organic compounds
H-carbazole
of 3-bromo-9-ethyl-9aDepartment of Chemistry, National Taras Shevchenko University, 62a Volodymirska st., Kyiv, Ukraine, and bDepartment of Polymer Chemistry and Technology, Kaunas University of Technology, Radvilenu Road 19, LT-50254, Kaunas, Lithuania
*Correspondence e-mail: nikolay_bezugliy@ukr.net
In the title compound, C14H12BrN, the tricyclic ring system is essentially planar (r.m.s. deviation 0.026 Å). The carbon atoms of the ethyl group deviate from the mean plane by 0.148 (9) (CH2) and 1.59 (1) Å (CH3). In the crystal, H⋯π contacts [2.698–2.898 Å] shorter than the van der Waals contact distance of 3.70 Å are observed. A scalable to gram quantities selective synthesis of mono-bromine-substituted carbazole derivatives was developed.
Keywords: crystal structure; carbazole; C—H⋯π interactions.
CCDC reference: 1442215
1. Related literature
N-substituted carbazole derivatives are important for anti-cancer research (Caulfield et al., 2002) and as materials for opto-electronic devices (Niu et al., 2011; Miyazaki et al., 2014; Grigalevicius et al., 2002). The of 1,3,6,8-tetrabromo-9-ethyl-9H-carbazole was reported by Bezuglyi et al. (2015).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
Data collection: CrystalClear-SM Expert (Rigaku, 2011); cell CrystalClear-SM Expert; data reduction: CrystalClear-SM Expert; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).
Supporting information
CCDC reference: 1442215
https://doi.org/10.1107/S2056989015023907/nk2233sup1.cif
contains datablocks General, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989015023907/nk2233Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989015023907/nk2233Isup3.cml
9-ethyl-carbazole (1.00 g, 5.12 mmol) was added to a solution of N-bromosuccinimide (0.911 g, 5.12 mmol) in 10 mL of DMF. The reaction mixture was refluxed at room temperature for 24 hours. When the reaction was completed (monitored via TLC) the solution was poured into a large amount of water with ice and extracted with ethyl acetate. The organic layer was dried over anhydrous sodium sulfate followed by solvent evaporation in rotary evaporator. The product was crystallized from methanol to afford a white needle-like crystals. Yield: 0.88 g (62 %), melting point 58-60°C. 1H NMR (700 MHz, CDCl3) δ 8.10 (d, J = 7.7 Hz, 1H), 7.63 (d, J = 2.5 Hz, 1H), 7.49 (ddd, J = 8.2, 7.1, 1.1 Hz, 1H), 7.42 (d, J = 8.2 Hz, 1H), 7.35 (d, J = 8.7 Hz, 1H), 7.25 – 7.22 (m, 1H), 7.16 (dd, J = 8.8, 2.5 Hz, 1H), 4.37 (q, J = 7.3 Hz, 2H), 1.45 (t, J = 7.3 Hz, 4H).
N-substituted carbazole derivatives are important for anti-cancer research (Caulfield et al., 2002) and as materials for opto-electronic devices (Niu et al., 2011; Miyazaki et al., 2014; Grigalevicius et al., 2002). The
of 1,3,6,8-tetrabromo-9-ethyl-9H-carbazole is described by Bezuglyi et al. (2015).9-ethyl-carbazole (1.00 g, 5.12 mmol) was added to a solution of N-bromosuccinimide (0.911 g, 5.12 mmol) in 10 mL of DMF. The reaction mixture was refluxed at room temperature for 24 hours. When the reaction was completed (monitored via TLC) the solution was poured into a large amount of water with ice and extracted with ethyl acetate. The organic layer was dried over anhydrous sodium sulfate followed by solvent evaporation in rotary evaporator. The product was crystallized from methanol to afford a white needle-like crystals. Yield: 0.88 g (62 %), melting point 58-60°C. 1H NMR (700 MHz, CDCl3) δ 8.10 (d, J = 7.7 Hz, 1H), 7.63 (d, J = 2.5 Hz, 1H), 7.49 (ddd, J = 8.2, 7.1, 1.1 Hz, 1H), 7.42 (d, J = 8.2 Hz, 1H), 7.35 (d, J = 8.7 Hz, 1H), 7.25 – 7.22 (m, 1H), 7.16 (dd, J = 8.8, 2.5 Hz, 1H), 4.37 (q, J = 7.3 Hz, 2H), 1.45 (t, J = 7.3 Hz, 4H).
detailsAll hydrogen atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.930 Å for aromatic C—H, with 0.969 Å for methylene C—H, 0.957 Å for methyl distances and Uiso(H) = 1.2 Ueq.
Data collection: CrystalClear-SM Expert (Rigaku, 2011); cell
CrystalClear-SM Expert (Rigaku, 2011); data reduction: CrystalClear-SM Expert (Rigaku, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).Fig. 1. The molecular structure of the title molecule with displacement ellipsoids drawn at the 50% probability level. |
C14H12BrN | F(000) = 1104.00 |
Mr = 274.16 | Dx = 1.509 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71075 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 3894 reflections |
a = 15.263 (16) Å | θ = 3.1–27.5° |
b = 7.745 (8) Å | µ = 3.39 mm−1 |
c = 20.41 (2) Å | T = 273 K |
V = 2413 (5) Å3 | Chip, colorless |
Z = 8 | 0.40 × 0.09 × 0.08 mm |
Rigaku XtaLAB mini diffractometer | 1383 reflections with F2 > 2.0σ(F2) |
Detector resolution: 13.653 pixels mm-1 | Rint = 0.056 |
ω scans | θmax = 27.5° |
Absorption correction: multi-scan (REQAB; Rigaku, 1998) | h = −18→18 |
Tmin = 0.450, Tmax = 0.763 | k = −10→7 |
8316 measured reflections | l = −26→21 |
2721 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.078 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.236 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0926P)2 + 4.1576P] where P = (Fo2 + 2Fc2)/3 |
2721 reflections | (Δ/σ)max < 0.001 |
145 parameters | Δρmax = 1.37 e Å−3 |
0 restraints | Δρmin = −0.46 e Å−3 |
Primary atom site location: structure-invariant direct methods |
C14H12BrN | V = 2413 (5) Å3 |
Mr = 274.16 | Z = 8 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 15.263 (16) Å | µ = 3.39 mm−1 |
b = 7.745 (8) Å | T = 273 K |
c = 20.41 (2) Å | 0.40 × 0.09 × 0.08 mm |
Rigaku XtaLAB mini diffractometer | 2721 independent reflections |
Absorption correction: multi-scan (REQAB; Rigaku, 1998) | 1383 reflections with F2 > 2.0σ(F2) |
Tmin = 0.450, Tmax = 0.763 | Rint = 0.056 |
8316 measured reflections |
R[F2 > 2σ(F2)] = 0.078 | 0 restraints |
wR(F2) = 0.236 | H-atom parameters constrained |
S = 1.05 | Δρmax = 1.37 e Å−3 |
2721 reflections | Δρmin = −0.46 e Å−3 |
145 parameters |
Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY |
Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 sigma(F2) is used only for calculating R-factor (gt). |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.28798 (6) | 0.61687 (12) | 0.45898 (4) | 0.0841 (5) | |
N1 | 0.6116 (4) | 0.2371 (7) | 0.3684 (3) | 0.0635 (15) | |
C1 | 0.5364 (5) | 0.3073 (8) | 0.3969 (4) | 0.0570 (17) | |
