organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of N-[3-(di­methyl­amino)­prop­yl]-N′,N′,N′′,N′′-tetra­methyl-N-(N,N,N′,N′-tetra­methyl­form­amid­in­ium­yl)guanidinium bis­­(tetra­phenyl­borate)

aFakultät Chemie/Organische Chemie, Hochschule Aalen, Beethovenstrasse 1, D-73430 Aalen, Germany
*Correspondence e-mail: willi.kantlehner@hs-aalen.de

Edited by M. Nieger, University of Helsinki, Finland (Received 23 October 2015; accepted 4 December 2015; online 12 December 2015)

In the title salt, C15H36N62+·2C24H20B, the three N—C bond lengths in the central C3N unit of the bis­amidinium ion range between 1.388 (3) and 1.506 (3) Å, indicating single- and double-bond character. Furthermore, four C—N bonds have double-bond character. Here, the bond lengths range from 1.319 (3) to 1.333 (3) Å. Delocalization of the positive charges occurs in the N/C/N and C/N/C planes. The dihedral angle between both N/C/N planes is 70.5 (2)°. In the crystal, C—H⋯π inter­actions between H atoms of the cation and the benzene rings of both tetra­phenyl­borate ions are present. The benzene rings form aromatic pockets, in which the bis­amidinium ion is embedded. This leads to the formation of a two-dimensional supra­molecular pattern along the ab plane.

1. Related literature

For the synthesis of similar salts to the title compound, see: Bauer et al. (1968[Bauer, V. J., Fulmor, W., Morton, G. O. & Safir, S. R. (1968). J. Am. Chem. Soc. 90, 6845-6846.]). For the crystal structure of N,N,N′,N′-tetra­methyl­chloro­formamidinium chloride, see: Tiritiris & Kantlehner (2008[Tiritiris, I. & Kantlehner, W. (2008). Z. Kristallogr. 223, 345-346.]). For the crystal structures of alkali metal tetra­phenyl­borates, see: Behrens et al. (2012a[Behrens, U., Hoffmann, F. & Olbrich, F. (2012a). Organometallics, 31, 905-913.]). For the synthesis of N′′-[3-(di­methyl­amino)­prop­yl]-N,N,N′,N′-tetra­methyl­guanidine, see: Tiritiris & Kantlehner (2012b[Tiritiris, I. & Kantlehner, W. (2012b). Z. Naturforsch. Teil B, 67, 685-698.]). For the crystal structure of N,N,N′,N′-tetra­methyl-N′′-[3-(tri­methyl­aza­nium­yl)prop­yl]guanidinium bis­(tetra­phenyl­borate) acetone disolvate, see: Tiritiris (2013a[Tiritiris, I. (2013a). Acta Cryst. E69, o337-o338.]). For the crystal structure of N-[3-(di­methyl­amino)­prop­yl]-N,N′,N′,N′′,N′′-penta­methyl­guanidinium tetra­phenyl­borate, see: Tiritiris (2013b[Tiritiris, I. (2013b). Acta Cryst. E69, o1040.]). For the use of intensity quotients and differences in absolute structure refinement, see: Parsons et al. (2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C15H36N62+·2C24H20B

  • Mr = 938.92

  • Monoclinic, C c

  • a = 17.1964 (5) Å

  • b = 17.6641 (7) Å

  • c = 17.4751 (6) Å

  • β = 98.752 (1)°

  • V = 5246.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 100 K

  • 0.22 × 0.18 × 0.15 mm

2.2. Data collection

  • Bruker–Nonius KappaCCD diffractometer

  • 11667 measured reflections

  • 11660 independent reflections

  • 10531 reflections with I > 2σ(I)

  • Rint = 0.040

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.087

  • S = 1.06

  • 11660 reflections

  • 651 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.20 e Å−3

  • Absolute structure: Flack x determined using 4294 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])

  • Absolute structure parameter: −0.8 (8)

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the centroids of the C22–C27, C28–C33 and C58–C63 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4BCg1 0.98 2.63 3.597 (2) 171
C4—H4ACg3 0.98 2.64 3.580 (2) 161
C11—H11ACg2 0.99 2.94 3.500 (2) 117
C13—H13BCg3 0.99 2.97 3.950 (2) 170

Data collection: COLLECT (Hooft, 2004[Hooft, R. W. W. (2004). COLLECT. Bruker-Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL2014.

Supporting information


Comment top

ω-Aminoalkylguanidines like N''-[3-(dimethylamino)propyl]- N,N,N',N'-tetramethylguanidine (I) (Tiritiris & Kantlehner, 2012b), in which two nitrogen atoms with different basicity are present, are considered as ambident nucleophiles. Electrophiles can attack at both, on the imine nitrogen of the guanidine function, as well as on the nitrogen atom of the (dimethylamino)propyl group. By reaction of (I) with one equivalent N,N,N',N'- tetramethylchloroformamidinium chloride (Tiritiris & Kantlehner, 2008), the hygroscopic bisamidinium dichloride (II) was formed exclusively. As expected, the reaction occurred preferably at the imine nitrogen of the guanidine function because it is the most basic site. Two similar bisamidinium dichlorides are known in the literature. They where obtained by reaction of N,N,N',N'- tetramethylchloroformamidinium chloride (Tiritiris & Kantlehner, 2008) with N,N,N',N',N''-pentamethylguanidine or N-phenyl-N',N',N'',N''-tetramethylguanidine, respectively (Bauer et al., 1968). In our case, by anion exchange with sodium tetraphenylborate it was possible to obtain a stable, non-hygroscopic salt. The here presented crystal structure is the first structural study of a dicationic nonasubstituted bisamidinium salt. The asymmetric unit contains one twofold charged cation and two tetraphenylborate ions (Fig. 1). Prominent bond parameters in the bisamidinium ion are: N5–C6 = 1.388 (3) Å, N5–C1 = 1.407 (3) Å, N5–C11 = 1.506 (3) Å, indicating N–C single- and double-bond character of the central C3N unit. The C–N–C angles are 117.51 (17)°, 118.92 (17)° and 123.16 (17)°, indicating a nearly ideal trigonal-planar surrounding of the central nitrogen atom N5 by the carbon atoms C1, C6 and C11. The carbon atoms C1 and C6 are further surrounded by the nitrogen atoms N1, N2, N3 and N4. Here, the C–N bonds show double-bond character and the bond lengths range from 1.319 (3) Å to 1.333 (3) Å. The N–C–N angles range from 118.24 (19)° to 121.87 (19)°, indicating again nearly ideal trigonal-planar surroundings of both carbon centres by the nitrogen atoms. The positive charges are delocalized in the planes N1/C1/N2, N3/C6/N4 and C1/N5/C6. The dihedral angle between the plane N1/C1/N2 and N3/C6/N4 is 70.5 (2)°. The bond lengths and angles in both tetraphenylborate ions are in good agreement with the data from the crystal structure analysis of the alkali metal tetraphenylborates (Behrens et al., 2012a). C–H···π interactions between the bisamidinium hydrogen atoms of –N(CH3)2 and –CH2 groups and the phenyl carbon atoms [centroids: Cg1 = C22–C27, Cg2 = C28–C33 and Cg3 = C58–C63] of the tetraphenylborate ion are present (Fig. 2), ranging from 2.63 to 2.97 Å (Tab. 1). Such type of C–H···π interactions have been observed in tetraphenylborate salts with pentasubstituted or hexasubstituted guanidinium ions [for example: N,N,N',N'- tetramethyl-N''-[3-(trimethylazaniumyl)propyl]guanidinium bis(tetraphenylborate) acetone disolvate (Tiritiris, 2013a); N-[3-(Dimethylamino)propyl]- N,N',N',N'',N''- pentamethylguanidinium tetraphenylborate (Tiritiris, 2013b)]. The phenyl rings form aromatic pockets, in which the cation is embedded. This leads finally to the formation of a two-dimensional supramolecular pattern along the ab plane.

Related literature top

For the synthesis of similar salts to the title compound, see: Bauer et al. (1968). For the crystal structure of N,N,N',N'-tetramethylchloroformamidinium chloride, see: Tiritiris & Kantlehner (2008). For the crystal structures of alkali metal tetraphenylborates, see: Behrens et al. (2012a). For the synthesis of N''-[3-(dimethylamino)propyl]-N,N,N',N'-tetramethylguanidine, see: Tiritiris & Kantlehner (2012b). For the crystal structure of N,N,N',N'-tetramethyl-N''-[3-(trimethylazaniumyl)propyl]guanidinium bis(tetraphenylborate) acetone disolvate, see: Tiritiris (2013a). For the crystal structure of N-[3-(dimethylamino)propyl]-N,N',N',N'',N''-pentamethylguanidinium tetraphenylborate, see: Tiritiris (2013b). For the use of intensity quotients and differences in absolute structure refinement, see: Parsons et al. (2013).

Experimental top

The title compound has been obtained by reaction of N''-[3-(dimethylamino)propyl]-N,N,N',N'-tetramethylguanidine (I) (Tiritiris & Kantlehner, 2012b) with one equivalent of N,N,N',N'- tetramethylchloroformamidinium chloride (Tiritiris & Kantlehner, 2008) in acetonitrile at room temperature. After evaporation of the solvent the crude N-[3-(dimethylamino)propyl]-N-(N,N,N',N'-tetramethyl-formamidinio)-N',N',N'',N''-tetramethyl-guanidinium dichloride (II) was washed with diethylether and dried in vacuo. 1.0 g (2.7 mmol) of (II) was dissolved in 20 ml acetonitrile and 1.83 g (5.4 mmol) of sodium tetraphenylborate in 20 ml acetonitrile were added. After stirring for one hour at room temperature, the precipitated sodium chloride was filtered off. The title compound crystallized from a saturated acetonitrile solution after a few months at 273 K, forming colorless single crystals. Yield: 2.15 g (84.9%).

Refinement top

A total number of 34135 reflections have been measured. The data where scaled in the chiral point group C2 per default by using SCALEPACK (Otwinowski & Minor, 1997). After merging all symmetry related reflections and Friedel pairs, a total number of 6569 unique reflections remained (Theta range: 0.41°-28.28°; data completeness: 97.7%; Rint= 0.044). Therefore Rint given by SHELXL2014/7 (Sheldrick, 2015) is meaningless. The data in the hkl file used for structure solution and refinement were also scaled in the chiral point group C2, but here the Friedel pairs were kept separate. The title compound crystallizes in the non-centrosymmetric space group Cc; however, in the absence of significant anomalous scattering effects, the determined Flack parameter x = -0.8 (8) (Parsons et al., 2013) is essentially meaningless. The hydrogen atoms of the methyl groups were allowed to rotate with a fixed angle around the C–N bond to best fit the experimental electron density, with Uiso(H) set to 1.5Ueq(C) and d(C—H) = 0.98 Å. The remaining H atoms were placed in calculated positions with d(C—H) = 0.99 Å (H atoms in CH2 groups) and (C—H) = 0.95 Å (H atoms in aromatic rings) and refined using a riding model, with Uiso(H) set to 1.2 Ueq(C).

Structure description top

ω-Aminoalkylguanidines like N''-[3-(dimethylamino)propyl]- N,N,N',N'-tetramethylguanidine (I) (Tiritiris & Kantlehner, 2012b), in which two nitrogen atoms with different basicity are present, are considered as ambident nucleophiles. Electrophiles can attack at both, on the imine nitrogen of the guanidine function, as well as on the nitrogen atom of the (dimethylamino)propyl group. By reaction of (I) with one equivalent N,N,N',N'- tetramethylchloroformamidinium chloride (Tiritiris & Kantlehner, 2008), the hygroscopic bisamidinium dichloride (II) was formed exclusively. As expected, the reaction occurred preferably at the imine nitrogen of the guanidine function because it is the most basic site. Two similar bisamidinium dichlorides are known in the literature. They where obtained by reaction of N,N,N',N'- tetramethylchloroformamidinium chloride (Tiritiris & Kantlehner, 2008) with N,N,N',N',N''-pentamethylguanidine or N-phenyl-N',N',N'',N''-tetramethylguanidine, respectively (Bauer et al., 1968). In our case, by anion exchange with sodium tetraphenylborate it was possible to obtain a stable, non-hygroscopic salt. The here presented crystal structure is the first structural study of a dicationic nonasubstituted bisamidinium salt. The asymmetric unit contains one twofold charged cation and two tetraphenylborate ions (Fig. 1). Prominent bond parameters in the bisamidinium ion are: N5–C6 = 1.388 (3) Å, N5–C1 = 1.407 (3) Å, N5–C11 = 1.506 (3) Å, indicating N–C single- and double-bond character of the central C3N unit. The C–N–C angles are 117.51 (17)°, 118.92 (17)° and 123.16 (17)°, indicating a nearly ideal trigonal-planar surrounding of the central nitrogen atom N5 by the carbon atoms C1, C6 and C11. The carbon atoms C1 and C6 are further surrounded by the nitrogen atoms N1, N2, N3 and N4. Here, the C–N bonds show double-bond character and the bond lengths range from 1.319 (3) Å to 1.333 (3) Å. The N–C–N angles range from 118.24 (19)° to 121.87 (19)°, indicating again nearly ideal trigonal-planar surroundings of both carbon centres by the nitrogen atoms. The positive charges are delocalized in the planes N1/C1/N2, N3/C6/N4 and C1/N5/C6. The dihedral angle between the plane N1/C1/N2 and N3/C6/N4 is 70.5 (2)°. The bond lengths and angles in both tetraphenylborate ions are in good agreement with the data from the crystal structure analysis of the alkali metal tetraphenylborates (Behrens et al., 2012a). C–H···π interactions between the bisamidinium hydrogen atoms of –N(CH3)2 and –CH2 groups and the phenyl carbon atoms [centroids: Cg1 = C22–C27, Cg2 = C28–C33 and Cg3 = C58–C63] of the tetraphenylborate ion are present (Fig. 2), ranging from 2.63 to 2.97 Å (Tab. 1). Such type of C–H···π interactions have been observed in tetraphenylborate salts with pentasubstituted or hexasubstituted guanidinium ions [for example: N,N,N',N'- tetramethyl-N''-[3-(trimethylazaniumyl)propyl]guanidinium bis(tetraphenylborate) acetone disolvate (Tiritiris, 2013a); N-[3-(Dimethylamino)propyl]- N,N',N',N'',N''- pentamethylguanidinium tetraphenylborate (Tiritiris, 2013b)]. The phenyl rings form aromatic pockets, in which the cation is embedded. This leads finally to the formation of a two-dimensional supramolecular pattern along the ab plane.

For the synthesis of similar salts to the title compound, see: Bauer et al. (1968). For the crystal structure of N,N,N',N'-tetramethylchloroformamidinium chloride, see: Tiritiris & Kantlehner (2008). For the crystal structures of alkali metal tetraphenylborates, see: Behrens et al. (2012a). For the synthesis of N''-[3-(dimethylamino)propyl]-N,N,N',N'-tetramethylguanidine, see: Tiritiris & Kantlehner (2012b). For the crystal structure of N,N,N',N'-tetramethyl-N''-[3-(trimethylazaniumyl)propyl]guanidinium bis(tetraphenylborate) acetone disolvate, see: Tiritiris (2013a). For the crystal structure of N-[3-(dimethylamino)propyl]-N,N',N',N'',N''-pentamethylguanidinium tetraphenylborate, see: Tiritiris (2013b). For the use of intensity quotients and differences in absolute structure refinement, see: Parsons et al. (2013).

Computing details top

Data collection: COLLECT (Hooft, 2004); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with displacement ellipsoids at the 50% probability level. All carbon bonded hydrogen atoms were omitted for the sake of clarity.
[Figure 2] Fig. 2. C—H···π interactions (brown dashed lines) between the hydrogen atoms of the guanidinium ion and the phenyl rings (centroids) of the tetraphenylborate ions.
N-[3-(Dimethylamino)propyl]-N',N',N'',N''-tetramethyl-N-(N,N,N',N'-tetramethylformamidiniumyl)guanidinium bis(tetraphenylborate) top
Crystal data top
C15H36N62+·2C24H20BF(000) = 2024
Mr = 938.92Dx = 1.189 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
a = 17.1964 (5) ÅCell parameters from 6372 reflections
b = 17.6641 (7) Åθ = 0.4–28.3°
c = 17.4751 (6) ŵ = 0.07 mm1
β = 98.752 (1)°T = 100 K
V = 5246.4 (3) Å3Block, colorless
Z = 40.22 × 0.18 × 0.15 mm
Data collection top
Bruker–Nonius KappaCCD
diffractometer
10531 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.040
Graphite monochromatorθmax = 28.2°, θmin = 3.0°
ω scansh = 2222
11667 measured reflectionsk = 2223
11660 independent reflectionsl = 2323
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.038 w = 1/[σ2(Fo2) + (0.0318P)2 + 3.2124P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.087(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.21 e Å3
11660 reflectionsΔρmin = 0.20 e Å3
651 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2 restraintsExtinction coefficient: 0.0028 (4)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack x determined using 4294 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.8 (8)
Crystal data top
C15H36N62+·2C24H20BV = 5246.4 (3) Å3
Mr = 938.92Z = 4
Monoclinic, CcMo Kα radiation
a = 17.1964 (5) ŵ = 0.07 mm1
b = 17.6641 (7) ÅT = 100 K
c = 17.4751 (6) Å0.22 × 0.18 × 0.15 mm
β = 98.752 (1)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
10531 reflections with I > 2σ(I)
11667 measured reflectionsRint = 0.040
11660 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.087Δρmax = 0.21 e Å3
S = 1.06Δρmin = 0.20 e Å3
11660 reflectionsAbsolute structure: Flack x determined using 4294 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
651 parametersAbsolute structure parameter: 0.8 (8)
2 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.54916 (10)0.40299 (10)0.24976 (10)0.0140 (4)
N20.45346 (11)0.34306 (10)0.30784 (11)0.0159 (4)
N30.45873 (11)0.21150 (10)0.19896 (11)0.0166 (4)
N40.53339 (11)0.14313 (11)0.29688 (11)0.0188 (4)
N50.56111 (10)0.27259 (10)0.27842 (10)0.0126 (3)
N60.65631 (11)0.24425 (11)0.12663 (11)0.0174 (4)
C10.52041 (12)0.34173 (12)0.27826 (12)0.0134 (4)
C20.43782 (14)0.29283 (14)0.37052 (14)0.0216 (5)
H2A0.40960.24780.34840.032*
H2B0.40570.31960.40360.032*
H2C0.48770.27750.40140.032*
C30.38691 (14)0.39186 (14)0.27671 (15)0.0241 (5)
H3A0.39680.41460.22800.036*
H3B0.38080.43200.31410.036*
H3C0.33870.36160.26730.036*
C40.52999 (14)0.47987 (12)0.27348 (14)0.0203 (5)
H4A0.49230.50320.23250.030*
H4B0.57810.51040.28240.030*
H4C0.50680.47720.32130.030*
C50.60081 (13)0.40206 (13)0.19034 (13)0.0177 (4)
H5A0.60840.34970.17440.027*
H5B0.65180.42420.21140.027*
H5C0.57670.43160.14550.027*
C60.51696 (12)0.20783 (12)0.25854 (12)0.0141 (4)
C70.38500 (15)0.16881 (15)0.19791 (15)0.0257 (5)
H7A0.38410.14580.24880.038*
H7B0.38170.12900.15850.038*
H7C0.34010.20320.18580.038*
C80.46021 (14)0.26164 (14)0.13219 (13)0.0197 (5)
H8A0.43120.30820.13940.030*
H8B0.43560.23600.08490.030*
H8C0.51480.27420.12770.030*
C90.56851 (15)0.13745 (14)0.37887 (14)0.0242 (5)
H9A0.62120.11530.38280.036*
H9B0.53540.10520.40630.036*
H9C0.57230.18800.40210.036*
C100.51657 (17)0.06897 (13)0.25923 (16)0.0285 (6)
H10A0.47070.04620.27730.043*
H10B0.56220.03560.27240.043*
H10C0.50570.07580.20300.043*
C110.64786 (12)0.27091 (13)0.30879 (13)0.0150 (4)
H11A0.65440.25680.36420.018*
H11B0.66860.32290.30580.018*
C120.69866 (13)0.21784 (13)0.26843 (13)0.0188 (5)
H12A0.67040.16910.25910.023*
H12B0.74780.20770.30450.023*
C130.72112 (13)0.24477 (13)0.19158 (13)0.0186 (4)
H13A0.74210.29690.19840.022*
H13B0.76390.21200.17830.022*
C140.68101 (15)0.28608 (14)0.06149 (14)0.0227 (5)
H14A0.72880.26300.04760.034*
H14B0.69170.33890.07660.034*
H14C0.63900.28420.01690.034*
C150.63482 (15)0.16667 (14)0.10226 (15)0.0250 (5)
H15A0.68120.14030.08920.038*
H15B0.59380.16790.05670.038*
H15C0.61510.13990.14450.038*
B10.29633 (14)0.00569 (13)0.41254 (14)0.0131 (5)
C160.33345 (12)0.05140 (12)0.48320 (13)0.0135 (4)
C170.34030 (14)0.03221 (13)0.56111 (13)0.0189 (5)
H170.32110.01560.57460.023*
C180.37429 (15)0.08026 (13)0.62042 (13)0.0214 (5)
H180.37860.06450.67290.026*
C190.40168 (14)0.15091 (13)0.60279 (13)0.0187 (5)
H190.42380.18440.64280.022*
C200.39638 (14)0.17187 (13)0.52606 (13)0.0204 (5)
H200.41550.21990.51300.024*
C210.36316 (14)0.12288 (13)0.46788 (13)0.0190 (5)
H210.36050.13850.41550.023*
C220.24858 (13)0.04641 (12)0.34214 (13)0.0143 (4)
C230.19759 (13)0.10448 (12)0.35885 (14)0.0173 (4)
H230.19220.11330.41140.021*
C240.15475 (14)0.14951 (13)0.30210 (14)0.0200 (5)
H240.12080.18770.31620.024*
C250.16175 (13)0.13849 (13)0.22473 (14)0.0203 (5)
H250.13240.16870.18560.024*
C260.21206 (14)0.08288 (14)0.20540 (13)0.0190 (5)
H260.21780.07510.15280.023*
C270.25439 (13)0.03814 (12)0.26329 (13)0.0156 (4)
H270.28860.00040.24860.019*
C280.23664 (13)0.06677 (12)0.44542 (12)0.0142 (4)
C290.15612 (13)0.05335 (13)0.44582 (13)0.0177 (5)
H290.13400.00740.42410.021*
C300.10721 (14)0.10448 (14)0.47665 (14)0.0210 (5)
H300.05310.09290.47570.025*
C310.13767 (14)0.17220 (14)0.50867 (13)0.0197 (5)
H310.10470.20750.52930.024*
C320.21682 (14)0.18749 (13)0.50998 (13)0.0182 (5)
H320.23860.23330.53220.022*
C330.26451 (14)0.13592 (12)0.47879 (12)0.0159 (4)
H330.31850.14800.48010.019*
C340.36745 (13)0.05447 (12)0.38311 (12)0.0134 (4)
C350.34968 (13)0.11383 (13)0.32968 (13)0.0151 (4)
H350.29600.12310.30960.018*
C360.40666 (13)0.15960 (12)0.30481 (12)0.0157 (4)
H360.39170.19910.26860.019*
C370.48566 (13)0.14740 (13)0.33310 (13)0.0187 (5)
H370.52510.17800.31600.022*
C380.50604 (14)0.09022 (14)0.38638 (14)0.0204 (5)
H380.55980.08150.40640.025*
C390.44791 (13)0.04539 (13)0.41076 (13)0.0169 (4)
H390.46340.00680.44790.020*
B20.80503 (15)0.00432 (14)0.52652 (14)0.0128 (4)
C400.73194 (13)0.05104 (12)0.55564 (11)0.0134 (4)
C410.65402 (13)0.02539 (13)0.54487 (13)0.0168 (4)
H410.64130.01970.51600.020*
C420.59422 (14)0.06346 (15)0.57499 (13)0.0217 (5)
H420.54220.04380.56690.026*
C430.61052 (14)0.12989 (14)0.61668 (13)0.0212 (5)
H430.57010.15610.63720.025*
C440.68678 (14)0.15728 (13)0.62787 (13)0.0178 (5)
H440.69880.20300.65570.021*
C450.74583 (13)0.11816 (13)0.59849 (12)0.0157 (4)
H450.79790.13770.60780.019*
C460.86800 (13)0.06551 (12)0.49821 (12)0.0138 (4)
C470.84134 (13)0.13320 (13)0.45996 (12)0.0160 (4)
H470.78660.14400.45280.019*
C480.89142 (14)0.18477 (13)0.43229 (13)0.0185 (5)
H480.87060.22970.40720.022*
C490.97173 (15)0.17088 (14)0.44126 (14)0.0206 (5)
H491.00630.20570.42210.025*
C501.00057 (14)0.10506 (14)0.47875 (14)0.0214 (5)
H501.05530.09450.48540.026*
C510.94928 (13)0.05445 (13)0.50663 (13)0.0174 (4)
H510.97070.01020.53270.021*
C520.76945 (12)0.04893 (13)0.45171 (12)0.0141 (4)
C530.73887 (13)0.01733 (13)0.37920 (12)0.0165 (4)
H530.74290.03580.37230.020*
C540.70306 (13)0.06078 (14)0.31746 (13)0.0187 (5)
H540.68310.03710.26970.022*
C550.69626 (13)0.13857 (14)0.32521 (13)0.0195 (5)
H550.67090.16830.28340.023*
C560.72690 (14)0.17218 (13)0.39466 (13)0.0188 (5)
H560.72370.22550.40050.023*
C570.76263 (13)0.12778 (13)0.45626 (13)0.0165 (4)
H570.78330.15220.50340.020*
C580.84769 (12)0.04918 (12)0.59834 (13)0.0133 (4)
C590.90731 (13)0.10152 (13)0.58859 (14)0.0171 (4)
H590.92280.10610.53890.021*
C600.94459 (13)0.14677 (13)0.64832 (14)0.0195 (5)
H600.98480.18090.63890.023*
C610.92316 (14)0.14212 (12)0.72185 (14)0.0202 (5)
H610.94890.17240.76300.024*
C620.86401 (14)0.09282 (13)0.73399 (13)0.0192 (5)
H620.84820.08950.78370.023*
C630.82717 (13)0.04758 (12)0.67306 (13)0.0151 (4)
H630.78640.01430.68280.018*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0133 (8)0.0109 (8)0.0181 (9)0.0019 (7)0.0032 (7)0.0004 (7)
N20.0132 (9)0.0157 (9)0.0196 (9)0.0029 (7)0.0056 (7)0.0028 (7)
N30.0143 (9)0.0160 (9)0.0187 (9)0.0027 (7)0.0005 (7)0.0019 (7)
N40.0214 (10)0.0139 (9)0.0207 (10)0.0006 (7)0.0022 (8)0.0039 (7)
N50.0113 (8)0.0114 (8)0.0148 (8)0.0014 (7)0.0012 (7)0.0012 (7)
N60.0162 (9)0.0182 (9)0.0173 (9)0.0019 (7)0.0015 (7)0.0021 (7)
C10.0131 (10)0.0132 (10)0.0134 (10)0.0012 (8)0.0003 (8)0.0013 (8)
C20.0234 (12)0.0217 (12)0.0223 (12)0.0010 (9)0.0115 (10)0.0040 (9)
C30.0144 (11)0.0249 (12)0.0337 (13)0.0080 (9)0.0056 (9)0.0059 (10)
C40.0251 (12)0.0089 (10)0.0277 (12)0.0014 (9)0.0067 (10)0.0007 (9)
C50.0194 (11)0.0149 (10)0.0200 (11)0.0027 (8)0.0067 (9)0.0018 (8)
C60.0144 (10)0.0137 (10)0.0151 (10)0.0005 (8)0.0046 (8)0.0006 (8)
C70.0198 (12)0.0272 (13)0.0287 (12)0.0119 (10)0.0005 (10)0.0024 (10)
C80.0184 (11)0.0228 (12)0.0164 (11)0.0007 (9)0.0018 (9)0.0051 (9)
C90.0275 (13)0.0219 (12)0.0224 (12)0.0030 (10)0.0014 (10)0.0095 (9)
C100.0381 (15)0.0126 (11)0.0346 (14)0.0021 (10)0.0053 (11)0.0016 (10)
C110.0111 (10)0.0161 (11)0.0169 (10)0.0007 (8)0.0013 (8)0.0001 (8)
C120.0143 (10)0.0204 (11)0.0209 (11)0.0062 (8)0.0006 (8)0.0007 (9)
C130.0146 (10)0.0191 (11)0.0222 (11)0.0027 (8)0.0028 (9)0.0009 (9)
C140.0238 (12)0.0250 (12)0.0203 (11)0.0043 (10)0.0067 (9)0.0008 (9)
C150.0259 (13)0.0240 (12)0.0263 (12)0.0019 (10)0.0074 (10)0.0071 (10)
B10.0155 (12)0.0106 (11)0.0130 (11)0.0014 (9)0.0015 (9)0.0010 (9)
C160.0121 (10)0.0123 (10)0.0164 (10)0.0017 (8)0.0031 (8)0.0006 (8)
C170.0255 (12)0.0142 (10)0.0173 (11)0.0049 (9)0.0040 (9)0.0006 (9)
C180.0300 (13)0.0219 (12)0.0127 (10)0.0053 (10)0.0042 (9)0.0001 (9)
C190.0199 (11)0.0189 (11)0.0179 (11)0.0038 (9)0.0042 (9)0.0071 (9)
C200.0240 (12)0.0149 (11)0.0226 (12)0.0072 (9)0.0043 (9)0.0003 (9)
C210.0240 (12)0.0186 (11)0.0144 (10)0.0044 (9)0.0033 (9)0.0009 (8)
C220.0147 (10)0.0114 (10)0.0166 (10)0.0042 (8)0.0020 (8)0.0009 (8)
C230.0198 (11)0.0118 (10)0.0201 (11)0.0026 (8)0.0022 (9)0.0005 (8)
C240.0179 (11)0.0123 (11)0.0291 (12)0.0011 (9)0.0010 (9)0.0012 (9)
C250.0167 (11)0.0171 (11)0.0249 (12)0.0049 (9)0.0041 (9)0.0096 (9)
C260.0188 (11)0.0226 (12)0.0154 (10)0.0057 (9)0.0017 (8)0.0039 (9)
C270.0148 (10)0.0142 (10)0.0177 (11)0.0029 (8)0.0025 (8)0.0009 (8)
C280.0180 (11)0.0131 (10)0.0114 (10)0.0012 (8)0.0015 (8)0.0017 (8)
C290.0208 (11)0.0148 (11)0.0181 (11)0.0002 (9)0.0050 (9)0.0002 (8)
C300.0175 (11)0.0241 (12)0.0227 (12)0.0019 (9)0.0077 (9)0.0034 (9)
C310.0270 (12)0.0188 (11)0.0145 (10)0.0087 (9)0.0067 (9)0.0014 (9)
C320.0278 (12)0.0136 (11)0.0135 (10)0.0019 (9)0.0043 (9)0.0003 (8)
C330.0185 (11)0.0141 (11)0.0152 (10)0.0005 (8)0.0030 (8)0.0003 (8)
C340.0161 (10)0.0120 (10)0.0122 (10)0.0005 (8)0.0027 (8)0.0034 (8)
C350.0149 (10)0.0154 (11)0.0149 (10)0.0023 (8)0.0020 (8)0.0017 (8)
C360.0222 (11)0.0127 (10)0.0125 (10)0.0002 (8)0.0040 (8)0.0018 (8)
C370.0194 (11)0.0186 (11)0.0196 (11)0.0039 (9)0.0077 (9)0.0042 (9)
C380.0143 (10)0.0250 (12)0.0221 (11)0.0005 (9)0.0029 (8)0.0029 (9)
C390.0185 (11)0.0170 (11)0.0151 (10)0.0028 (8)0.0023 (8)0.0008 (8)
B20.0141 (11)0.0102 (11)0.0140 (11)0.0010 (9)0.0019 (9)0.0002 (9)
C400.0169 (10)0.0146 (10)0.0083 (9)0.0010 (8)0.0014 (8)0.0033 (8)
C410.0165 (11)0.0192 (11)0.0140 (10)0.0006 (9)0.0005 (8)0.0011 (8)
C420.0144 (11)0.0321 (13)0.0186 (11)0.0000 (9)0.0020 (9)0.0005 (10)
C430.0204 (12)0.0287 (13)0.0154 (11)0.0097 (10)0.0053 (9)0.0022 (9)
C440.0260 (12)0.0152 (11)0.0126 (10)0.0039 (9)0.0045 (9)0.0001 (8)
C450.0183 (11)0.0149 (11)0.0143 (10)0.0014 (8)0.0042 (8)0.0013 (8)
C460.0163 (10)0.0124 (10)0.0128 (10)0.0012 (8)0.0023 (8)0.0028 (8)
C470.0176 (11)0.0165 (11)0.0137 (10)0.0002 (8)0.0024 (8)0.0009 (8)
C480.0267 (12)0.0158 (11)0.0128 (10)0.0023 (9)0.0022 (9)0.0008 (8)
C490.0240 (12)0.0208 (12)0.0185 (11)0.0080 (9)0.0082 (9)0.0012 (9)
C500.0172 (11)0.0218 (12)0.0262 (12)0.0030 (9)0.0062 (9)0.0020 (10)
C510.0183 (11)0.0140 (10)0.0199 (11)0.0008 (8)0.0032 (9)0.0004 (8)
C520.0116 (10)0.0172 (11)0.0145 (10)0.0017 (8)0.0046 (8)0.0016 (8)
C530.0143 (10)0.0190 (11)0.0167 (11)0.0006 (8)0.0038 (8)0.0006 (9)
C540.0143 (10)0.0290 (13)0.0128 (10)0.0013 (9)0.0025 (8)0.0011 (9)
C550.0151 (11)0.0294 (13)0.0152 (10)0.0055 (9)0.0059 (8)0.0080 (9)
C560.0207 (11)0.0181 (11)0.0189 (11)0.0063 (9)0.0070 (9)0.0044 (9)
C570.0187 (11)0.0169 (11)0.0143 (10)0.0029 (8)0.0041 (8)0.0007 (8)
C580.0138 (10)0.0089 (10)0.0167 (10)0.0043 (8)0.0003 (8)0.0007 (8)
C590.0169 (11)0.0145 (11)0.0198 (11)0.0028 (9)0.0020 (9)0.0022 (9)
C600.0159 (11)0.0091 (10)0.0319 (13)0.0014 (8)0.0013 (9)0.0003 (9)
C610.0227 (12)0.0112 (10)0.0235 (12)0.0068 (9)0.0072 (9)0.0056 (9)
C620.0246 (12)0.0165 (11)0.0156 (10)0.0087 (9)0.0004 (9)0.0026 (9)
C630.0157 (10)0.0129 (10)0.0157 (10)0.0045 (8)0.0004 (8)0.0003 (8)
Geometric parameters (Å, º) top
N1—C11.319 (3)C24—H240.9500
N1—C51.465 (3)C25—C261.384 (4)
N1—C41.472 (3)C25—H250.9500
N2—C11.332 (3)C26—C271.398 (3)
N2—C21.466 (3)C26—H260.9500
N2—C31.469 (3)C27—H270.9500
N3—C61.332 (3)C28—C291.406 (3)
N3—C81.468 (3)C28—C331.406 (3)
N3—C71.473 (3)C29—C301.397 (3)
N4—C61.333 (3)C29—H290.9500
N4—C91.471 (3)C30—C311.389 (3)
N4—C101.475 (3)C30—H300.9500
N5—C61.388 (3)C31—C321.384 (3)
N5—C11.407 (3)C31—H310.9500
N5—C111.506 (3)C32—C331.391 (3)
N6—C131.465 (3)C32—H320.9500
N6—C151.466 (3)C33—H330.9500
N6—C141.473 (3)C34—C391.404 (3)
C2—H2A0.9800C34—C351.406 (3)
C2—H2B0.9800C35—C361.390 (3)
C2—H2C0.9800C35—H350.9500
C3—H3A0.9800C36—C371.390 (3)
C3—H3B0.9800C36—H360.9500
C3—H3C0.9800C37—C381.382 (3)
C4—H4A0.9800C37—H370.9500
C4—H4B0.9800C38—C391.392 (3)
C4—H4C0.9800C38—H380.9500
C5—H5A0.9800C39—H390.9500
C5—H5B0.9800B2—C401.648 (3)
C5—H5C0.9800B2—C521.651 (3)
C7—H7A0.9800B2—C581.651 (3)
C7—H7B0.9800B2—C461.658 (3)
C7—H7C0.9800C40—C411.400 (3)
C8—H8A0.9800C40—C451.403 (3)
C8—H8B0.9800C41—C421.397 (3)
C8—H8C0.9800C41—H410.9500
C9—H9A0.9800C42—C431.387 (3)
C9—H9B0.9800C42—H420.9500
C9—H9C0.9800C43—C441.384 (3)
C10—H10A0.9800C43—H430.9500
C10—H10B0.9800C44—C451.390 (3)
C10—H10C0.9800C44—H440.9500
C11—C121.525 (3)C45—H450.9500
C11—H11A0.9900C46—C511.397 (3)
C11—H11B0.9900C46—C471.412 (3)
C12—C131.529 (3)C47—C481.390 (3)
C12—H12A0.9900C47—H470.9500
C12—H12B0.9900C48—C491.388 (4)
C13—H13A0.9900C48—H480.9500
C13—H13B0.9900C49—C501.389 (4)
C14—H14A0.9800C49—H490.9500
C14—H14B0.9800C50—C511.395 (3)
C14—H14C0.9800C50—H500.9500
C15—H15A0.9800C51—H510.9500
C15—H15B0.9800C52—C571.401 (3)
C15—H15C0.9800C52—C531.411 (3)
B1—C341.641 (3)C53—C541.389 (3)
B1—C161.646 (3)C53—H530.9500
B1—C281.651 (3)C54—C551.387 (3)
B1—C221.651 (3)C54—H540.9500
C16—C171.390 (3)C55—C561.381 (3)
C16—C211.403 (3)C55—H550.9500
C17—C181.397 (3)C56—C571.397 (3)
C17—H170.9500C56—H560.9500
C18—C191.385 (3)C57—H570.9500
C18—H180.9500C58—C631.404 (3)
C19—C201.381 (3)C58—C591.410 (3)
C19—H190.9500C59—C601.391 (3)
C20—C211.390 (3)C59—H590.9500
C20—H200.9500C60—C611.392 (4)
C21—H210.9500C60—H600.9500
C22—C271.404 (3)C61—C621.380 (4)
C22—C231.409 (3)C61—H610.9500
C23—C241.392 (3)C62—C631.403 (3)
C23—H230.9500C62—H620.9500
C24—C251.389 (4)C63—H630.9500
C1—N1—C5124.12 (18)C24—C23—C22123.2 (2)
C1—N1—C4122.54 (18)C24—C23—H23118.4
C5—N1—C4113.31 (18)C22—C23—H23118.4
C1—N2—C2123.16 (19)C25—C24—C23119.9 (2)
C1—N2—C3122.49 (19)C25—C24—H24120.0
C2—N2—C3114.24 (19)C23—C24—H24120.0
C6—N3—C8123.28 (18)C26—C25—C24119.1 (2)
C6—N3—C7121.89 (19)C26—C25—H25120.4
C8—N3—C7114.71 (18)C24—C25—H25120.4
C6—N4—C9124.90 (19)C25—C26—C27120.0 (2)
C6—N4—C10121.67 (19)C25—C26—H26120.0
C9—N4—C10113.42 (19)C27—C26—H26120.0
C6—N5—C1117.51 (17)C26—C27—C22123.0 (2)
C6—N5—C11123.16 (17)C26—C27—H27118.5
C1—N5—C11118.92 (17)C22—C27—H27118.5
C13—N6—C15111.06 (18)C29—C28—C33114.7 (2)
C13—N6—C14108.72 (18)C29—C28—B1123.8 (2)
C15—N6—C14109.52 (18)C33—C28—B1121.42 (19)
N1—C1—N2121.87 (19)C30—C29—C28123.0 (2)
N1—C1—N5119.87 (19)C30—C29—H29118.5
N2—C1—N5118.26 (19)C28—C29—H29118.5
N2—C2—H2A109.5C31—C30—C29120.0 (2)
N2—C2—H2B109.5C31—C30—H30120.0
H2A—C2—H2B109.5C29—C30—H30120.0
N2—C2—H2C109.5C32—C31—C30119.0 (2)
H2A—C2—H2C109.5C32—C31—H31120.5
H2B—C2—H2C109.5C30—C31—H31120.5
N2—C3—H3A109.5C31—C32—C33120.2 (2)
N2—C3—H3B109.5C31—C32—H32119.9
H3A—C3—H3B109.5C33—C32—H32119.9
N2—C3—H3C109.5C32—C33—C28123.2 (2)
H3A—C3—H3C109.5C32—C33—H33118.4
H3B—C3—H3C109.5C28—C33—H33118.4
N1—C4—H4A109.5C39—C34—C35114.7 (2)
N1—C4—H4B109.5C39—C34—B1125.07 (19)
H4A—C4—H4B109.5C35—C34—B1120.16 (19)
N1—C4—H4C109.5C36—C35—C34123.3 (2)
H4A—C4—H4C109.5C36—C35—H35118.4
H4B—C4—H4C109.5C34—C35—H35118.4
N1—C5—H5A109.5C37—C36—C35119.7 (2)
N1—C5—H5B109.5C37—C36—H36120.1
H5A—C5—H5B109.5C35—C36—H36120.1
N1—C5—H5C109.5C38—C37—C36119.1 (2)
H5A—C5—H5C109.5C38—C37—H37120.4
H5B—C5—H5C109.5C36—C37—H37120.4
N3—C6—N4120.8 (2)C37—C38—C39120.1 (2)
N3—C6—N5118.24 (19)C37—C38—H38119.9
N4—C6—N5120.99 (19)C39—C38—H38119.9
N3—C7—H7A109.5C38—C39—C34123.1 (2)
N3—C7—H7B109.5C38—C39—H39118.5
H7A—C7—H7B109.5C34—C39—H39118.5
N3—C7—H7C109.5C40—B2—C52108.77 (18)
H7A—C7—H7C109.5C40—B2—C58108.87 (18)
H7B—C7—H7C109.5C52—B2—C58110.12 (17)
N3—C8—H8A109.5C40—B2—C46109.23 (17)
N3—C8—H8B109.5C52—B2—C46108.39 (17)
H8A—C8—H8B109.5C58—B2—C46111.42 (18)
N3—C8—H8C109.5C41—C40—C45115.3 (2)
H8A—C8—H8C109.5C41—C40—B2123.78 (19)
H8B—C8—H8C109.5C45—C40—B2120.80 (19)
N4—C9—H9A109.5C42—C41—C40122.5 (2)
N4—C9—H9B109.5C42—C41—H41118.7
H9A—C9—H9B109.5C40—C41—H41118.7
N4—C9—H9C109.5C43—C42—C41120.2 (2)
H9A—C9—H9C109.5C43—C42—H42119.9
H9B—C9—H9C109.5C41—C42—H42119.9
N4—C10—H10A109.5C44—C43—C42118.8 (2)
N4—C10—H10B109.5C44—C43—H43120.6
H10A—C10—H10B109.5C42—C43—H43120.6
N4—C10—H10C109.5C43—C44—C45120.3 (2)
H10A—C10—H10C109.5C43—C44—H44119.9
H10B—C10—H10C109.5C45—C44—H44119.9
N5—C11—C12117.10 (18)C44—C45—C40122.9 (2)
N5—C11—H11A108.0C44—C45—H45118.6
C12—C11—H11A108.0C40—C45—H45118.6
N5—C11—H11B108.0C51—C46—C47114.6 (2)
C12—C11—H11B108.0C51—C46—B2124.47 (19)
H11A—C11—H11B107.3C47—C46—B2120.90 (19)
C11—C12—C13117.00 (19)C48—C47—C46123.1 (2)
C11—C12—H12A108.0C48—C47—H47118.5
C13—C12—H12A108.0C46—C47—H47118.5
C11—C12—H12B108.0C49—C48—C47120.2 (2)
C13—C12—H12B108.0C49—C48—H48119.9
H12A—C12—H12B107.3C47—C48—H48119.9
N6—C13—C12114.50 (19)C48—C49—C50118.6 (2)
N6—C13—H13A108.6C48—C49—H49120.7
C12—C13—H13A108.6C50—C49—H49120.7
N6—C13—H13B108.6C49—C50—C51120.1 (2)
C12—C13—H13B108.6C49—C50—H50119.9
H13A—C13—H13B107.6C51—C50—H50119.9
N6—C14—H14A109.5C50—C51—C46123.3 (2)
N6—C14—H14B109.5C50—C51—H51118.3
H14A—C14—H14B109.5C46—C51—H51118.3
N6—C14—H14C109.5C57—C52—C53114.92 (19)
H14A—C14—H14C109.5C57—C52—B2123.07 (19)
H14B—C14—H14C109.5C53—C52—B2121.89 (19)
N6—C15—H15A109.5C54—C53—C52122.6 (2)
N6—C15—H15B109.5C54—C53—H53118.7
H15A—C15—H15B109.5C52—C53—H53118.7
N6—C15—H15C109.5C55—C54—C53120.3 (2)
H15A—C15—H15C109.5C55—C54—H54119.8
H15B—C15—H15C109.5C53—C54—H54119.8
C34—B1—C16109.53 (18)C56—C55—C54119.0 (2)
C34—B1—C28107.35 (17)C56—C55—H55120.5
C16—B1—C28109.26 (18)C54—C55—H55120.5
C34—B1—C22111.64 (18)C55—C56—C57120.0 (2)
C16—B1—C22108.03 (17)C55—C56—H56120.0
C28—B1—C22111.00 (18)C57—C56—H56120.0
C17—C16—C21115.3 (2)C56—C57—C52123.1 (2)
C17—C16—B1123.41 (19)C56—C57—H57118.5
C21—C16—B1121.27 (19)C52—C57—H57118.5
C16—C17—C18122.8 (2)C63—C58—C59114.6 (2)
C16—C17—H17118.6C63—C58—B2123.37 (19)
C18—C17—H17118.6C59—C58—B2122.0 (2)
C19—C18—C17120.0 (2)C60—C59—C58123.1 (2)
C19—C18—H18120.0C60—C59—H59118.4
C17—C18—H18120.0C58—C59—H59118.4
C20—C19—C18118.9 (2)C59—C60—C61120.1 (2)
C20—C19—H19120.6C59—C60—H60119.9
C18—C19—H19120.6C61—C60—H60119.9
C19—C20—C21120.2 (2)C62—C61—C60118.9 (2)
C19—C20—H20119.9C62—C61—H61120.5
C21—C20—H20119.9C60—C61—H61120.5
C20—C21—C16122.8 (2)C61—C62—C63120.1 (2)
C20—C21—H21118.6C61—C62—H62120.0
C16—C21—H21118.6C63—C62—H62120.0
C27—C22—C23114.8 (2)C62—C63—C58123.1 (2)
C27—C22—B1124.9 (2)C62—C63—H63118.5
C23—C22—B1120.40 (19)C58—C63—H63118.5
C5—N1—C1—N2154.0 (2)B1—C28—C33—C32177.3 (2)
C4—N1—C1—N224.1 (3)C16—B1—C34—C393.6 (3)
C5—N1—C1—N526.5 (3)C28—B1—C34—C39122.2 (2)
C4—N1—C1—N5155.43 (19)C22—B1—C34—C39116.0 (2)
C2—N2—C1—N1149.4 (2)C16—B1—C34—C35172.12 (19)
C3—N2—C1—N134.7 (3)C28—B1—C34—C3553.6 (3)
C2—N2—C1—N530.1 (3)C22—B1—C34—C3568.3 (2)
C3—N2—C1—N5145.8 (2)C39—C34—C35—C360.9 (3)
C6—N5—C1—N1138.3 (2)B1—C34—C35—C36177.11 (19)
C11—N5—C1—N148.8 (3)C34—C35—C36—C370.1 (3)
C6—N5—C1—N242.1 (3)C35—C36—C37—C380.7 (3)
C11—N5—C1—N2130.7 (2)C36—C37—C38—C390.4 (3)
C8—N3—C6—N4147.8 (2)C37—C38—C39—C340.7 (3)
C7—N3—C6—N436.5 (3)C35—C34—C39—C381.3 (3)
C8—N3—C6—N530.7 (3)B1—C34—C39—C38177.3 (2)
C7—N3—C6—N5145.0 (2)C52—B2—C40—C4126.9 (3)
C9—N4—C6—N3151.7 (2)C58—B2—C40—C4193.1 (2)
C10—N4—C6—N327.8 (3)C46—B2—C40—C41145.0 (2)
C9—N4—C6—N529.8 (3)C52—B2—C40—C45157.59 (19)
C10—N4—C6—N5150.7 (2)C58—B2—C40—C4582.4 (2)
C1—N5—C6—N342.4 (3)C46—B2—C40—C4539.5 (3)
C11—N5—C6—N3145.0 (2)C45—C40—C41—C420.4 (3)
C1—N5—C6—N4139.1 (2)B2—C40—C41—C42175.3 (2)
C11—N5—C6—N433.5 (3)C40—C41—C42—C430.8 (3)
C6—N5—C11—C1243.4 (3)C41—C42—C43—C440.2 (3)
C1—N5—C11—C12144.2 (2)C42—C43—C44—C450.8 (3)
N5—C11—C12—C1378.9 (3)C43—C44—C45—C401.2 (3)
C15—N6—C13—C1271.4 (2)C41—C40—C45—C440.6 (3)
C14—N6—C13—C12168.05 (19)B2—C40—C45—C44176.4 (2)
C11—C12—C13—N672.2 (3)C40—B2—C46—C51146.5 (2)
C34—B1—C16—C1792.8 (2)C52—B2—C46—C5195.1 (2)
C28—B1—C16—C1724.5 (3)C58—B2—C46—C5126.2 (3)
C22—B1—C16—C17145.4 (2)C40—B2—C46—C4736.0 (3)
C34—B1—C16—C2184.9 (2)C52—B2—C46—C4782.3 (2)
C28—B1—C16—C21157.7 (2)C58—B2—C46—C47156.35 (19)
C22—B1—C16—C2136.9 (3)C51—C46—C47—C480.4 (3)
C21—C16—C17—C180.0 (3)B2—C46—C47—C48177.3 (2)
B1—C16—C17—C18177.8 (2)C46—C47—C48—C490.3 (3)
C16—C17—C18—C191.1 (4)C47—C48—C49—C500.5 (3)
C17—C18—C19—C201.5 (4)C48—C49—C50—C510.1 (3)
C18—C19—C20—C210.7 (4)C49—C50—C51—C460.8 (4)
C19—C20—C21—C160.4 (4)C47—C46—C51—C501.0 (3)
C17—C16—C21—C200.7 (3)B2—C46—C51—C50176.6 (2)
B1—C16—C21—C20178.6 (2)C40—B2—C52—C57106.9 (2)
C34—B1—C22—C2713.9 (3)C58—B2—C52—C5712.3 (3)
C16—B1—C22—C27134.4 (2)C46—B2—C52—C57134.5 (2)
C28—B1—C22—C27105.9 (2)C40—B2—C52—C5369.0 (3)
C34—B1—C22—C23165.91 (19)C58—B2—C52—C53171.79 (19)
C16—B1—C22—C2345.4 (3)C46—B2—C52—C5349.7 (3)
C28—B1—C22—C2374.3 (2)C57—C52—C53—C541.4 (3)
C27—C22—C23—C241.3 (3)B2—C52—C53—C54174.8 (2)
B1—C22—C23—C24178.9 (2)C52—C53—C54—C550.2 (3)
C22—C23—C24—C250.5 (3)C53—C54—C55—C561.2 (3)
C23—C24—C25—C260.5 (3)C54—C55—C56—C571.3 (3)
C24—C25—C26—C270.7 (3)C55—C56—C57—C520.0 (4)
C25—C26—C27—C220.1 (3)C53—C52—C57—C561.3 (3)
C23—C22—C27—C261.1 (3)B2—C52—C57—C56174.8 (2)
B1—C22—C27—C26179.1 (2)C40—B2—C58—C635.3 (3)
C34—B1—C28—C29152.8 (2)C52—B2—C58—C63124.4 (2)
C16—B1—C28—C2988.5 (2)C46—B2—C58—C63115.2 (2)
C22—B1—C28—C2930.5 (3)C40—B2—C58—C59173.59 (19)
C34—B1—C28—C3330.1 (3)C52—B2—C58—C5954.4 (3)
C16—B1—C28—C3388.6 (2)C46—B2—C58—C5965.9 (3)
C22—B1—C28—C33152.4 (2)C63—C58—C59—C601.6 (3)
C33—C28—C29—C300.2 (3)B2—C58—C59—C60179.4 (2)
B1—C28—C29—C30177.4 (2)C58—C59—C60—C610.5 (3)
C28—C29—C30—C310.1 (3)C59—C60—C61—C620.8 (3)
C29—C30—C31—C320.6 (3)C60—C61—C62—C630.9 (3)
C30—C31—C32—C330.7 (3)C61—C62—C63—C580.3 (3)
C31—C32—C33—C280.5 (3)C59—C58—C63—C621.5 (3)
C29—C28—C33—C320.0 (3)B2—C58—C63—C62179.5 (2)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the C22–C27, C28–C33 and C58–C63 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C4—H4B···Cg10.982.633.597 (2)171
C4—H4A···Cg30.982.643.580 (2)161
C11—H11A···Cg20.992.943.500 (2)117
C13—H13B···Cg30.992.973.950 (2)170
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the C22–C27, C28–C33 and C58–C63 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C4—H4B···Cg10.982.633.597 (2)171
C4—H4A···Cg30.982.643.580 (2)161
C11—H11A···Cg20.992.943.500 (2)117
C13—H13B···Cg30.992.973.950 (2)170
 

Acknowledgements

The authors thank Dr F. Lissner (Institut für Anorganische Chemie, Universität Stuttgart) for measuring the diffraction data.

References

First citationBauer, V. J., Fulmor, W., Morton, G. O. & Safir, S. R. (1968). J. Am. Chem. Soc. 90, 6845–6846.  CrossRef CAS Web of Science Google Scholar
First citationBehrens, U., Hoffmann, F. & Olbrich, F. (2012a). Organometallics, 31, 905–913.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationHooft, R. W. W. (2004). COLLECT. Bruker–Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTiritiris, I. (2013a). Acta Cryst. E69, o337–o338.  CSD CrossRef IUCr Journals Google Scholar
First citationTiritiris, I. (2013b). Acta Cryst. E69, o1040.  CSD CrossRef IUCr Journals Google Scholar
First citationTiritiris, I. & Kantlehner, W. (2008). Z. Kristallogr. 223, 345–346.  CAS Google Scholar
First citationTiritiris, I. & Kantlehner, W. (2012b). Z. Naturforsch. Teil B, 67, 685–698.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds