organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 4-methyl-N-{(E)-meth­yl[(3aR,8aS)-2-oxo-3,3a,8,8a-tetra­hydro-2H-indeno­[1,2-d][1,3]oxazol-3-yl]-λ4-sulfanyl­­idene}benzene­sulfonamide

aUniversidade Federal do Rio Grande do Sul, Instituto de Química Depto. Química Orgânica, Av. Bento Gonçalves, 9500 Agronomia, Porto Alegre RS 91501-970, Brazil, bBruker AXS Inc., 3456 E. Cheryl Parkway, Madison, WI 53711, USA, and cDepartment of Chemistry & Biochemistry, University of Notre Dame, Notre Dame IN 46556, USA
*Correspondence e-mail: gustavo.silveira@iq.ufrgs.br

Edited by G. S. Nichol, University of Edinburgh, Scotland (Received 20 November 2015; accepted 24 December 2015; online 31 December 2015)

The formulation that the title compound, C18H18N2O4S2, adopts is a zwitterionic core with the charge separated to the sulfilimine S and N atoms and is supported by the two different S—N bond distances about the sulfinimine N atom [1.594 (2) and 1.631 (2) Å, respectively] that are typical for such bonds. The notably unusual bond is S—N(oxazolidinone) [1.692 (2) Å] that is longer than a typical S—N bond [1.603 (18) Å, Mogul analysis; Macrae et al. (2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]). J. Appl. Cryst. 41, 466–470]. The bond-angle sum about sulfilimine sulfur (308.35°) reflects the trigonal–pyramidal geometry of this atom. Two of the angles are less than 100°. Despite the pyramidalization of this sulfur, there are no significant inter­molecular inter­actions, beyond usual van der Waals contacts, in the crystal packing.

1. Related literature

Oxazolidinone sulfilimines are synthesized as precursors of vinyl sulfilimines which are used in the γ-lactamization reaction to generate chiral pyrrolidinones with medicinal chemistry inter­est. For the synthesis, see: Celentano & Colonna (1998[Celentano, G. & Colonna, S. (1998). Chem. Commun. pp. 701-702.]); Silveira & Marino (2013[Silveira, G. P. & Marino, J. P. (2013). J. Org. Chem. 78, 3379-3383.]). For sulfonyl oxazolidinone structures, see: Barbey et al. (2012[Barbey, C., Bouasla, R., Berredjem, M., Dupont, N., Retailleau, P., Aouf, N.-E. & Lecouvey, M. (2012). Tetrahedron, 68, 9125-9130.]); Berredjem et al. (2010[Berredjem, M., Allaoui, A., Direm, A., Aouf, N. & Benali-Cherif, N. (2010). Acta Cryst. E66, o1611-o1612.]); Bonnaud et al. (1987[Bonnaud, B., Viani, R., Agoh, B., Delaunay, B., Dewinter, G., Montero, J.-L. & Aycard, J.-P. (1987). Acta Cryst. C43, 2466-2468.]); Dewynter et al. (1997[Dewynter, G., Abdaoui, M., Toupet, L. & Montero, J.-L. (1997). Tetrahedron Lett. 38, 8691-8694.]). For related vinyl sulfonamide chemistry, see: Silveira et al. (2013[Silveira, G. P., Oliver, A. G. & Noll, B. C. (2013). Acta Cryst. E69, o979.]). For related oxazolidinone sulfinime structures, see: Silveira et al. (2012[Silveira, G. P., Bonfante de Carvallho, C. & Oliver, A. G. (2012). Acta Cryst. E68, o2048.], 2014[Silveira, G. P., da Silva, V. F. & Oliver, A. G. (2014). Acta Cryst. E70, o1257-o1258.]). For the Hooft parameter, see: Hooft et al. (2008[Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96-103.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C18H18N2O4S2

  • Mr = 390.46

  • Orthorhombic, P 21 21 21

  • a = 6.8841 (1) Å

  • b = 12.2326 (2) Å

  • c = 20.1911 (4) Å

  • V = 1700.30 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 3.09 mm−1

  • T = 100 K

  • 0.42 × 0.40 × 0.34 mm

2.2. Data collection

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Tmin = 0.701, Tmax = 0.929

  • 11963 measured reflections

  • 3004 independent reflections

  • 2984 reflections with I > 2σ(I)

  • Rint = 0.032

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.070

  • S = 1.11

  • 3004 reflections

  • 237 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.36 e Å−3

  • Absolute structure: Flack x determined using 1183 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])

  • Absolute structure parameter: 0.052 (4)

Table 1
Selected geometric parameters (Å, °)

S1—N2 1.594 (2)
S1—N1 1.692 (2)
S1—C11 1.782 (3)
S2—O4 1.4430 (19)
S2—O3 1.451 (2)
S2—N2 1.631 (2)
S2—C12 1.768 (2)
N2—S1—N1 110.58 (11)
N2—S1—C11 99.43 (12)
N1—S1—C11 98.34 (11)
O4—S2—O3 117.24 (12)
O4—S2—N2 106.79 (12)
O3—S2—N2 112.27 (11)
O4—S2—C12 107.93 (11)
O3—S2—C12 108.03 (12)
N2—S2—C12 103.67 (12)

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker-Nonius AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker-Nonius AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker-Nonius AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: XCIF (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Commentary top

Oxazolidinone sulfilimines are synthesized as precursors of vinyl sulfilimines which are used in the γ-la­cta­mization reaction (Silveira & Marino, 2013) to generate chiral pyrrolidinones with medicinal chemistry inter­est. This compound represents one of only five other oxazolidinone compounds that incorporate an N—S—N backbone (Barbey et al., 2012; Berredjem et al., 2010; Bonnaud et al., 1987; Dewynter et al., 1997). It is the only reported structure that does not have a sulfonyl bridging the oxazolidinone ring to the second nitro­gen atom. Related sulfur-containing oxazolidinones have been reported previously by us (Silveira et al., 2012; 2014). We have also reported a related sulfur-containing indole as a precursor of physostigmine alkaloid.(Silveira et al., 2013).

Synthesis and crystallization top

Following literature preparative methods (Celentano et al., 1998; Silveira & Marino, 2013): chloramine-T (951 mg, 4.18 mmol) and hexa­decyl­tri­butyl­phospho­nium bromide (100 mg, 0.20 mmol) were added to a solution of oxazolidinone sulfide (840 mg, 3.80 mmol) in toluene (25 mL) at 295 K. After overnight stirring, ethyl acetate (25 mL) was added and the mixture washed (2 x 30 mL water; 1 x 30 mL brine), dried over anhydrous sodium sulfate, filtered, and the mixture of solvents rota-evaporated at reduced pressure. To the resulting dry, crude product, silica gel (6 g) and methyl­ene chloride (5 mL) were added and this slurry was rota-evaporated to yield the crude product on silica. This mixture was separated and purified through flash chromatography with elution (70% ethyl acetate / 30% hexanes). After slow evaporation of the ethyl acetate / hexanes elutant, the more polar sulfilimine was obtained as white crystals (688 mg). Two sulfilimine diasterioisomers were obtained in a ratio of 2.5:1 (total of 65% yield).

Refinement details top

The structure was modeled routinely with all non-hydrogen atoms included with an anistropic model. Hydrogen atoms were included in calculated positions riding on the atom to which they are bonded (C—H = 0.99 Å for methyl, 0.95 Å for methyne and aromatic. Uiso(H) was set = 1.5Ueq(C) for methyl and 1.2Ueq(C) for all others.

The absolute configuration from synthesis was confirmed by comparison of intensities of Friedel pairs of reflections yielding a Flack x parameter = 0.052 (4) (Parsons et al., 2013) and a Hooft y parameter = 0.050 (6) (Hooft et al., 2008).

Related literature top

For synthesis, see: Celentano & Colonna (1998); Silveira & Marino (2013). For sulfonyl oxazolidinone structures, see: Barbey et al. (2012); Berredjem et al. (2010); Bonnaud et al. (1987); Dewynter et al. (1997). For related vinyl sulfonamide chemistry, see: Silveira et al. (2013). For related oxazolidinone sulfinime structures, see: Silveira et al. (2012, 2014). For the Hooft parameter, see: Hooft et al. (2008).

Structure description top

Oxazolidinone sulfilimines are synthesized as precursors of vinyl sulfilimines which are used in the γ-la­cta­mization reaction (Silveira & Marino, 2013) to generate chiral pyrrolidinones with medicinal chemistry inter­est. This compound represents one of only five other oxazolidinone compounds that incorporate an N—S—N backbone (Barbey et al., 2012; Berredjem et al., 2010; Bonnaud et al., 1987; Dewynter et al., 1997). It is the only reported structure that does not have a sulfonyl bridging the oxazolidinone ring to the second nitro­gen atom. Related sulfur-containing oxazolidinones have been reported previously by us (Silveira et al., 2012; 2014). We have also reported a related sulfur-containing indole as a precursor of physostigmine alkaloid.(Silveira et al., 2013).

For synthesis, see: Celentano & Colonna (1998); Silveira & Marino (2013). For sulfonyl oxazolidinone structures, see: Barbey et al. (2012); Berredjem et al. (2010); Bonnaud et al. (1987); Dewynter et al. (1997). For related vinyl sulfonamide chemistry, see: Silveira et al. (2013). For related oxazolidinone sulfinime structures, see: Silveira et al. (2012, 2014). For the Hooft parameter, see: Hooft et al. (2008).

Synthesis and crystallization top

Following literature preparative methods (Celentano et al., 1998; Silveira & Marino, 2013): chloramine-T (951 mg, 4.18 mmol) and hexa­decyl­tri­butyl­phospho­nium bromide (100 mg, 0.20 mmol) were added to a solution of oxazolidinone sulfide (840 mg, 3.80 mmol) in toluene (25 mL) at 295 K. After overnight stirring, ethyl acetate (25 mL) was added and the mixture washed (2 x 30 mL water; 1 x 30 mL brine), dried over anhydrous sodium sulfate, filtered, and the mixture of solvents rota-evaporated at reduced pressure. To the resulting dry, crude product, silica gel (6 g) and methyl­ene chloride (5 mL) were added and this slurry was rota-evaporated to yield the crude product on silica. This mixture was separated and purified through flash chromatography with elution (70% ethyl acetate / 30% hexanes). After slow evaporation of the ethyl acetate / hexanes elutant, the more polar sulfilimine was obtained as white crystals (688 mg). Two sulfilimine diasterioisomers were obtained in a ratio of 2.5:1 (total of 65% yield).

Refinement details top

The structure was modeled routinely with all non-hydrogen atoms included with an anistropic model. Hydrogen atoms were included in calculated positions riding on the atom to which they are bonded (C—H = 0.99 Å for methyl, 0.95 Å for methyne and aromatic. Uiso(H) was set = 1.5Ueq(C) for methyl and 1.2Ueq(C) for all others.

The absolute configuration from synthesis was confirmed by comparison of intensities of Friedel pairs of reflections yielding a Flack x parameter = 0.052 (4) (Parsons et al., 2013) and a Hooft y parameter = 0.050 (6) (Hooft et al., 2008).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2 and SAINT (Bruker, 2007); data reduction: SAINT and XPREP (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: XCIF (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Labeling diagram of the title compound. Atomic displacement ellipsoids depicted at the 50% probability level. Hydrogen atoms depicted as spheres of an arbitrary radius.
4-Methyl-N-{(E)-methyl[(3aR,8aS)-2-oxo-3,3a,8,8a-tetrahydro-2H-indeno[1,2-d][1,3]oxazol-3-yl]-λ4-sulfanylidene}benzenesulfonamide top
Crystal data top
C18H18N2O4S2Dx = 1.525 Mg m3
Mr = 390.46Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, P212121Cell parameters from 9988 reflections
a = 6.8841 (1) Åθ = 4.2–69.2°
b = 12.2326 (2) ŵ = 3.09 mm1
c = 20.1911 (4) ÅT = 100 K
V = 1700.30 (5) Å3Parallelepiped, clear colorless
Z = 40.42 × 0.40 × 0.34 mm
F(000) = 816
Data collection top
Bruker SMART APEX CCD
diffractometer
3004 independent reflections
Radiation source: fine-focus sealed tube, Siemens KFFCU2K-902984 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 8.33 pixels mm-1θmax = 69.5°, θmin = 4.2°
φ and ω scansh = 88
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1414
Tmin = 0.701, Tmax = 0.929l = 2422
11963 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.070 w = 1/[σ2(Fo2) + (0.0405P)2 + 0.5066P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.001
3004 reflectionsΔρmax = 0.29 e Å3
237 parametersΔρmin = 0.36 e Å3
0 restraintsAbsolute structure: Flack x determined using 1183 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.052 (4)
Crystal data top
C18H18N2O4S2V = 1700.30 (5) Å3
Mr = 390.46Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 6.8841 (1) ŵ = 3.09 mm1
b = 12.2326 (2) ÅT = 100 K
c = 20.1911 (4) Å0.42 × 0.40 × 0.34 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
3004 independent reflections
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
2984 reflections with I > 2σ(I)
Tmin = 0.701, Tmax = 0.929Rint = 0.032
11963 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.070Δρmax = 0.29 e Å3
S = 1.11Δρmin = 0.36 e Å3
3004 reflectionsAbsolute structure: Flack x determined using 1183 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
237 parametersAbsolute structure parameter: 0.052 (4)
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.45871 (9)0.55630 (5)0.77781 (3)0.00978 (15)
S20.67201 (9)0.69687 (5)0.85264 (3)0.01185 (16)
O10.3825 (3)0.25928 (14)0.82183 (9)0.0148 (4)
O20.6694 (3)0.34297 (15)0.80444 (9)0.0176 (4)
O30.8276 (3)0.63677 (15)0.82056 (9)0.0175 (4)
O40.6751 (3)0.81443 (15)0.84687 (9)0.0185 (4)
N10.3831 (3)0.44084 (18)0.81606 (11)0.0127 (5)
N20.4579 (3)0.65675 (17)0.82812 (11)0.0132 (5)
C10.4975 (4)0.3476 (2)0.81239 (12)0.0129 (5)
C20.1767 (4)0.2920 (2)0.82310 (13)0.0136 (5)
H20.11060.28090.77950.016*
C30.0725 (4)0.2347 (2)0.87983 (13)0.0148 (6)
H3A0.06880.22990.87130.018*
H3B0.12460.16010.88670.018*
C40.1142 (4)0.3068 (2)0.93859 (13)0.0124 (5)
C50.0916 (4)0.2842 (2)1.00541 (13)0.0140 (6)
H50.04230.21571.01980.017*
C60.1431 (4)0.3648 (2)1.05088 (13)0.0161 (6)
H60.12580.35121.09680.019*
C70.2188 (4)0.4644 (2)1.03076 (14)0.0157 (6)
H70.25690.51701.06280.019*
C80.2393 (4)0.4875 (2)0.96324 (14)0.0141 (5)
H80.28990.55580.94880.017*
C90.1843 (4)0.4088 (2)0.91814 (13)0.0117 (5)
C100.1900 (4)0.41298 (19)0.84277 (13)0.0116 (5)
H100.08330.45840.82340.014*
C110.2421 (4)0.5860 (2)0.73290 (13)0.0149 (6)
H11A0.13580.59970.76410.022*
H11B0.20890.52370.70460.022*
H11C0.26270.65100.70540.022*
C120.6749 (4)0.6636 (2)0.93784 (12)0.0112 (5)
C130.6177 (4)0.7407 (2)0.98430 (13)0.0136 (5)
H130.57500.81100.97060.016*
C140.6237 (4)0.7138 (2)1.05134 (13)0.0153 (6)
H140.58580.76641.08340.018*
C150.6846 (4)0.6107 (2)1.07178 (13)0.0157 (5)
C160.7366 (4)0.5341 (2)1.02403 (14)0.0152 (6)
H160.77450.46281.03760.018*
C170.7344 (4)0.5596 (2)0.95710 (14)0.0147 (5)
H170.77270.50710.92500.018*
C180.6940 (5)0.5854 (2)1.14496 (14)0.0231 (6)
H18A0.75040.51261.15140.035*
H18B0.56280.58711.16370.035*
H18C0.77520.64001.16720.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0116 (3)0.0111 (3)0.0066 (3)0.0007 (2)0.0007 (2)0.0007 (2)
S20.0124 (3)0.0139 (3)0.0093 (3)0.0022 (2)0.0002 (2)0.0003 (2)
O10.0189 (10)0.0105 (8)0.0151 (9)0.0019 (7)0.0014 (7)0.0003 (7)
O20.0161 (9)0.0186 (9)0.0179 (9)0.0046 (8)0.0011 (8)0.0004 (8)
O30.0116 (9)0.0269 (10)0.0140 (9)0.0032 (8)0.0015 (8)0.0017 (8)
O40.0251 (10)0.0161 (9)0.0143 (9)0.0067 (8)0.0028 (8)0.0036 (7)
N10.0141 (11)0.0108 (10)0.0133 (10)0.0016 (9)0.0039 (9)0.0032 (9)
N20.0135 (11)0.0141 (10)0.0118 (10)0.0004 (9)0.0001 (9)0.0013 (9)
C10.0170 (14)0.0137 (12)0.0080 (12)0.0023 (10)0.0010 (10)0.0015 (10)
C20.0157 (13)0.0129 (12)0.0121 (12)0.0016 (11)0.0025 (11)0.0014 (10)
C30.0173 (14)0.0137 (12)0.0134 (13)0.0036 (10)0.0014 (11)0.0008 (11)
C40.0116 (11)0.0133 (12)0.0121 (12)0.0020 (10)0.0014 (10)0.0006 (11)
C50.0109 (12)0.0164 (13)0.0149 (13)0.0002 (10)0.0010 (10)0.0059 (10)
C60.0122 (13)0.0256 (14)0.0106 (12)0.0041 (11)0.0015 (10)0.0017 (11)
C70.0107 (13)0.0218 (13)0.0145 (13)0.0024 (10)0.0001 (10)0.0054 (11)
C80.0114 (12)0.0135 (12)0.0174 (13)0.0023 (10)0.0033 (10)0.0010 (11)
C90.0090 (11)0.0148 (12)0.0111 (12)0.0030 (10)0.0025 (11)0.0023 (10)
C100.0112 (12)0.0120 (12)0.0117 (12)0.0003 (9)0.0010 (11)0.0030 (9)
C110.0168 (13)0.0158 (12)0.0122 (13)0.0026 (10)0.0057 (10)0.0050 (10)
C120.0087 (11)0.0168 (12)0.0080 (11)0.0023 (10)0.0023 (10)0.0024 (9)
C130.0106 (12)0.0158 (12)0.0142 (13)0.0013 (10)0.0004 (10)0.0011 (11)
C140.0116 (12)0.0215 (13)0.0127 (12)0.0028 (10)0.0013 (10)0.0013 (10)
C150.0111 (12)0.0223 (13)0.0136 (13)0.0054 (11)0.0024 (11)0.0031 (11)
C160.0107 (12)0.0156 (12)0.0192 (13)0.0008 (10)0.0024 (10)0.0050 (11)
C170.0103 (12)0.0158 (12)0.0180 (13)0.0003 (10)0.0015 (10)0.0028 (11)
C180.0263 (16)0.0287 (15)0.0144 (13)0.0091 (12)0.0016 (13)0.0049 (11)
Geometric parameters (Å, º) top
S1—N21.594 (2)C7—C81.399 (4)
S1—N11.692 (2)C7—H70.9500
S1—C111.782 (3)C8—C91.378 (4)
S2—O41.4430 (19)C8—H80.9500
S2—O31.451 (2)C9—C101.523 (3)
S2—N21.631 (2)C10—H101.0000
S2—C121.768 (2)C11—H11A0.9800
O1—C11.353 (3)C11—H11B0.9800
O1—C21.472 (3)C11—H11C0.9800
O2—C11.195 (3)C12—C131.387 (4)
N1—C11.388 (3)C12—C171.392 (4)
N1—C101.475 (3)C13—C141.394 (4)
C2—C31.522 (4)C13—H130.9500
C2—C101.535 (3)C14—C151.391 (4)
C2—H21.0000C14—H140.9500
C3—C41.506 (4)C15—C161.392 (4)
C3—H3A0.9900C15—C181.511 (4)
C3—H3B0.9900C16—C171.387 (4)
C4—C51.386 (4)C16—H160.9500
C4—C91.400 (4)C17—H170.9500
C5—C61.393 (4)C18—H18A0.9800
C5—H50.9500C18—H18B0.9800
C6—C71.386 (4)C18—H18C0.9800
C6—H60.9500
N2—S1—N1110.58 (11)C9—C8—H8120.8
N2—S1—C1199.43 (12)C7—C8—H8120.8
N1—S1—C1198.34 (11)C8—C9—C4121.5 (2)
O4—S2—O3117.24 (12)C8—C9—C10129.0 (2)
O4—S2—N2106.79 (12)C4—C9—C10109.5 (2)
O3—S2—N2112.27 (11)N1—C10—C9113.4 (2)
O4—S2—C12107.93 (11)N1—C10—C2100.5 (2)
O3—S2—C12108.03 (12)C9—C10—C2103.0 (2)
N2—S2—C12103.67 (12)N1—C10—H10113.0
C1—O1—C2110.39 (19)C9—C10—H10113.0
C1—N1—C10110.0 (2)C2—C10—H10113.0
C1—N1—S1119.14 (18)S1—C11—H11A109.5
C10—N1—S1129.59 (17)S1—C11—H11B109.5
S1—N2—S2114.97 (13)H11A—C11—H11B109.5
O2—C1—O1124.1 (2)S1—C11—H11C109.5
O2—C1—N1127.5 (2)H11A—C11—H11C109.5
O1—C1—N1108.5 (2)H11B—C11—H11C109.5
O1—C2—C3110.0 (2)C13—C12—C17121.0 (2)
O1—C2—C10102.1 (2)C13—C12—S2119.9 (2)
C3—C2—C10106.1 (2)C17—C12—S2119.0 (2)
O1—C2—H2112.7C12—C13—C14119.2 (2)
C3—C2—H2112.7C12—C13—H13120.4
C10—C2—H2112.7C14—C13—H13120.4
C4—C3—C2103.5 (2)C15—C14—C13120.7 (3)
C4—C3—H3A111.1C15—C14—H14119.6
C2—C3—H3A111.1C13—C14—H14119.6
C4—C3—H3B111.1C14—C15—C16118.9 (2)
C2—C3—H3B111.1C14—C15—C18119.3 (3)
H3A—C3—H3B109.0C16—C15—C18121.9 (3)
C5—C4—C9120.2 (2)C17—C16—C15121.3 (2)
C5—C4—C3128.9 (2)C17—C16—H16119.3
C9—C4—C3110.8 (2)C15—C16—H16119.3
C4—C5—C6118.1 (2)C16—C17—C12118.8 (2)
C4—C5—H5120.9C16—C17—H17120.6
C6—C5—H5120.9C12—C17—H17120.6
C7—C6—C5121.6 (2)C15—C18—H18A109.5
C7—C6—H6119.2C15—C18—H18B109.5
C5—C6—H6119.2H18A—C18—H18B109.5
C6—C7—C8120.1 (3)C15—C18—H18C109.5
C6—C7—H7120.0H18A—C18—H18C109.5
C8—C7—H7120.0H18B—C18—H18C109.5
C9—C8—C7118.3 (2)
Selected geometric parameters (Å, º) top
S1—N21.594 (2)S2—O31.451 (2)
S1—N11.692 (2)S2—N21.631 (2)
S1—C111.782 (3)S2—C121.768 (2)
S2—O41.4430 (19)
N2—S1—N1110.58 (11)O3—S2—N2112.27 (11)
N2—S1—C1199.43 (12)O4—S2—C12107.93 (11)
N1—S1—C1198.34 (11)O3—S2—C12108.03 (12)
O4—S2—O3117.24 (12)N2—S2—C12103.67 (12)
O4—S2—N2106.79 (12)
 

Acknowledgements

GPS thanks Professor Joseph Marino at Notre Dame for financial support.

References

First citationBarbey, C., Bouasla, R., Berredjem, M., Dupont, N., Retailleau, P., Aouf, N.-E. & Lecouvey, M. (2012). Tetrahedron, 68, 9125–9130.  CrossRef CAS Google Scholar
First citationBerredjem, M., Allaoui, A., Direm, A., Aouf, N. & Benali-Cherif, N. (2010). Acta Cryst. E66, o1611–o1612.  CrossRef IUCr Journals Google Scholar
First citationBonnaud, B., Viani, R., Agoh, B., Delaunay, B., Dewinter, G., Montero, J.-L. & Aycard, J.-P. (1987). Acta Cryst. C43, 2466–2468.  CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker–Nonius AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCelentano, G. & Colonna, S. (1998). Chem. Commun. pp. 701–702.  CrossRef Google Scholar
First citationDewynter, G., Abdaoui, M., Toupet, L. & Montero, J.-L. (1997). Tetrahedron Lett. 38, 8691–8694.  CrossRef CAS Google Scholar
First citationHooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96–103.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSilveira, G. P., Bonfante de Carvallho, C. & Oliver, A. G. (2012). Acta Cryst. E68, o2048.  CrossRef IUCr Journals Google Scholar
First citationSilveira, G. P., Oliver, A. G. & Noll, B. C. (2013). Acta Cryst. E69, o979.  CrossRef IUCr Journals Google Scholar
First citationSilveira, G. P., da Silva, V. F. & Oliver, A. G. (2014). Acta Cryst. E70, o1257–o1258.  CSD CrossRef IUCr Journals Google Scholar
First citationSilveira, G. P. & Marino, J. P. (2013). J. Org. Chem. 78, 3379–3383.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds