13) | −0.0092 (9) | 0.0056 (10) | −0.0113 (10) |
C3 | 0.0357 (9) | 0.0257 (9) | 0.0390 (9) | 0.0004 (7) | 0.0109 (7) | 0.0026 (7) |
C4 | 0.0403 (10) | 0.0406 (10) | 0.0338 (9) | 0.0028 (8) | 0.0047 (8) | −0.0026 (8) |
C5 | 0.0340 (10) | 0.0437 (11) | 0.0449 (10) | 0.0035 (8) | 0.0025 (8) | 0.0018 (9) |
C6 | 0.0427 (11) | 0.0387 (11) | 0.0441 (10) | 0.0097 (9) | 0.0145 (9) | 0.0038 (9) |
C7 | 0.0524 (12) | 0.0421 (11) | 0.0337 (9) | 0.0043 (9) | 0.0078 (8) | −0.0047 (8) |
C8 | 0.0375 (10) | 0.0367 (10) | 0.0411 (9) | −0.0021 (8) | 0.0027 (8) | −0.0021 (8) |
C9 | 0.0531 (14) | 0.0774 (18) | 0.0584 (14) | 0.0221 (13) | 0.0217 (12) | 0.0033 (13) |
C10 | 0.0319 (9) | 0.0356 (10) | 0.0329 (8) | −0.0025 (7) | 0.0048 (7) | −0.0049 (7) |
C11 | 0.0453 (11) | 0.0326 (10) | 0.0475 (10) | −0.0047 (8) | 0.0158 (9) | −0.0079 (9) |
C12 | 0.0567 (13) | 0.0429 (12) | 0.0525 (12) | −0.0154 (10) | 0.0244 (10) | −0.0091 (10) |
C13 | 0.0376 (10) | 0.0536 (13) | 0.0512 (11) | −0.0087 (9) | 0.0145 (9) | −0.0189 (10) |
C14 | 0.0381 (10) | 0.0452 (12) | 0.0546 (12) | 0.0059 (9) | 0.0073 (9) | −0.0123 (10) |
C15 | 0.0388 (10) | 0.0376 (10) | 0.0461 (10) | 0.0028 (8) | 0.0073 (8) | −0.0001 (9) |
C16 | 0.0580 (15) | 0.0729 (18) | 0.0832 (18) | −0.0151 (13) | 0.0398 (14) | −0.0275 (15) |
C17 | 0.093 (2) | 0.0459 (14) | 0.0762 (18) | −0.0046 (14) | 0.0121 (16) | 0.0229 (13) |
C18 | 0.092 (2) | 0.0334 (12) | 0.091 (2) | −0.0066 (13) | 0.0130 (17) | −0.0044 (13) |
C19 | 0.100 (2) | 0.077 (2) | 0.0470 (13) | 0.0161 (17) | 0.0141 (14) | 0.0074 (13) |
C20 | 0.0626 (16) | 0.100 (2) | 0.0619 (15) | 0.0196 (16) | −0.0017 (13) | 0.0061 (16) |
C21 | 0.0563 (18) | 0.080 (2) | 0.184 (4) | −0.0067 (16) | −0.005 (2) | −0.043 (3) |
C22 | 0.117 (3) | 0.085 (2) | 0.0633 (17) | −0.023 (2) | −0.0025 (17) | −0.0287 (17) |
In1—O1 | 2.1252 (13) | C9—H9B | 0.9800 |
In1—C1 | 2.138 (3) | C9—H9C | 0.9800 |
In1—O2 | 2.1414 (13) | C10—C11 | 1.391 (3) |
In1—C2 | 2.167 (2) | C10—C15 | 1.393 (3) |
O1—C3 | 1.352 (2) | C11—C12 | 1.393 (3) |
O1—Li1 | 1.889 (4) | C11—H11 | 0.9500 |
O2—C10 | 1.346 (2) | C12—C13 | 1.382 (3) |
O2—Li1 | 1.926 (3) | C12—H12 | 0.9500 |
Li1—N2 | 2.092 (4) | C13—C14 | 1.386 (3) |
Li1—N1 | 2.122 (4) | C13—C16 | 1.522 (3) |
N1—C21 | 1.446 (4) | C14—C15 | 1.389 (3) |
N1—C22 | 1.465 (4) | C14—H14 | 0.9500 |
N1—C18 | 1.480 (4) | C15—H15 | 0.9500 |
N2—C17 | 1.448 (3) | C16—H16A | 0.9800 |
N2—C20 | 1.471 (3) | C16—H16B | 0.9800 |
N2—C19 | 1.478 (3) | C16—H16C | 0.9800 |
C1—H1A | 0.9800 | C17—C18 | 1.487 (4) |
C1—H1B | 0.9800 | C17—H17A | 0.9900 |
C1—H1C | 0.9800 | C17—H17B | 0.9900 |
C2—H2A | 0.9800 | C18—H18A | 0.9900 |
C2—H2B | 0.9800 | C18—H18B | 0.9900 |
C2—H2C | 0.9800 | C19—H19A | 0.9800 |
C3—C4 | 1.393 (3) | C19—H19B | 0.9800 |
C3—C8 | 1.394 (3) | C19—H19C | 0.9800 |
C4—C5 | 1.389 (3) | C20—H20A | 0.9800 |
C4—H4 | 0.9500 | C20—H20B | 0.9800 |
C5—C6 | 1.383 (3) | C20—H20C | 0.9800 |
C5—H5 | 0.9500 | C21—H21A | 0.9800 |
C6—C7 | 1.380 (3) | C21—H21B | 0.9800 |
C6—C9 | 1.514 (3) | C21—H21C | 0.9800 |
C7—C8 | 1.392 (3) | C22—H22A | 0.9800 |
C7—H7 | 0.9500 | C22—H22B | 0.9800 |
C8—H8 | 0.9500 | C22—H22C | 0.9800 |
C9—H9A | 0.9800 | ||
O1—In1—C1 | 106.45 (10) | C6—C9—H9C | 109.5 |
O1—In1—O2 | 78.32 (5) | H9A—C9—H9C | 109.5 |
C1—In1—O2 | 108.82 (9) | H9B—C9—H9C | 109.5 |
O1—In1—C2 | 107.23 (7) | O2—C10—C11 | 122.42 (17) |
C1—In1—C2 | 133.76 (11) | O2—C10—C15 | 120.24 (17) |
O2—In1—C2 | 108.30 (8) | C11—C10—C15 | 117.34 (17) |
C3—O1—Li1 | 142.41 (15) | C10—C11—C12 | 120.8 (2) |
C3—O1—In1 | 121.02 (11) | C10—C11—H11 | 119.6 |
Li1—O1—In1 | 96.57 (11) | C12—C11—H11 | 119.6 |
C10—O2—Li1 | 137.92 (16) | C13—C12—C11 | 121.9 (2) |
C10—O2—In1 | 125.00 (12) | C13—C12—H12 | 119.1 |
Li1—O2—In1 | 94.94 (11) | C11—C12—H12 | 119.1 |
O1—Li1—O2 | 89.85 (15) | C12—C13—C14 | 117.28 (18) |
O1—Li1—N2 | 116.35 (17) | C12—C13—C16 | 122.0 (2) |
O2—Li1—N2 | 126.61 (19) | C14—C13—C16 | 120.7 (2) |
O1—Li1—N1 | 117.30 (18) | C13—C14—C15 | 121.4 (2) |
O2—Li1—N1 | 122.97 (18) | C13—C14—H14 | 119.3 |
N2—Li1—N1 | 86.82 (15) | C15—C14—H14 | 119.3 |
C21—N1—C22 | 110.9 (3) | C14—C15—C10 | 121.3 (2) |
C21—N1—C18 | 111.5 (3) | C14—C15—H15 | 119.4 |
C22—N1—C18 | 108.8 (2) | C10—C15—H15 | 119.4 |
C21—N1—Li1 | 105.9 (2) | C13—C16—H16A | 109.5 |
C22—N1—Li1 | 116.8 (2) | C13—C16—H16B | 109.5 |
C18—N1—Li1 | 102.62 (18) | H16A—C16—H16B | 109.5 |
C17—N2—C20 | 111.9 (2) | C13—C16—H16C | 109.5 |
C17—N2—C19 | 109.5 (2) | H16A—C16—H16C | 109.5 |
C20—N2—C19 | 107.9 (2) | H16B—C16—H16C | 109.5 |
C17—N2—Li1 | 103.99 (18) | N2—C17—C18 | 112.3 (2) |
C20—N2—Li1 | 109.79 (18) | N2—C17—H17A | 109.1 |
C19—N2—Li1 | 113.73 (18) | C18—C17—H17A | 109.1 |
In1—C1—H1A | 109.5 | N2—C17—H17B | 109.1 |
In1—C1—H1B | 109.5 | C18—C17—H17B | 109.1 |
H1A—C1—H1B | 109.5 | H17A—C17—H17B | 107.9 |
In1—C1—H1C | 109.5 | N1—C18—C17 | 113.0 (2) |
H1A—C1—H1C | 109.5 | N1—C18—H18A | 109.0 |
H1B—C1—H1C | 109.5 | C17—C18—H18A | 109.0 |
In1—C2—H2A | 109.5 | N1—C18—H18B | 109.0 |
In1—C2—H2B | 109.5 | C17—C18—H18B | 109.0 |
H2A—C2—H2B | 109.5 | H18A—C18—H18B | 107.8 |
In1—C2—H2C | 109.5 | N2—C19—H19A | 109.5 |
H2A—C2—H2C | 109.5 | N2—C19—H19B | 109.5 |
H2B—C2—H2C | 109.5 | H19A—C19—H19B | 109.5 |
O1—C3—C4 | 121.17 (17) | N2—C19—H19C | 109.5 |
O1—C3—C8 | 120.74 (17) | H19A—C19—H19C | 109.5 |
C4—C3—C8 | 118.09 (17) | H19B—C19—H19C | 109.5 |
C5—C4—C3 | 120.61 (17) | N2—C20—H20A | 109.5 |
C5—C4—H4 | 119.7 | N2—C20—H20B | 109.5 |
C3—C4—H4 | 119.7 | H20A—C20—H20B | 109.5 |
C6—C5—C4 | 121.43 (19) | N2—C20—H20C | 109.5 |
C6—C5—H5 | 119.3 | H20A—C20—H20C | 109.5 |
C4—C5—H5 | 119.3 | H20B—C20—H20C | 109.5 |
C7—C6—C5 | 117.92 (18) | N1—C21—H21A | 109.5 |
C7—C6—C9 | 120.8 (2) | N1—C21—H21B | 109.5 |
C5—C6—C9 | 121.2 (2) | H21A—C21—H21B | 109.5 |
C6—C7—C8 | 121.53 (18) | N1—C21—H21C | 109.5 |
C6—C7—H7 | 119.2 | H21A—C21—H21C | 109.5 |
C8—C7—H7 | 119.2 | H21B—C21—H21C | 109.5 |
C7—C8—C3 | 120.41 (19) | N1—C22—H22A | 109.5 |
C7—C8—H8 | 119.8 | N1—C22—H22B | 109.5 |
C3—C8—H8 | 119.8 | H22A—C22—H22B | 109.5 |
C6—C9—H9A | 109.5 | N1—C22—H22C | 109.5 |
C6—C9—H9B | 109.5 | H22A—C22—H22C | 109.5 |
H9A—C9—H9B | 109.5 | H22B—C22—H22C | 109.5 |
Experimental details
Crystal data | |
Chemical formula | [InLi(CH3)2(C7H7O)2(C6H16N2)] |
Mr | 482.29 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 188 |
a, b, c (Å) | 9.0991 (8), 16.4481 (15), 16.4256 (15) |
β (°) | 91.956 (1) |
V (Å3) | 2456.9 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.98 |
Crystal size (mm) | 0.65 × 0.60 × 0.60 |
Data collection | |
Diffractometer | Bruker SMART1000/P4 |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2008a) |
Tmin, Tmax | 0.569, 0.591 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 16648, 5459, 4921 |
Rint | 0.025 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.025, 0.067, 1.05 |
No. of reflections | 5459 |
No. of parameters | 261 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.56, −0.27 |
Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008b), SHELXL2013 (Sheldrick, 2015), Diamond (Brandenburg, 2012), SHELXTL (Sheldrick, 2008b).
Acknowledgements
This work was supported by the Natural Sciences and Engineering Research Council of Canada, the New Brunswick Innovation Foundation, the Canadian Foundation for Innovation and Mount Allison University.
References
Adonin, N. Yu., Bardin, V. V., Flörke, U. & Frohn, H.-J. (2005). Z. Anorg. Allg. Chem. 631, 2638–2646. Web of Science CSD CrossRef CAS Google Scholar
Aksu, Y. & Driess, M. (2009). Angew. Chem. Int. Ed. 48, 7778–7782. Web of Science CrossRef CAS Google Scholar
Beachley, O. T. Jr, MacRae, D. J. & Kovalevsky, A. Y. (2003). Organometallics, 22, 1690–1695. CAS Google Scholar
Blake, M. P., Schwarz, A. D. & Mountford, P. (2011). Organometallics, 30, 1202–1214. Web of Science CSD CrossRef CAS Google Scholar
Bradley, D. C., Frigo, D. M., Hursthouse, M. B. & Hussain, B. (1988). Organometallics, 7, 1112–1115. CSD CrossRef CAS Web of Science Google Scholar
Brandenburg, K. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Briand, G. G., Decken, A. & Hamilton, N. S. (2010). Dalton Trans. 39, 3833–3841. Web of Science CSD CrossRef CAS PubMed Google Scholar
Briand, G. G., Decken, A. & Hoey, M. R. (2013). Acta Cryst. E69, m622. CSD CrossRef IUCr Journals Google Scholar
Bruker (1999). SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2006). SAINT. Bruker AXS inc., Madison, Wisconsin, USA. Google Scholar
Clegg, W., Lamb, E., Liddle, S. T., Snaith, R. & Wheatley, A. E. H. (1999). J. Organomet. Chem. 573, 305–312. Web of Science CSD CrossRef CAS Google Scholar
Häusslein, M., Hausen, H.-D., Klinkhammer, K. W., Weidlein, J. & Merz, K. (1999). Z. Anorg. Allg. Chem. 625, 1608–1618. Google Scholar
Muñoz, M. T., Cuenca, T. & Mosquera, M. E. G. (2014). Dalton Trans. 43, 14377–14385. Web of Science PubMed Google Scholar
Muñoz, M. T., Urbaneja, C., Temprado, M., Mosquera, M. E. G. & Cuenca, T. (2011). Chem. Commun. 47, 11757–11759. Google Scholar
Niemeyer, M. & Power, P. P. (1997). Inorg. Chim. Acta, 263, 201–207. CSD CrossRef CAS Web of Science Google Scholar
Normand, M., Kirillov, E., Roisnel, T. & Carpentier, J.-F. (2012). Organometallics, 31, 1448–1457. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008a). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Sheldrick, G. M. (2008b). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Simmonds, H. R. & Wright, D. S. (2012). Chem. Commun. 48, 8617–8624. Web of Science CrossRef CAS Google Scholar
Soki, F., Neudörfl, J.-M. & Goldfuss, B. (2008). J. Organomet. Chem. 693, 2139–2146. Web of Science CSD CrossRef CAS Google Scholar
Trentler, T. J., Goel, S. C., Hickman, K. M., Viano, A. M., Chiang, M. Y., Beatty, A. M., Gibbons, P. C. & Buhro, W. E. (1997). J. Am. Chem. Soc. 119, 2172–2181. CSD CrossRef CAS Web of Science Google Scholar
Uhl, W., Vester, A., Fenske, D. & Baum, G. (1994). J. Organomet. Chem. 464, 23–34. CSD CrossRef CAS Web of Science Google Scholar
Veith, M. & Kunze, K. (1991). Angew. Chem. Int. Ed. Engl. 30, 95–97. CSD CrossRef Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.