C2 | 0.4935 (6) | 0.2633 (10) | 0.4542 (4) | 0.0680 (19) | |
C3 | 0.4189 (6) | 0.3557 (10) | 0.4719 (4) | 0.070 (2) | |
C4 | 0.3891 (5) | 0.4915 (9) | 0.4327 (4) | 0.0629 (18) | |
C5 | 0.4317 (5) | 0.5360 (9) | 0.3759 (4) | 0.0559 (16) | |
C6 | 0.5065 (5) | 0.4456 (8) | 0.3573 (4) | 0.0527 (16) | |
C7 | 0.5643 (4) | 0.4553 (8) | 0.3016 (4) | 0.0519 (16) | |
C8 | 0.5686 (5) | 0.5583 (9) | 0.2455 (4) | 0.0608 (18) | |
C9 | 0.6333 (5) | 0.5278 (10) | 0.1987 (4) | 0.071 (2) | |
C10 | 0.6935 (5) | 0.3978 (11) | 0.2092 (4) | 0.072 (3) | |
C11 | 0.6939 (5) | 0.2950 (10) | 0.2632 (5) | 0.067 (2) | |
C12 | 0.6283 (5) | 0.3243 (9) | 0.3100 (4) | 0.0577 (17) | |
C13 | 0.6556 (6) | 0.0790 (9) | 0.3911 (4) | 0.074 (3) | |
C14 | 0.6145 (6) | −0.0826 (9) | 0.3648 (5) | 0.083 (3) | |
H3 | 0.4107 | 0.6258 | 0.3500 | 0.0671* | |
H8 | 0.7363 | 0.3795 | 0.1775 | 0.0866* | |
H9 | 0.6358 | 0.5943 | 0.1608 | 0.0853* | |
H10 | 0.5139 | 0.1737 | 0.4803 | 0.0816* | |
H13 | 0.3888 | 0.3269 | 0.5100 | 0.0840* | |
H14 | 0.5283 | 0.6470 | 0.2394 | 0.0730* | |
H15 | 0.7358 | 0.2091 | 0.2688 | 0.0804* | |
H17A | 0.6458 | −0.1813 | 0.3809 | 0.0995* | |
H17B | 0.6167 | −0.0812 | 0.3178 | 0.0995* | |
H17C | 0.5545 | −0.0887 | 0.3789 | 0.0995* | |
H18A | 0.6540 | 0.0757 | 0.4386 | 0.0894* | |
H18B | 0.7166 | 0.0827 | 0.3778 | 0.0894* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0778 (7) | 0.0894 (7) | 0.0852 (7) | 0.0084 (5) | 0.0147 (5) | −0.0107 (5) |
N1 | 0.067 (4) | 0.053 (3) | 0.071 (4) | 0.017 (3) | −0.015 (3) | −0.007 (3) |
C1 | 0.071 (5) | 0.043 (4) | 0.056 (4) | −0.003 (4) | −0.017 (4) | −0.005 (3) |
C2 | 0.080 (5) | 0.059 (4) | 0.065 (5) | 0.004 (4) | −0.012 (4) | 0.004 (4) |
C3 | 0.091 (6) | 0.063 (5) | 0.056 (5) | −0.006 (5) | 0.001 (4) | 0.001 (4) |
C4 | 0.062 (5) | 0.053 (4) | 0.074 (5) | 0.000 (4) | 0.002 (4) | −0.008 (4) |
C5 | 0.061 (4) | 0.045 (4) | 0.061 (4) | −0.003 (4) | −0.010 (4) | −0.001 (3) |
C6 | 0.055 (4) | 0.045 (4) | 0.058 (4) | −0.003 (3) | −0.007 (4) | −0.009 (3) |
C7 | 0.049 (4) | 0.043 (4) | 0.063 (4) | −0.000 (3) | −0.017 (3) | −0.007 (3) |
C8 | 0.062 (4) | 0.056 (4) | 0.065 (5) | −0.001 (4) | −0.011 (4) | 0.003 (4) |
C9 | 0.069 (5) | 0.069 (5) | 0.075 (5) | −0.011 (5) | −0.001 (4) | −0.005 (4) |
C10 | 0.064 (5) | 0.083 (6) | 0.070 (5) | −0.006 (5) | −0.002 (4) | −0.021 (5) |
C11 | 0.054 (4) | 0.060 (5) | 0.087 (6) | 0.007 (4) | −0.014 (4) | −0.019 (4) |
C12 | 0.054 (4) | 0.050 (4) | 0.068 (5) | 0.001 (4) | −0.007 (4) | −0.004 (4) |
C13 | 0.080 (5) | 0.064 (5) | 0.080 (5) | 0.020 (4) | −0.023 (5) | 0.007 (4) |
C14 | 0.104 (7) | 0.051 (4) | 0.094 (6) | 0.010 (5) | 0.001 (5) | 0.003 (4) |
Br1—C4 | 1.901 (7) | C10—C11 | 1.358 (12) |
N1—C1 | 1.396 (9) | C11—C12 | 1.403 (11) |
N1—C12 | 1.393 (10) | C13—C14 | 1.499 (11) |
N1—C13 | 1.471 (10) | C2—H10 | 0.930 |
C1—C2 | 1.382 (10) | C3—H13 | 0.930 |
C1—C6 | 1.418 (9) | C5—H3 | 0.930 |
C2—C3 | 1.392 (12) | C8—H14 | 0.930 |
C3—C4 | 1.397 (11) | C9—H9 | 0.930 |
C4—C5 | 1.373 (10) | C10—H8 | 0.930 |
C5—C6 | 1.391 (9) | C11—H15 | 0.930 |
C6—C7 | 1.442 (10) | C13—H18A | 0.970 |
C7—C8 | 1.397 (10) | C13—H18B | 0.970 |
C7—C12 | 1.419 (9) | C14—H17A | 0.960 |
C8—C9 | 1.394 (11) | C14—H17B | 0.960 |
C9—C10 | 1.381 (11) | C14—H17C | 0.960 |
N1···C5 | 3.594 (9) | C10···H3vi | 2.9041 |
N1···C8 | 3.594 (10) | C10···H15ix | 2.9077 |
C1···C4 | 2.761 (10) | C11···H3vi | 3.1000 |
C1···C14 | 3.311 (11) | C11···H14vi | 3.5811 |
C2···C5 | 2.811 (10) | C11···H15ix | 3.3834 |
C2···C13 | 3.133 (12) | C11···H17Aix | 3.4343 |
C3···C6 | 2.781 (11) | C11···H17Bix | 3.2429 |
C5···C8 | 3.388 (10) | C11···H18Bix | 3.5072 |
C7···C10 | 2.764 (11) | C12···H14vi | 2.9363 |
C8···C11 | 2.819 (10) | C12···H18Bix | 3.3937 |
C9···C12 | 2.767 (11) | C13···H17Aix | 3.5602 |
C11···C13 | 3.156 (12) | C14···H13vii | 3.1805 |
C12···C14 | 3.351 (11) | C14···H14x | 3.5604 |
C2···C3i | 3.574 (11) | C14···H14vi | 3.5260 |
C2···C4i | 3.486 (11) | C14···H15xi | 3.4162 |
C3···C2i | 3.574 (11) | H3···C9ii | 3.3372 |
C3···C3i | 3.527 (12) | H3···C10ii | 2.9041 |
C4···C2i | 3.486 (11) | H3···C11ii | 3.1000 |
Br1···H3 | 2.9084 | H3···H8ii | 3.0356 |
Br1···H13 | 2.9144 | H3···H8iii | 3.3234 |
N1···H10 | 2.7717 | H3···H15ii | 3.3615 |
N1···H15 | 2.7889 | H3···H17Cviii | 3.1708 |
N1···H17A | 3.2924 | H8···Br1vi | 3.4695 |
N1···H17B | 2.6741 | H8···Br1xii | 3.4304 |
N1···H17C | 2.6783 | H8···C4xii | 3.3551 |
C1···H3 | 3.2683 | H8···C5xii | 3.3993 |
C1···H13 | 3.2280 | H8···C9xi | 3.4012 |
C1···H17C | 3.1012 | H8···H3vi | 3.0356 |
C1···H18A | 2.6759 | H8···H3xii | 3.3234 |
C1···H18B | 3.2769 | H8···H9xi | 2.9669 |
C2···H17C | 3.2655 | H8···H15ix | 3.1884 |
C2···H18A | 2.8668 | H9···Br1xii | 3.3766 |
C3···H3 | 3.2516 | H9···C1ii | 3.3199 |
C4···H10 | 3.2612 | H9···C2ii | 3.3337 |
C5···H13 | 3.2457 | H9···C3ii | 3.4827 |
C5···H14 | 3.2684 | H9···C6ii | 3.5009 |
C6···H10 | 3.2790 | H9···H8ix | 2.9669 |
C6···H14 | 2.8883 | H9···H15ix | 3.0795 |
C7···H3 | 2.8662 | H9···H17Cii | 3.3331 |
C7···H9 | 3.2568 | H10···C4i | 3.4733 |
C7···H15 | 3.3072 | H10···H10vii | 2.8396 |
C8···H3 | 3.2607 | H10···H17Cvii | 3.1274 |
C8···H8 | 3.2241 | H13···Br1xiii | 3.3182 |
C9···H15 | 3.2540 | H13···C1i | 3.5975 |
C10···H14 | 3.2341 | H13···C14vii | 3.1805 |
C11···H9 | 3.2440 | H13···H17Avii | 2.5518 |
C11···H17B | 3.3353 | H13···H17Cvii | 3.0494 |
C11···H18B | 2.8803 | H13···H18Avii | 3.3550 |
C12···H8 | 3.1954 | H13···H18Bv | 3.5574 |
C12···H14 | 3.2644 | H14···N1ii | 3.1441 |
C12···H17B | 3.1500 | H14···C1ii | 3.2025 |
C12···H18A | 3.2783 | H14···C6ii | 3.0863 |
C12···H18B | 2.6882 | H14···C7ii | 2.8977 |
C13···H10 | 2.9205 | H14···C8ii | 3.5256 |
C13···H15 | 2.9579 | H14···C11ii | 3.5811 |
C14···H10 | 3.4427 | H14···C12ii | 2.9363 |
C14···H15 | 3.5181 | H14···C14viii | 3.5604 |
H3···H14 | 2.8901 | H14···C14ii | 3.5260 |
H8···H9 | 2.2887 | H14···H17Bviii | 2.9697 |
H8···H15 | 2.2820 | H14···H17Bii | 3.0636 |
H9···H14 | 2.3299 | H14···H17Cviii | 3.5302 |
H10···H13 | 2.3284 | H14···H17Cii | 3.2796 |
H10···H17C | 2.9668 | H15···C8xi | 3.2416 |
H10···H18A | 2.4234 | H15···C9xi | 2.8304 |
H15···H17B | 3.0595 | H15···C10xi | 2.9077 |
H15···H18B | 2.4483 | H15···C11xi | 3.3834 |
H17A···H18A | 2.3159 | H15···C14ix | 3.4162 |
H17A···H18B | 2.3126 | H15···H3vi | 3.3615 |
H17B···H18A | 2.8071 | H15···H8xi | 3.1884 |
H17B···H18B | 2.3301 | H15···H9xi | 3.0795 |
H17C···H18A | 2.3268 | H15···H17Aix | 3.0376 |
H17C···H18B | 2.8068 | H15···H17Bix | 2.9508 |
Br1···H8ii | 3.4695 | H17A···C3vii | 3.4391 |
Br1···H8iii | 3.4304 | H17A···C7x | 3.4783 |
Br1···H9iii | 3.3766 | H17A···C11xi | 3.4343 |
Br1···H13iv | 3.3182 | H17A···C13xi | 3.5602 |
Br1···H18Ai | 3.2895 | H17A···H13vii | 2.5518 |
Br1···H18Av | 3.2825 | H17A···H15xi | 3.0376 |
N1···H14vi | 3.1441 | H17A···H18Bxi | 2.7853 |
C1···H9vi | 3.3199 | H17B···C8x | 3.2433 |
C1···H13i | 3.5975 | H17B···C8vi | 3.2915 |
C1···H14vi | 3.2025 | H17B···C11xi | 3.2429 |
C2···H9vi | 3.3337 | H17B···H14x | 2.9697 |
C3···H9vi | 3.4827 | H17B···H14vi | 3.0636 |
C3···H17Avii | 3.4391 | H17B···H15xi | 2.9508 |
C4···H8iii | 3.3551 | H17C···C5x | 3.4596 |
C4···H10i | 3.4733 | H17C···C8vi | 3.3569 |
C5···H8iii | 3.3993 | H17C···C9vi | 3.3968 |
C5···H17Cviii | 3.4596 | H17C···H3x | 3.1708 |
C6···H9vi | 3.5009 | H17C···H9vi | 3.3331 |
C6···H14vi | 3.0863 | H17C···H10vii | 3.1274 |
C7···H14vi | 2.8977 | H17C···H13vii | 3.0494 |
C7···H17Aviii | 3.4783 | H17C···H14x | 3.5302 |
C8···H14vi | 3.5256 | H17C···H14vi | 3.2796 |
C8···H15ix | 3.2416 | H18A···Br1i | 3.2895 |
C8···H17Bviii | 3.2433 | H18A···Br1xiv | 3.2825 |
C8···H17Bii | 3.2915 | H18A···H13vii | 3.3550 |
C8···H17Cii | 3.3569 | H18B···C11xi | 3.5072 |
C9···H3vi | 3.3372 | H18B···C12xi | 3.3937 |
C9···H8ix | 3.4012 | H18B···H13xiv | 3.5574 |
C9···H15ix | 2.8304 | H18B···H17Aix | 2.7853 |
C9···H17Cii | 3.3968 | ||
C1—N1—C12 | 108.6 (6) | C1—C2—H10 | 120.636 |
C1—N1—C13 | 124.6 (6) | C3—C2—H10 | 120.638 |
C12—N1—C13 | 126.1 (6) | C2—C3—H13 | 119.841 |
N1—C1—C2 | 130.3 (7) | C4—C3—H13 | 119.848 |
N1—C1—C6 | 108.7 (6) | C4—C5—H3 | 120.246 |
C2—C1—C6 | 121.0 (7) | C6—C5—H3 | 120.252 |
C1—C2—C3 | 118.7 (7) | C7—C8—H14 | 120.069 |
C2—C3—C4 | 120.3 (7) | C9—C8—H14 | 120.061 |
Br1—C4—C3 | 119.2 (6) | C8—C9—H9 | 120.379 |
Br1—C4—C5 | 119.7 (6) | C10—C9—H9 | 120.368 |
C3—C4—C5 | 121.2 (7) | C9—C10—H8 | 118.092 |
C4—C5—C6 | 119.5 (6) | C11—C10—H8 | 118.084 |
C1—C6—C5 | 119.3 (6) | C10—C11—H15 | 121.478 |
C1—C6—C7 | 107.0 (6) | C12—C11—H15 | 121.484 |
C5—C6—C7 | 133.7 (6) | N1—C13—H18A | 108.980 |
C6—C7—C8 | 134.8 (6) | N1—C13—H18B | 108.983 |
C6—C7—C12 | 106.8 (6) | C14—C13—H18A | 108.979 |
C8—C7—C12 | 118.4 (6) | C14—C13—H18B | 108.984 |
C7—C8—C9 | 119.9 (7) | H18A—C13—H18B | 107.770 |
C8—C9—C10 | 119.3 (8) | C13—C14—H17A | 109.478 |
C9—C10—C11 | 123.8 (8) | C13—C14—H17B | 109.463 |
C10—C11—C12 | 117.0 (7) | C13—C14—H17C | 109.470 |
N1—C12—C7 | 108.9 (6) | H17A—C14—H17B | 109.470 |
N1—C12—C11 | 129.5 (7) | H17A—C14—H17C | 109.473 |
C7—C12—C11 | 121.6 (7) | H17B—C14—H17C | 109.472 |
N1—C13—C14 | 113.0 (7) | ||
C1—N1—C12—C7 | 1.4 (7) | Br1—C4—C5—C6 | 179.0 (4) |
C1—N1—C12—C11 | −176.9 (6) | C3—C4—C5—C6 | −0.8 (10) |
C12—N1—C1—C2 | 179.1 (6) | C4—C5—C6—C1 | 1.0 (9) |
C12—N1—C1—C6 | −2.1 (7) | C4—C5—C6—C7 | 178.2 (6) |
C1—N1—C13—C14 | 83.0 (8) | C1—C6—C7—C8 | 178.2 (6) |
C13—N1—C1—C2 | 8.6 (11) | C1—C6—C7—C12 | −1.1 (7) |
C13—N1—C1—C6 | −172.6 (6) | C5—C6—C7—C8 | 0.7 (13) |
C12—N1—C13—C14 | −85.8 (8) | C5—C6—C7—C12 | −178.6 (7) |
C13—N1—C12—C7 | 171.7 (6) | C6—C7—C8—C9 | −177.5 (6) |
C13—N1—C12—C11 | −6.5 (11) | C6—C7—C12—N1 | −0.1 (7) |
N1—C1—C2—C3 | 179.7 (6) | C6—C7—C12—C11 | 178.3 (5) |
N1—C1—C6—C5 | 179.9 (5) | C8—C7—C12—N1 | −179.6 (6) |
N1—C1—C6—C7 | 2.0 (7) | C8—C7—C12—C11 | −1.2 (9) |
C2—C1—C6—C5 | −1.2 (10) | C12—C7—C8—C9 | 1.7 (9) |
C2—C1—C6—C7 | −179.1 (6) | C7—C8—C9—C10 | −1.3 (10) |
C6—C1—C2—C3 | 1.1 (10) | C8—C9—C10—C11 | 0.1 (12) |
C1—C2—C3—C4 | −0.8 (11) | C9—C10—C11—C12 | 0.4 (12) |
C2—C3—C4—Br1 | −179.2 (6) | C10—C11—C12—N1 | 178.1 (7) |
C2—C3—C4—C5 | 0.6 (11) | C10—C11—C12—C7 | 0.1 (10) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, y+1/2, −z+1/2; (iii) x−1/2, y, −z+1/2; (iv) −x+1/2, y+1/2, z; (v) x−1/2, −y+1/2, −z+1; (vi) −x+1, y−1/2, −z+1/2; (vii) −x+1, −y, −z+1; (viii) x, y+1, z; (ix) −x+3/2, y+1/2, z; (x) x, y−1, z; (xi) −x+3/2, y−1/2, z; (xii) x+1/2, y, −z+1/2; (xiii) −x+1/2, y−1/2, z; (xiv) x+1/2, −y+1/2, −z+1. |
Cg1 are the centroids of the N1/C1/C6/C7/C12 and C1–C6 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8···Cg1ii | 0.93 | 2.81 | 3.637 (7) | 149 |
C11—H11···Cg2ix | 0.93 | 3.01 | 3.922 (8) | 167 |
Symmetry codes: (ii) −x+1, y+1/2, −z+1/2; (ix) −x+3/2, y+1/2, z. |
Cg1 are the centroids of the N1/C1/C6/C7/C12 and C1–C6 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8···Cg1i | 0.93 | 2.81 | 3.637 (7) | 149 |
C11—H11···Cg2ii | 0.93 | 3.01 | 3.922 (8) | 167 |
Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x+3/2, y+1/2, z. |
Acknowledgements
This research was supported by FP7 REGPOT-2012–2013-1 ICT project CEOSeR under grant agreement No 316010. The authors are grateful to Dr Vasyl Kinzhybalo from the Institute of Low Temperature and Structure Research, Polish Academy of Sciences, for valuable recommendations.
References
Bezuglyi, M., Grybauskaite, G., Bagdziunas, G. & Grazulevicius, J. V. (2015). Acta Cryst. E71, o373. CSD CrossRef IUCr Journals Google Scholar
Caulfield, T., Cherrier, M. P., Combeau, C. & Mailliet, P. (2002). Eur. Patent No. 1 253 141. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Grigalevicius, S., Ostrauskaite, J., Grazulevicius, J. V., Gaidelis, V., Jankauskas, V. & Sidaravicius, J. (2002). Mater. Chem. Phys. 77, 281–284. Web of Science CrossRef Google Scholar
Miyazaki, T., Shibahara, M., Fujishige, J., Watanabe, M., Goto, K. & Shinmyozu, T. (2014). J. Org. Chem. 79, 11440–11453. Web of Science CrossRef CAS PubMed Google Scholar
Niu, F., Niu, H., Liu, Y., Lian, J. & Zeng, P. (2011). RSC Adv. 1, 415–423. Web of Science CSD CrossRef CAS Google Scholar
Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2011). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.