organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 3-bromo-9-ethyl-9H-carbazole

aDepartment of Chemistry, National Taras Shevchenko University, 62a Volodymirska st., Kyiv, Ukraine, and bDepartment of Polymer Chemistry and Technology, Kaunas University of Technology, Radvilenu Road 19, LT-50254, Kaunas, Lithuania
*Correspondence e-mail: nikolay_bezugliy@ukr.net

Edited by G. S. Nichol, University of Edinburgh, Scotland (Received 29 July 2015; accepted 11 December 2015; online 19 December 2015)

In the title compound, C14H12BrN, the tricyclic ring system is essentially planar (r.m.s. deviation 0.026 Å). The carbon atoms of the ethyl group deviate from the mean plane by 0.148 (9) (CH2) and 1.59 (1) Å (CH3). In the crystal, H⋯π contacts [2.698–2.898 Å] shorter than the van der Waals contact distance of 3.70 Å are observed. A scalable to gram quantities selective synthesis of mono-bromine-substituted carbazole derivatives was developed.

1. Related literature

N-substituted carbazole derivatives are important for anti-cancer research (Caulfield et al., 2002[Caulfield, T., Cherrier, M. P., Combeau, C. & Mailliet, P. (2002). Eur. Patent No. 1 253 141.]) and as materials for opto-electronic devices (Niu et al., 2011[Niu, F., Niu, H., Liu, Y., Lian, J. & Zeng, P. (2011). RSC Adv. 1, 415-423.]; Miyazaki et al., 2014[Miyazaki, T., Shibahara, M., Fujishige, J., Watanabe, M., Goto, K. & Shinmyozu, T. (2014). J. Org. Chem. 79, 11440-11453.]; Grigalevicius et al., 2002[Grigalevicius, S., Ostrauskaite, J., Grazulevicius, J. V., Gaidelis, V., Jankauskas, V. & Sidaravicius, J. (2002). Mater. Chem. Phys. 77, 281-284.]). The crystal structure of 1,3,6,8-tetra­bromo-9-ethyl-9H-carbazole was reported by Bezuglyi et al. (2015[Bezuglyi, M., Grybauskaite, G., Bagdziunas, G. & Grazulevicius, J. V. (2015). Acta Cryst. E71, o373.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C14H12BrN

  • Mr = 274.16

  • Orthorhombic, P b c a

  • a = 15.263 (16) Å

  • b = 7.745 (8) Å

  • c = 20.41 (2) Å

  • V = 2413 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 3.39 mm−1

  • T = 293 K

  • 0.40 × 0.09 × 0.08 mm

2.2. Data collection

  • Rigaku XtaLAB mini diffractometer

  • Absorption correction: multi-scan (REQAB; Rigaku, 1998[Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.450, Tmax = 0.763

  • 8316 measured reflections

  • 2721 independent reflections

  • 1383 reflections with F2 > 2.0σ(F2)

  • Rint = 0.056

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.078

  • wR(F2) = 0.236

  • S = 1.05

  • 2721 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 1.37 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 are the centroids of the N1/C1/C6/C7/C12 and C1–C6 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯Cg1i 0.93 2.81 3.637 (7) 149
C11—H11⋯Cg2ii 0.93 3.01 3.922 (8) 167
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z].

Data collection: CrystalClear-SM Expert (Rigaku, 2011[Rigaku (2011). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear-SM Expert; data reduction: CrystalClear-SM Expert; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]).

Supporting information


Synthesis and crystallization top

9-ethyl-carbazole (1.00 g, 5.12 mmol) was added to a solution of N-bromo­succinimide (0.911 g, 5.12 mmol) in 10 mL of DMF. The reaction mixture was refluxed at room temperature for 24 hours. When the reaction was completed (monitored via TLC) the solution was poured into a large amount of water with ice and extracted with ethyl acetate. The organic layer was dried over anhydrous sodium sulfate followed by solvent evaporation in rotary evaporator. The product was crystallized from methanol to afford a white needle-like crystals. Yield: 0.88 g (62 %), melting point 58-60°C. 1H NMR (700 MHz, CDCl3) δ 8.10 (d, J = 7.7 Hz, 1H), 7.63 (d, J = 2.5 Hz, 1H), 7.49 (ddd, J = 8.2, 7.1, 1.1 Hz, 1H), 7.42 (d, J = 8.2 Hz, 1H), 7.35 (d, J = 8.7 Hz, 1H), 7.25 – 7.22 (m, 1H), 7.16 (dd, J = 8.8, 2.5 Hz, 1H), 4.37 (q, J = 7.3 Hz, 2H), 1.45 (t, J = 7.3 Hz, 4H).

Refinement top

All hydrogen atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.930 Å for aromatic C—H, with 0.969 Å for methyl­ene C—H, 0.957 Å for methyl distances and Uiso(H) = 1.2 Ueq.

Related literature top

N-substituted carbazole derivatives are important for anti-cancer research (Caulfield et al., 2002) and as materials for opto-electronic devices (Niu et al., 2011; Miyazaki et al., 2014; Grigalevicius et al., 2002). The crystal structure of 1,3,6,8-tetrabromo-9-ethyl-9H-carbazole is described by Bezuglyi et al. (2015).

Structure description top

N-substituted carbazole derivatives are important for anti-cancer research (Caulfield et al., 2002) and as materials for opto-electronic devices (Niu et al., 2011; Miyazaki et al., 2014; Grigalevicius et al., 2002). The crystal structure of 1,3,6,8-tetrabromo-9-ethyl-9H-carbazole is described by Bezuglyi et al. (2015).

Synthesis and crystallization top

9-ethyl-carbazole (1.00 g, 5.12 mmol) was added to a solution of N-bromo­succinimide (0.911 g, 5.12 mmol) in 10 mL of DMF. The reaction mixture was refluxed at room temperature for 24 hours. When the reaction was completed (monitored via TLC) the solution was poured into a large amount of water with ice and extracted with ethyl acetate. The organic layer was dried over anhydrous sodium sulfate followed by solvent evaporation in rotary evaporator. The product was crystallized from methanol to afford a white needle-like crystals. Yield: 0.88 g (62 %), melting point 58-60°C. 1H NMR (700 MHz, CDCl3) δ 8.10 (d, J = 7.7 Hz, 1H), 7.63 (d, J = 2.5 Hz, 1H), 7.49 (ddd, J = 8.2, 7.1, 1.1 Hz, 1H), 7.42 (d, J = 8.2 Hz, 1H), 7.35 (d, J = 8.7 Hz, 1H), 7.25 – 7.22 (m, 1H), 7.16 (dd, J = 8.8, 2.5 Hz, 1H), 4.37 (q, J = 7.3 Hz, 2H), 1.45 (t, J = 7.3 Hz, 4H).

Refinement details top

All hydrogen atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.930 Å for aromatic C—H, with 0.969 Å for methyl­ene C—H, 0.957 Å for methyl distances and Uiso(H) = 1.2 Ueq.

Computing details top

Data collection: CrystalClear-SM Expert (Rigaku, 2011); cell refinement: CrystalClear-SM Expert (Rigaku, 2011); data reduction: CrystalClear-SM Expert (Rigaku, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with displacement ellipsoids drawn at the 50% probability level.
3-Bromo-9-ethyl-9H-carbazole top
Crystal data top
C14H12BrNF(000) = 1104.00
Mr = 274.16Dx = 1.509 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ac 2abCell parameters from 3894 reflections
a = 15.263 (16) Åθ = 3.1–27.5°
b = 7.745 (8) ŵ = 3.39 mm1
c = 20.41 (2) ÅT = 273 K
V = 2413 (5) Å3Chip, colorless
Z = 80.40 × 0.09 × 0.08 mm
Data collection top
Rigaku XtaLAB mini
diffractometer
1383 reflections with F2 > 2.0σ(F2)
Detector resolution: 13.653 pixels mm-1Rint = 0.056
ω scansθmax = 27.5°
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
h = 1818
Tmin = 0.450, Tmax = 0.763k = 107
8316 measured reflectionsl = 2621
2721 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.078Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.236H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0926P)2 + 4.1576P]
where P = (Fo2 + 2Fc2)/3
2721 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 1.37 e Å3
0 restraintsΔρmin = 0.46 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
C14H12BrNV = 2413 (5) Å3
Mr = 274.16Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 15.263 (16) ŵ = 3.39 mm1
b = 7.745 (8) ÅT = 273 K
c = 20.41 (2) Å0.40 × 0.09 × 0.08 mm
Data collection top
Rigaku XtaLAB mini
diffractometer
2721 independent reflections
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
1383 reflections with F2 > 2.0σ(F2)
Tmin = 0.450, Tmax = 0.763Rint = 0.056
8316 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0780 restraints
wR(F2) = 0.236H-atom parameters constrained
S = 1.05Δρmax = 1.37 e Å3
2721 reflectionsΔρmin = 0.46 e Å3
145 parameters
Special details top

Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 sigma(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.28798 (6)0.61687 (12)0.45898 (4)0.0841 (5)
N10.6116 (4)0.2371 (7)0.3684 (3)0.0635 (15)
C10.5364 (5)0.3073 (8)0.3969 (4)0.0570 (17)
C20.4935 (6)0.2633 (10)0.4542 (4)0.0680 (19)
C30.4189 (6)0.3557 (10)0.4719 (4)0.070 (2)
C40.3891 (5)0.4915 (9)0.4327 (4)0.0629 (18)
C50.4317 (5)0.5360 (9)0.3759 (4)0.0559 (16)
C60.5065 (5)0.4456 (8)0.3573 (4)0.0527 (16)
C70.5643 (4)0.4553 (8)0.3016 (4)0.0519 (16)
C80.5686 (5)0.5583 (9)0.2455 (4)0.0608 (18)
C90.6333 (5)0.5278 (10)0.1987 (4)0.071 (2)
C100.6935 (5)0.3978 (11)0.2092 (4)0.072 (3)
C110.6939 (5)0.2950 (10)0.2632 (5)0.067 (2)
C120.6283 (5)0.3243 (9)0.3100 (4)0.0577 (17)
C130.6556 (6)0.0790 (9)0.3911 (4)0.074 (3)
C140.6145 (6)0.0826 (9)0.3648 (5)0.083 (3)
H30.41070.62580.35000.0671*
H80.73630.37950.17750.0866*
H90.63580.59430.16080.0853*
H100.51390.17370.48030.0816*
H130.38880.32690.51000.0840*
H140.52830.64700.23940.0730*
H150.73580.20910.26880.0804*
H17A0.64580.18130.38090.0995*
H17B0.61670.08120.31780.0995*
H17C0.55450.08870.37890.0995*
H18A0.65400.07570.43860.0894*
H18B0.71660.08270.37780.0894*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0778 (7)0.0894 (7)0.0852 (7)0.0084 (5)0.0147 (5)0.0107 (5)
N10.067 (4)0.053 (3)0.071 (4)0.017 (3)0.015 (3)0.007 (3)
C10.071 (5)0.043 (4)0.056 (4)0.003 (4)0.017 (4)0.005 (3)
C20.080 (5)0.059 (4)0.065 (5)0.004 (4)0.012 (4)0.004 (4)
C30.091 (6)0.063 (5)0.056 (5)0.006 (5)0.001 (4)0.001 (4)
C40.062 (5)0.053 (4)0.074 (5)0.000 (4)0.002 (4)0.008 (4)
C50.061 (4)0.045 (4)0.061 (4)0.003 (4)0.010 (4)0.001 (3)
C60.055 (4)0.045 (4)0.058 (4)0.003 (3)0.007 (4)0.009 (3)
C70.049 (4)0.043 (4)0.063 (4)0.000 (3)0.017 (3)0.007 (3)
C80.062 (4)0.056 (4)0.065 (5)0.001 (4)0.011 (4)0.003 (4)
C90.069 (5)0.069 (5)0.075 (5)0.011 (5)0.001 (4)0.005 (4)
C100.064 (5)0.083 (6)0.070 (5)0.006 (5)0.002 (4)0.021 (5)
C110.054 (4)0.060 (5)0.087 (6)0.007 (4)0.014 (4)0.019 (4)
C120.054 (4)0.050 (4)0.068 (5)0.001 (4)0.007 (4)0.004 (4)
C130.080 (5)0.064 (5)0.080 (5)0.020 (4)0.023 (5)0.007 (4)
C140.104 (7)0.051 (4)0.094 (6)0.010 (5)0.001 (5)0.003 (4)
Geometric parameters (Å, º) top
Br1—C41.901 (7)C10—C111.358 (12)
N1—C11.396 (9)C11—C121.403 (11)
N1—C121.393 (10)C13—C141.499 (11)
N1—C131.471 (10)C2—H100.930
C1—C21.382 (10)C3—H130.930
C1—C61.418 (9)C5—H30.930
C2—C31.392 (12)C8—H140.930
C3—C41.397 (11)C9—H90.930
C4—C51.373 (10)C10—H80.930
C5—C61.391 (9)C11—H150.930
C6—C71.442 (10)C13—H18A0.970
C7—C81.397 (10)C13—H18B0.970
C7—C121.419 (9)C14—H17A0.960
C8—C91.394 (11)C14—H17B0.960
C9—C101.381 (11)C14—H17C0.960
N1···C53.594 (9)C10···H3vi2.9041
N1···C83.594 (10)C10···H15ix2.9077
C1···C42.761 (10)C11···H3vi3.1000
C1···C143.311 (11)C11···H14vi3.5811
C2···C52.811 (10)C11···H15ix3.3834
C2···C133.133 (12)C11···H17Aix3.4343
C3···C62.781 (11)C11···H17Bix3.2429
C5···C83.388 (10)C11···H18Bix3.5072
C7···C102.764 (11)C12···H14vi2.9363
C8···C112.819 (10)C12···H18Bix3.3937
C9···C122.767 (11)C13···H17Aix3.5602
C11···C133.156 (12)C14···H13vii3.1805
C12···C143.351 (11)C14···H14x3.5604
C2···C3i3.574 (11)C14···H14vi3.5260
C2···C4i3.486 (11)C14···H15xi3.4162
C3···C2i3.574 (11)H3···C9ii3.3372
C3···C3i3.527 (12)H3···C10ii2.9041
C4···C2i3.486 (11)H3···C11ii3.1000
Br1···H32.9084H3···H8ii3.0356
Br1···H132.9144H3···H8iii3.3234
N1···H102.7717H3···H15ii3.3615
N1···H152.7889H3···H17Cviii3.1708
N1···H17A3.2924H8···Br1vi3.4695
N1···H17B2.6741H8···Br1xii3.4304
N1···H17C2.6783H8···C4xii3.3551
C1···H33.2683H8···C5xii3.3993
C1···H133.2280H8···C9xi3.4012
C1···H17C3.1012H8···H3vi3.0356
C1···H18A2.6759H8···H3xii3.3234
C1···H18B3.2769H8···H9xi2.9669
C2···H17C3.2655H8···H15ix3.1884
C2···H18A2.8668H9···Br1xii3.3766
C3···H33.2516H9···C1ii3.3199
C4···H103.2612H9···C2ii3.3337
C5···H133.2457H9···C3ii3.4827
C5···H143.2684H9···C6ii3.5009
C6···H103.2790H9···H8ix2.9669
C6···H142.8883H9···H15ix3.0795
C7···H32.8662H9···H17Cii3.3331
C7···H93.2568H10···C4i3.4733
C7···H153.3072H10···H10vii2.8396
C8···H33.2607H10···H17Cvii3.1274
C8···H83.2241H13···Br1xiii3.3182
C9···H153.2540H13···C1i3.5975
C10···H143.2341H13···C14vii3.1805
C11···H93.2440H13···H17Avii2.5518
C11···H17B3.3353H13···H17Cvii3.0494
C11···H18B2.8803H13···H18Avii3.3550
C12···H83.1954H13···H18Bv3.5574
C12···H143.2644H14···N1ii3.1441
C12···H17B3.1500H14···C1ii3.2025
C12···H18A3.2783H14···C6ii3.0863
C12···H18B2.6882H14···C7ii2.8977
C13···H102.9205H14···C8ii3.5256
C13···H152.9579H14···C11ii3.5811
C14···H103.4427H14···C12ii2.9363
C14···H153.5181H14···C14viii3.5604
H3···H142.8901H14···C14ii3.5260
H8···H92.2887H14···H17Bviii2.9697
H8···H152.2820H14···H17Bii3.0636
H9···H142.3299H14···H17Cviii3.5302
H10···H132.3284H14···H17Cii3.2796
H10···H17C2.9668H15···C8xi3.2416
H10···H18A2.4234H15···C9xi2.8304
H15···H17B3.0595H15···C10xi2.9077
H15···H18B2.4483H15···C11xi3.3834
H17A···H18A2.3159H15···C14ix3.4162
H17A···H18B2.3126H15···H3vi3.3615
H17B···H18A2.8071H15···H8xi3.1884
H17B···H18B2.3301H15···H9xi3.0795
H17C···H18A2.3268H15···H17Aix3.0376
H17C···H18B2.8068H15···H17Bix2.9508
Br1···H8ii3.4695H17A···C3vii3.4391
Br1···H8iii3.4304H17A···C7x3.4783
Br1···H9iii3.3766H17A···C11xi3.4343
Br1···H13iv3.3182H17A···C13xi3.5602
Br1···H18Ai3.2895H17A···H13vii2.5518
Br1···H18Av3.2825H17A···H15xi3.0376
N1···H14vi3.1441H17A···H18Bxi2.7853
C1···H9vi3.3199H17B···C8x3.2433
C1···H13i3.5975H17B···C8vi3.2915
C1···H14vi3.2025H17B···C11xi3.2429
C2···H9vi3.3337H17B···H14x2.9697
C3···H9vi3.4827H17B···H14vi3.0636
C3···H17Avii3.4391H17B···H15xi2.9508
C4···H8iii3.3551H17C···C5x3.4596
C4···H10i3.4733H17C···C8vi3.3569
C5···H8iii3.3993H17C···C9vi3.3968
C5···H17Cviii3.4596H17C···H3x3.1708
C6···H9vi3.5009H17C···H9vi3.3331
C6···H14vi3.0863H17C···H10vii3.1274
C7···H14vi2.8977H17C···H13vii3.0494
C7···H17Aviii3.4783H17C···H14x3.5302
C8···H14vi3.5256H17C···H14vi3.2796
C8···H15ix3.2416H18A···Br1i3.2895
C8···H17Bviii3.2433H18A···Br1xiv3.2825
C8···H17Bii3.2915H18A···H13vii3.3550
C8···H17Cii3.3569H18B···C11xi3.5072
C9···H3vi3.3372H18B···C12xi3.3937
C9···H8ix3.4012H18B···H13xiv3.5574
C9···H15ix2.8304H18B···H17Aix2.7853
C9···H17Cii3.3968
C1—N1—C12108.6 (6)C1—C2—H10120.636
C1—N1—C13124.6 (6)C3—C2—H10120.638
C12—N1—C13126.1 (6)C2—C3—H13119.841
N1—C1—C2130.3 (7)C4—C3—H13119.848
N1—C1—C6108.7 (6)C4—C5—H3120.246
C2—C1—C6121.0 (7)C6—C5—H3120.252
C1—C2—C3118.7 (7)C7—C8—H14120.069
C2—C3—C4120.3 (7)C9—C8—H14120.061
Br1—C4—C3119.2 (6)C8—C9—H9120.379
Br1—C4—C5119.7 (6)C10—C9—H9120.368
C3—C4—C5121.2 (7)C9—C10—H8118.092
C4—C5—C6119.5 (6)C11—C10—H8118.084
C1—C6—C5119.3 (6)C10—C11—H15121.478
C1—C6—C7107.0 (6)C12—C11—H15121.484
C5—C6—C7133.7 (6)N1—C13—H18A108.980
C6—C7—C8134.8 (6)N1—C13—H18B108.983
C6—C7—C12106.8 (6)C14—C13—H18A108.979
C8—C7—C12118.4 (6)C14—C13—H18B108.984
C7—C8—C9119.9 (7)H18A—C13—H18B107.770
C8—C9—C10119.3 (8)C13—C14—H17A109.478
C9—C10—C11123.8 (8)C13—C14—H17B109.463
C10—C11—C12117.0 (7)C13—C14—H17C109.470
N1—C12—C7108.9 (6)H17A—C14—H17B109.470
N1—C12—C11129.5 (7)H17A—C14—H17C109.473
C7—C12—C11121.6 (7)H17B—C14—H17C109.472
N1—C13—C14113.0 (7)
C1—N1—C12—C71.4 (7)Br1—C4—C5—C6179.0 (4)
C1—N1—C12—C11176.9 (6)C3—C4—C5—C60.8 (10)
C12—N1—C1—C2179.1 (6)C4—C5—C6—C11.0 (9)
C12—N1—C1—C62.1 (7)C4—C5—C6—C7178.2 (6)
C1—N1—C13—C1483.0 (8)C1—C6—C7—C8178.2 (6)
C13—N1—C1—C28.6 (11)C1—C6—C7—C121.1 (7)
C13—N1—C1—C6172.6 (6)C5—C6—C7—C80.7 (13)
C12—N1—C13—C1485.8 (8)C5—C6—C7—C12178.6 (7)
C13—N1—C12—C7171.7 (6)C6—C7—C8—C9177.5 (6)
C13—N1—C12—C116.5 (11)C6—C7—C12—N10.1 (7)
N1—C1—C2—C3179.7 (6)C6—C7—C12—C11178.3 (5)
N1—C1—C6—C5179.9 (5)C8—C7—C12—N1179.6 (6)
N1—C1—C6—C72.0 (7)C8—C7—C12—C111.2 (9)
C2—C1—C6—C51.2 (10)C12—C7—C8—C91.7 (9)
C2—C1—C6—C7179.1 (6)C7—C8—C9—C101.3 (10)
C6—C1—C2—C31.1 (10)C8—C9—C10—C110.1 (12)
C1—C2—C3—C40.8 (11)C9—C10—C11—C120.4 (12)
C2—C3—C4—Br1179.2 (6)C10—C11—C12—N1178.1 (7)
C2—C3—C4—C50.6 (11)C10—C11—C12—C70.1 (10)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1/2, z+1/2; (iii) x1/2, y, z+1/2; (iv) x+1/2, y+1/2, z; (v) x1/2, y+1/2, z+1; (vi) x+1, y1/2, z+1/2; (vii) x+1, y, z+1; (viii) x, y+1, z; (ix) x+3/2, y+1/2, z; (x) x, y1, z; (xi) x+3/2, y1/2, z; (xii) x+1/2, y, z+1/2; (xiii) x+1/2, y1/2, z; (xiv) x+1/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 are the centroids of the N1/C1/C6/C7/C12 and C1–C6 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C8—H8···Cg1ii0.932.813.637 (7)149
C11—H11···Cg2ix0.933.013.922 (8)167
Symmetry codes: (ii) x+1, y+1/2, z+1/2; (ix) x+3/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
Cg1 are the centroids of the N1/C1/C6/C7/C12 and C1–C6 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C8—H8···Cg1i0.932.813.637 (7)149
C11—H11···Cg2ii0.933.013.922 (8)167
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+3/2, y+1/2, z.
 

Acknowledgements

This research was supported by FP7 REGPOT-2012–2013-1 ICT project CEOSeR under grant agreement No 316010. The authors are grateful to Dr Vasyl Kinzhybalo from the Institute of Low Temperature and Structure Research, Polish Academy of Sciences, for valuable recommendations.

References

First citationBezuglyi, M., Grybauskaite, G., Bagdziunas, G. & Grazulevicius, J. V. (2015). Acta Cryst. E71, o373.  CSD CrossRef IUCr Journals Google Scholar
First citationCaulfield, T., Cherrier, M. P., Combeau, C. & Mailliet, P. (2002). Eur. Patent No. 1 253 141.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGrigalevicius, S., Ostrauskaite, J., Grazulevicius, J. V., Gaidelis, V., Jankauskas, V. & Sidaravicius, J. (2002). Mater. Chem. Phys. 77, 281–284.  Web of Science CrossRef Google Scholar
First citationMiyazaki, T., Shibahara, M., Fujishige, J., Watanabe, M., Goto, K. & Shinmyozu, T. (2014). J. Org. Chem. 79, 11440–11453.  Web of Science CrossRef CAS PubMed Google Scholar
First citationNiu, F., Niu, H., Liu, Y., Lian, J. & Zeng, P. (2011). RSC Adv. 1, 415–423.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2011). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds