organic compounds
N-{(E)-methyl[(3aR,8aS)-2-oxo-3,3a,8,8a-tetrahydro-2H-indeno[1,2-d][1,3]oxazol-3-yl]-λ4-sulfanylidene}benzenesulfonamide
of 4-methyl-aUniversidade Federal do Rio Grande do Sul, Instituto de Química Depto. Química Orgânica, Av. Bento Gonçalves, 9500 Agronomia, Porto Alegre RS 91501-970, Brazil, bBruker AXS Inc., 3456 E. Cheryl Parkway, Madison, WI 53711, USA, and cDepartment of Chemistry & Biochemistry, University of Notre Dame, Notre Dame IN 46556, USA
*Correspondence e-mail: gustavo.silveira@iq.ufrgs.br
The formulation that the title compound, C18H18N2O4S2, adopts is a zwitterionic core with the charge separated to the sulfilimine S and N atoms and is supported by the two different S—N bond distances about the sulfinimine N atom [1.594 (2) and 1.631 (2) Å, respectively] that are typical for such bonds. The notably unusual bond is S—N(oxazolidinone) [1.692 (2) Å] that is longer than a typical S—N bond [1.603 (18) Å, Mogul analysis; Macrae et al. (2008). J. Appl. Cryst. 41, 466–470]. The bond-angle sum about sulfilimine sulfur (308.35°) reflects the trigonal–pyramidal geometry of this atom. Two of the angles are less than 100°. Despite the pyramidalization of this sulfur, there are no significant intermolecular interactions, beyond usual van der Waals contacts, in the crystal packing.
Keywords: oxazolidinone; vinyl sulfonamide; crystal structure.
CCDC reference: 1444186
1. Related literature
Oxazolidinone γ-lactamization reaction to generate chiral pyrrolidinones with medicinal chemistry interest. For the synthesis, see: Celentano & Colonna (1998); Silveira & Marino (2013). For sulfonyl oxazolidinone structures, see: Barbey et al. (2012); Berredjem et al. (2010); Bonnaud et al. (1987); Dewynter et al. (1997). For related vinyl sulfonamide chemistry, see: Silveira et al. (2013). For related oxazolidinone sulfinime structures, see: Silveira et al. (2012, 2014). For the Hooft parameter, see: Hooft et al. (2008).
are synthesized as precursors of vinyl which are used in the2. Experimental
2.1. Crystal data
|
|
Data collection: APEX2 (Bruker, 2007); cell APEX2 and SAINT (Bruker, 2007); data reduction: SAINT and XPREP (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: XCIF (Sheldrick, 2008) and publCIF (Westrip, 2010).
Supporting information
CCDC reference: 1444186
https://doi.org/10.1107/S2056989015024779/nk2234sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989015024779/nk2234Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989015024779/nk2234Isup3.cml
Oxazolidinone γ-lactamization reaction (Silveira & Marino, 2013) to generate chiral pyrrolidinones with medicinal chemistry interest. This compound represents one of only five other oxazolidinone compounds that incorporate an N—S—N backbone (Barbey et al., 2012; Berredjem et al., 2010; Bonnaud et al., 1987; Dewynter et al., 1997). It is the only reported structure that does not have a sulfonyl bridging the oxazolidinone ring to the second nitrogen atom. Related sulfur-containing oxazolidinones have been reported previously by us (Silveira et al., 2012; 2014). We have also reported a related sulfur-containing indole as a precursor of physostigmine alkaloid.(Silveira et al., 2013).
are synthesized as precursors of vinyl which are used in theFollowing literature preparative methods (Celentano et al., 1998; Silveira & Marino, 2013): chloramine-T (951 mg, 4.18 mmol) and hexadecyltributylphosphonium bromide (100 mg, 0.20 mmol) were added to a solution of oxazolidinone sulfide (840 mg, 3.80 mmol) in toluene (25 mL) at 295 K. After overnight stirring, ethyl acetate (25 mL) was added and the mixture washed (2 x 30 mL water; 1 x 30 mL brine), dried over anhydrous sodium sulfate, filtered, and the mixture of solvents rota-evaporated at reduced pressure. To the resulting dry, crude product, silica gel (6 g) and methylene chloride (5 mL) were added and this slurry was rota-evaporated to yield the crude product on silica. This mixture was separated and purified through flash
with elution (70% ethyl acetate / 30% hexanes). After slow evaporation of the ethyl acetate / hexanes elutant, the more polar sulfilimine was obtained as white crystals (688 mg). Two sulfilimine diasterioisomers were obtained in a ratio of 2.5:1 (total of 65% yield).The structure was modeled routinely with all non-hydrogen atoms included with an anistropic model. Hydrogen atoms were included in calculated positions riding on the atom to which they are bonded (C—H = 0.99 Å for methyl, 0.95 Å for methyne and aromatic. Uiso(H) was set = 1.5Ueq(C) for methyl and 1.2Ueq(C) for all others.
The
from synthesis was confirmed by comparison of intensities of Friedel pairs of reflections yielding a Flack x parameter = 0.052 (4) (Parsons et al., 2013) and a Hooft y parameter = 0.050 (6) (Hooft et al., 2008).Oxazolidinone γ-lactamization reaction (Silveira & Marino, 2013) to generate chiral pyrrolidinones with medicinal chemistry interest. This compound represents one of only five other oxazolidinone compounds that incorporate an N—S—N backbone (Barbey et al., 2012; Berredjem et al., 2010; Bonnaud et al., 1987; Dewynter et al., 1997). It is the only reported structure that does not have a sulfonyl bridging the oxazolidinone ring to the second nitrogen atom. Related sulfur-containing oxazolidinones have been reported previously by us (Silveira et al., 2012; 2014). We have also reported a related sulfur-containing indole as a precursor of physostigmine alkaloid.(Silveira et al., 2013).
are synthesized as precursors of vinyl which are used in theFor synthesis, see: Celentano & Colonna (1998); Silveira & Marino (2013). For sulfonyl oxazolidinone structures, see: Barbey et al. (2012); Berredjem et al. (2010); Bonnaud et al. (1987); Dewynter et al. (1997). For related vinyl sulfonamide chemistry, see: Silveira et al. (2013). For related oxazolidinone sulfinime structures, see: Silveira et al. (2012, 2014). For the Hooft parameter, see: Hooft et al. (2008).
Following literature preparative methods (Celentano et al., 1998; Silveira & Marino, 2013): chloramine-T (951 mg, 4.18 mmol) and hexadecyltributylphosphonium bromide (100 mg, 0.20 mmol) were added to a solution of oxazolidinone sulfide (840 mg, 3.80 mmol) in toluene (25 mL) at 295 K. After overnight stirring, ethyl acetate (25 mL) was added and the mixture washed (2 x 30 mL water; 1 x 30 mL brine), dried over anhydrous sodium sulfate, filtered, and the mixture of solvents rota-evaporated at reduced pressure. To the resulting dry, crude product, silica gel (6 g) and methylene chloride (5 mL) were added and this slurry was rota-evaporated to yield the crude product on silica. This mixture was separated and purified through flash
with elution (70% ethyl acetate / 30% hexanes). After slow evaporation of the ethyl acetate / hexanes elutant, the more polar sulfilimine was obtained as white crystals (688 mg). Two sulfilimine diasterioisomers were obtained in a ratio of 2.5:1 (total of 65% yield). detailsThe structure was modeled routinely with all non-hydrogen atoms included with an anistropic model. Hydrogen atoms were included in calculated positions riding on the atom to which they are bonded (C—H = 0.99 Å for methyl, 0.95 Å for methyne and aromatic. Uiso(H) was set = 1.5Ueq(C) for methyl and 1.2Ueq(C) for all others.
The
from synthesis was confirmed by comparison of intensities of Friedel pairs of reflections yielding a Flack x parameter = 0.052 (4) (Parsons et al., 2013) and a Hooft y parameter = 0.050 (6) (Hooft et al., 2008).Data collection: APEX2 (Bruker, 2007); cell
APEX2 and SAINT (Bruker, 2007); data reduction: SAINT and XPREP (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: XCIF (Sheldrick, 2008) and publCIF (Westrip, 2010).Fig. 1. Labeling diagram of the title compound. Atomic displacement ellipsoids depicted at the 50% probability level. Hydrogen atoms depicted as spheres of an arbitrary radius. |
C18H18N2O4S2 | Dx = 1.525 Mg m−3 |
Mr = 390.46 | Cu Kα radiation, λ = 1.54178 Å |
Orthorhombic, P212121 | Cell parameters from 9988 reflections |
a = 6.8841 (1) Å | θ = 4.2–69.2° |
b = 12.2326 (2) Å | µ = 3.09 mm−1 |
c = 20.1911 (4) Å | T = 100 K |
V = 1700.30 (5) Å3 | Parallelepiped, clear colorless |
Z = 4 | 0.42 × 0.40 × 0.34 mm |
F(000) = 816 |
Bruker SMART APEX CCD diffractometer | 3004 independent reflections |
Radiation source: fine-focus sealed tube, Siemens KFFCU2K-90 | 2984 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.032 |
Detector resolution: 8.33 pixels mm-1 | θmax = 69.5°, θmin = 4.2° |
φ and ω scans | h = −8→8 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −14→14 |
Tmin = 0.701, Tmax = 0.929 | l = −24→22 |
11963 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.028 | H-atom parameters constrained |
wR(F2) = 0.070 | w = 1/[σ2(Fo2) + (0.0405P)2 + 0.5066P] where P = (Fo2 + 2Fc2)/3 |
S = 1.11 | (Δ/σ)max = 0.001 |
3004 reflections | Δρmax = 0.29 e Å−3 |
237 parameters | Δρmin = −0.36 e Å−3 |
0 restraints | Absolute structure: Flack x determined using 1183 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.052 (4) |
C18H18N2O4S2 | V = 1700.30 (5) Å3 |
Mr = 390.46 | Z = 4 |
Orthorhombic, P212121 | Cu Kα radiation |
a = 6.8841 (1) Å | µ = 3.09 mm−1 |
b = 12.2326 (2) Å | T = 100 K |
c = 20.1911 (4) Å | 0.42 × 0.40 × 0.34 mm |
Bruker SMART APEX CCD diffractometer | 3004 independent reflections |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | 2984 reflections with I > 2σ(I) |
Tmin = 0.701, Tmax = 0.929 | Rint = 0.032 |
11963 measured reflections |
R[F2 > 2σ(F2)] = 0.028 | H-atom parameters constrained |
wR(F2) = 0.070 | Δρmax = 0.29 e Å−3 |
S = 1.11 | Δρmin = −0.36 e Å−3 |
3004 reflections | Absolute structure: Flack x determined using 1183 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
237 parameters | Absolute structure parameter: 0.052 (4) |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.45871 (9) | 0.55630 (5) | 0.77781 (3) | 0.00978 (15) | |
S2 | 0.67201 (9) | 0.69687 (5) | 0.85264 (3) | 0.01185 (16) | |
O1 | 0.3825 (3) | 0.25928 (14) | 0.82183 (9) | 0.0148 (4) | |
O2 | 0.6694 (3) | 0.34297 (15) | 0.80444 (9) | 0.0176 (4) | |
O3 | 0.8276 (3) | 0.63677 (15) | 0.82056 (9) | 0.0175 (4) | |
O4 | 0.6751 (3) | 0.81443 (15) | 0.84687 (9) | 0.0185 (4) | |
N1 | 0.3831 (3) | 0.44084 (18) | 0.81606 (11) | 0.0127 (5) | |
N2 | 0.4579 (3) | 0.65675 (17) | 0.82812 (11) | 0.0132 (5) | |
C1 | 0.4975 (4) | 0.3476 (2) | 0.81239 (12) | 0.0129 (5) | |
C2 | 0.1767 (4) | 0.2920 (2) | 0.82310 (13) | 0.0136 (5) | |
H2 | 0.1106 | 0.2809 | 0.7795 | 0.016* | |
C3 | 0.0725 (4) | 0.2347 (2) | 0.87983 (13) | 0.0148 (6) | |
H3A | −0.0688 | 0.2299 | 0.8713 | 0.018* | |
H3B | 0.1246 | 0.1601 | 0.8867 | 0.018* | |
C4 | 0.1142 (4) | 0.3068 (2) | 0.93859 (13) | 0.0124 (5) | |
C5 | 0.0916 (4) | 0.2842 (2) | 1.00541 (13) | 0.0140 (6) | |
H5 | 0.0423 | 0.2157 | 1.0198 | 0.017* | |
C6 | 0.1431 (4) | 0.3648 (2) | 1.05088 (13) | 0.0161 (6) | |
H6 | 0.1258 | 0.3512 | 1.0968 | 0.019* | |
C7 | 0.2188 (4) | 0.4644 (2) | 1.03076 (14) | 0.0157 (6) | |
H7 | 0.2569 | 0.5170 | 1.0628 | 0.019* | |
C8 | 0.2393 (4) | 0.4875 (2) | 0.96324 (14) | 0.0141 (5) | |
H8 | 0.2899 | 0.5558 | 0.9488 | 0.017* | |
C9 | 0.1843 (4) | 0.4088 (2) | 0.91814 (13) | 0.0117 (5) | |
C10 | 0.1900 (4) | 0.41298 (19) | 0.84277 (13) | 0.0116 (5) | |
H10 | 0.0833 | 0.4584 | 0.8234 | 0.014* | |
C11 | 0.2421 (4) | 0.5860 (2) | 0.73290 (13) | 0.0149 (6) | |
H11A | 0.1358 | 0.5997 | 0.7641 | 0.022* | |
H11B | 0.2089 | 0.5237 | 0.7046 | 0.022* | |
H11C | 0.2627 | 0.6510 | 0.7054 | 0.022* | |
C12 | 0.6749 (4) | 0.6636 (2) | 0.93784 (12) | 0.0112 (5) | |
C13 | 0.6177 (4) | 0.7407 (2) | 0.98430 (13) | 0.0136 (5) | |
H13 | 0.5750 | 0.8110 | 0.9706 | 0.016* | |
C14 | 0.6237 (4) | 0.7138 (2) | 1.05134 (13) | 0.0153 (6) | |
H14 | 0.5858 | 0.7664 | 1.0834 | 0.018* | |
C15 | 0.6846 (4) | 0.6107 (2) | 1.07178 (13) | 0.0157 (5) | |
C16 | 0.7366 (4) | 0.5341 (2) | 1.02403 (14) | 0.0152 (6) | |
H16 | 0.7745 | 0.4628 | 1.0376 | 0.018* | |
C17 | 0.7344 (4) | 0.5596 (2) | 0.95710 (14) | 0.0147 (5) | |
H17 | 0.7727 | 0.5071 | 0.9250 | 0.018* | |
C18 | 0.6940 (5) | 0.5854 (2) | 1.14496 (14) | 0.0231 (6) | |
H18A | 0.7504 | 0.5126 | 1.1514 | 0.035* | |
H18B | 0.5628 | 0.5871 | 1.1637 | 0.035* | |
H18C | 0.7752 | 0.6400 | 1.1672 | 0.035* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0116 (3) | 0.0111 (3) | 0.0066 (3) | −0.0007 (2) | 0.0007 (2) | 0.0007 (2) |
S2 | 0.0124 (3) | 0.0139 (3) | 0.0093 (3) | −0.0022 (2) | 0.0002 (2) | −0.0003 (2) |
O1 | 0.0189 (10) | 0.0105 (8) | 0.0151 (9) | 0.0019 (7) | 0.0014 (7) | −0.0003 (7) |
O2 | 0.0161 (9) | 0.0186 (9) | 0.0179 (9) | 0.0046 (8) | 0.0011 (8) | 0.0004 (8) |
O3 | 0.0116 (9) | 0.0269 (10) | 0.0140 (9) | −0.0032 (8) | 0.0015 (8) | −0.0017 (8) |
O4 | 0.0251 (10) | 0.0161 (9) | 0.0143 (9) | −0.0067 (8) | −0.0028 (8) | 0.0036 (7) |
N1 | 0.0141 (11) | 0.0108 (10) | 0.0133 (10) | 0.0016 (9) | 0.0039 (9) | 0.0032 (9) |
N2 | 0.0135 (11) | 0.0141 (10) | 0.0118 (10) | 0.0004 (9) | 0.0001 (9) | −0.0013 (9) |
C1 | 0.0170 (14) | 0.0137 (12) | 0.0080 (12) | 0.0023 (10) | 0.0010 (10) | −0.0015 (10) |
C2 | 0.0157 (13) | 0.0129 (12) | 0.0121 (12) | −0.0016 (11) | −0.0025 (11) | 0.0014 (10) |
C3 | 0.0173 (14) | 0.0137 (12) | 0.0134 (13) | −0.0036 (10) | −0.0014 (11) | 0.0008 (11) |
C4 | 0.0116 (11) | 0.0133 (12) | 0.0121 (12) | 0.0020 (10) | −0.0014 (10) | 0.0006 (11) |
C5 | 0.0109 (12) | 0.0164 (13) | 0.0149 (13) | 0.0002 (10) | 0.0010 (10) | 0.0059 (10) |
C6 | 0.0122 (13) | 0.0256 (14) | 0.0106 (12) | 0.0041 (11) | 0.0015 (10) | 0.0017 (11) |
C7 | 0.0107 (13) | 0.0218 (13) | 0.0145 (13) | 0.0024 (10) | −0.0001 (10) | −0.0054 (11) |
C8 | 0.0114 (12) | 0.0135 (12) | 0.0174 (13) | 0.0023 (10) | 0.0033 (10) | −0.0010 (11) |
C9 | 0.0090 (11) | 0.0148 (12) | 0.0111 (12) | 0.0030 (10) | 0.0025 (11) | 0.0023 (10) |
C10 | 0.0112 (12) | 0.0120 (12) | 0.0117 (12) | 0.0003 (9) | 0.0010 (11) | 0.0030 (9) |
C11 | 0.0168 (13) | 0.0158 (12) | 0.0122 (13) | −0.0026 (10) | −0.0057 (10) | 0.0050 (10) |
C12 | 0.0087 (11) | 0.0168 (12) | 0.0080 (11) | −0.0023 (10) | −0.0023 (10) | 0.0024 (9) |
C13 | 0.0106 (12) | 0.0158 (12) | 0.0142 (13) | −0.0013 (10) | −0.0004 (10) | 0.0011 (11) |
C14 | 0.0116 (12) | 0.0215 (13) | 0.0127 (12) | −0.0028 (10) | 0.0013 (10) | −0.0013 (10) |
C15 | 0.0111 (12) | 0.0223 (13) | 0.0136 (13) | −0.0054 (11) | −0.0024 (11) | 0.0031 (11) |
C16 | 0.0107 (12) | 0.0156 (12) | 0.0192 (13) | −0.0008 (10) | −0.0024 (10) | 0.0050 (11) |
C17 | 0.0103 (12) | 0.0158 (12) | 0.0180 (13) | −0.0003 (10) | 0.0015 (10) | −0.0028 (11) |
C18 | 0.0263 (16) | 0.0287 (15) | 0.0144 (13) | −0.0091 (12) | −0.0016 (13) | 0.0049 (11) |
S1—N2 | 1.594 (2) | C7—C8 | 1.399 (4) |
S1—N1 | 1.692 (2) | C7—H7 | 0.9500 |
S1—C11 | 1.782 (3) | C8—C9 | 1.378 (4) |
S2—O4 | 1.4430 (19) | C8—H8 | 0.9500 |
S2—O3 | 1.451 (2) | C9—C10 | 1.523 (3) |
S2—N2 | 1.631 (2) | C10—H10 | 1.0000 |
S2—C12 | 1.768 (2) | C11—H11A | 0.9800 |
O1—C1 | 1.353 (3) | C11—H11B | 0.9800 |
O1—C2 | 1.472 (3) | C11—H11C | 0.9800 |
O2—C1 | 1.195 (3) | C12—C13 | 1.387 (4) |
N1—C1 | 1.388 (3) | C12—C17 | 1.392 (4) |
N1—C10 | 1.475 (3) | C13—C14 | 1.394 (4) |
C2—C3 | 1.522 (4) | C13—H13 | 0.9500 |
C2—C10 | 1.535 (3) | C14—C15 | 1.391 (4) |
C2—H2 | 1.0000 | C14—H14 | 0.9500 |
C3—C4 | 1.506 (4) | C15—C16 | 1.392 (4) |
C3—H3A | 0.9900 | C15—C18 | 1.511 (4) |
C3—H3B | 0.9900 | C16—C17 | 1.387 (4) |
C4—C5 | 1.386 (4) | C16—H16 | 0.9500 |
C4—C9 | 1.400 (4) | C17—H17 | 0.9500 |
C5—C6 | 1.393 (4) | C18—H18A | 0.9800 |
C5—H5 | 0.9500 | C18—H18B | 0.9800 |
C6—C7 | 1.386 (4) | C18—H18C | 0.9800 |
C6—H6 | 0.9500 | ||
N2—S1—N1 | 110.58 (11) | C9—C8—H8 | 120.8 |
N2—S1—C11 | 99.43 (12) | C7—C8—H8 | 120.8 |
N1—S1—C11 | 98.34 (11) | C8—C9—C4 | 121.5 (2) |
O4—S2—O3 | 117.24 (12) | C8—C9—C10 | 129.0 (2) |
O4—S2—N2 | 106.79 (12) | C4—C9—C10 | 109.5 (2) |
O3—S2—N2 | 112.27 (11) | N1—C10—C9 | 113.4 (2) |
O4—S2—C12 | 107.93 (11) | N1—C10—C2 | 100.5 (2) |
O3—S2—C12 | 108.03 (12) | C9—C10—C2 | 103.0 (2) |
N2—S2—C12 | 103.67 (12) | N1—C10—H10 | 113.0 |
C1—O1—C2 | 110.39 (19) | C9—C10—H10 | 113.0 |
C1—N1—C10 | 110.0 (2) | C2—C10—H10 | 113.0 |
C1—N1—S1 | 119.14 (18) | S1—C11—H11A | 109.5 |
C10—N1—S1 | 129.59 (17) | S1—C11—H11B | 109.5 |
S1—N2—S2 | 114.97 (13) | H11A—C11—H11B | 109.5 |
O2—C1—O1 | 124.1 (2) | S1—C11—H11C | 109.5 |
O2—C1—N1 | 127.5 (2) | H11A—C11—H11C | 109.5 |
O1—C1—N1 | 108.5 (2) | H11B—C11—H11C | 109.5 |
O1—C2—C3 | 110.0 (2) | C13—C12—C17 | 121.0 (2) |
O1—C2—C10 | 102.1 (2) | C13—C12—S2 | 119.9 (2) |
C3—C2—C10 | 106.1 (2) | C17—C12—S2 | 119.0 (2) |
O1—C2—H2 | 112.7 | C12—C13—C14 | 119.2 (2) |
C3—C2—H2 | 112.7 | C12—C13—H13 | 120.4 |
C10—C2—H2 | 112.7 | C14—C13—H13 | 120.4 |
C4—C3—C2 | 103.5 (2) | C15—C14—C13 | 120.7 (3) |
C4—C3—H3A | 111.1 | C15—C14—H14 | 119.6 |
C2—C3—H3A | 111.1 | C13—C14—H14 | 119.6 |
C4—C3—H3B | 111.1 | C14—C15—C16 | 118.9 (2) |
C2—C3—H3B | 111.1 | C14—C15—C18 | 119.3 (3) |
H3A—C3—H3B | 109.0 | C16—C15—C18 | 121.9 (3) |
C5—C4—C9 | 120.2 (2) | C17—C16—C15 | 121.3 (2) |
C5—C4—C3 | 128.9 (2) | C17—C16—H16 | 119.3 |
C9—C4—C3 | 110.8 (2) | C15—C16—H16 | 119.3 |
C4—C5—C6 | 118.1 (2) | C16—C17—C12 | 118.8 (2) |
C4—C5—H5 | 120.9 | C16—C17—H17 | 120.6 |
C6—C5—H5 | 120.9 | C12—C17—H17 | 120.6 |
C7—C6—C5 | 121.6 (2) | C15—C18—H18A | 109.5 |
C7—C6—H6 | 119.2 | C15—C18—H18B | 109.5 |
C5—C6—H6 | 119.2 | H18A—C18—H18B | 109.5 |
C6—C7—C8 | 120.1 (3) | C15—C18—H18C | 109.5 |
C6—C7—H7 | 120.0 | H18A—C18—H18C | 109.5 |
C8—C7—H7 | 120.0 | H18B—C18—H18C | 109.5 |
C9—C8—C7 | 118.3 (2) |
S1—N2 | 1.594 (2) | S2—O3 | 1.451 (2) |
S1—N1 | 1.692 (2) | S2—N2 | 1.631 (2) |
S1—C11 | 1.782 (3) | S2—C12 | 1.768 (2) |
S2—O4 | 1.4430 (19) | ||
N2—S1—N1 | 110.58 (11) | O3—S2—N2 | 112.27 (11) |
N2—S1—C11 | 99.43 (12) | O4—S2—C12 | 107.93 (11) |
N1—S1—C11 | 98.34 (11) | O3—S2—C12 | 108.03 (12) |
O4—S2—O3 | 117.24 (12) | N2—S2—C12 | 103.67 (12) |
O4—S2—N2 | 106.79 (12) |
Acknowledgements
GPS thanks Professor Joseph Marino at Notre Dame for financial support.
References
Barbey, C., Bouasla, R., Berredjem, M., Dupont, N., Retailleau, P., Aouf, N.-E. & Lecouvey, M. (2012). Tetrahedron, 68, 9125–9130. CrossRef CAS Google Scholar
Berredjem, M., Allaoui, A., Direm, A., Aouf, N. & Benali-Cherif, N. (2010). Acta Cryst. E66, o1611–o1612. CrossRef IUCr Journals Google Scholar
Bonnaud, B., Viani, R., Agoh, B., Delaunay, B., Dewinter, G., Montero, J.-L. & Aycard, J.-P. (1987). Acta Cryst. C43, 2466–2468. CrossRef CAS IUCr Journals Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker–Nonius AXS Inc., Madison, Wisconsin, USA. Google Scholar
Celentano, G. & Colonna, S. (1998). Chem. Commun. pp. 701–702. CrossRef Google Scholar
Dewynter, G., Abdaoui, M., Toupet, L. & Montero, J.-L. (1997). Tetrahedron Lett. 38, 8691–8694. CrossRef CAS Google Scholar
Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96–103. Web of Science CrossRef CAS IUCr Journals Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Silveira, G. P., Bonfante de Carvallho, C. & Oliver, A. G. (2012). Acta Cryst. E68, o2048. CrossRef IUCr Journals Google Scholar
Silveira, G. P., Oliver, A. G. & Noll, B. C. (2013). Acta Cryst. E69, o979. CrossRef IUCr Journals Google Scholar
Silveira, G. P., da Silva, V. F. & Oliver, A. G. (2014). Acta Cryst. E70, o1257–o1258. CSD CrossRef IUCr Journals Google Scholar
Silveira, G. P. & Marino, J. P. (2013). J. Org. Chem. 78, 3379–3383. Web of Science CSD CrossRef CAS PubMed Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.