research communications
The crystal structures of tetrakis(μ-n-butyrato-κ2O:O′)bis[bromidorhenium(III)] and tetrakis(μ-n-butyrato-κ2O:O′)bis[chloridorhenium(III)] acetonitrile disolvate
aDepartment of Chemistry and Biochemistry, The College at Brockport, SUNY, Brockport, NY 14420, USA, and bDepartment of Chemistry, University of Rochester, Rochester, NY 14627, USA
*Correspondence e-mail: creed@brockport.edu
The title complexes, [Re2Br2(O2CC3H7)4], (1), and [Re2(O2CC3H7)4Cl2]·2CH3CN, (2), both exhibit paddlewheel structures with four carboxylate ligands bridging two ReIII atoms. The Re—Re distances are 2.2325 (2) and 2.2299 (3) Å, indicating quadruple bonds between the ReIII atoms in each complex. Both complexes contain an inversion center at the mid-point of the Re—Re bond. The Re—Br bond [2.6712 (3) Å] in (1) is 0.1656 (6) Å longer than the Re—Cl distance [2.5056 (5) Å] of (2). In (2), the N atom of each co-crystallized acetonitrile solvent molecule is nearly equidistant between and in close contact with two carboxylate C atoms.
1. Chemical context
The first compound discovered to contain a metal–metal quadruple bond was K2Re2Cl8·2H2O (Cotton & Harris, 1965); since then numerous other quadruply bonded complexes have been isolated (Cotton et al., 2005). Dirhenium quadruply bonded complexes are of interest due to their ability to act as molecular building blocks for the formation of molecular triangles and other multiple-metal arrays in which electronic coupling and delocalization between metal sites can be explored (Bera, Angaridis et al. 2001; Bera, Smucker et al., 2001; Vega et al., 2002). The title complexes are of the structural type classified as paddlewheel complexes, where the four carboxylate ligands bridge the two metal atoms, creating a paddlewheel appearance. A variety of these dirhenium(III) tetracarboxylate complexes were synthesized by Cotton et al. (1966) and in subsequent years the crystal structures of [Re2Cl2(O2CCH3)4], [Re2Cl2(O2CC6H5)4] (Bennett et al., 1968), [Re2(ReO4)2(O2CC3H7)4] (Calvo et al., 1970), [Re2X2{O2CC(CH3)3}4], where X = Cl or Br (Collins et al., 1979), [Re2Cl2(O2CCH3)4] (Koz'min et al., 1980), and [Re2Cl2(O2CC3H7)4] (Thomson et al., 2014) have been reported. For additional dirhenium tetracarboxylate structures, see: Shtemenko et al. (2001), Cotton et al. (1997), and Vega et al. (2002). This communication reports and compares the structures of [Re2Br2(O2CC3H7)4], (1), and [Re2(O2CC3H7)4Cl2]·2CH3CN, (2).
2. Structural commentary
Both of the title dirhenium metal complexes are located on crystallographic inversion centers that coincide with the midpoint of the Re—Re bonds. The short Re—Re bond lengths of 2.2325 (2) and 2.2299 (3) Å, in (1) and (2), respectively, are indicative of quadruple bonds (Tables 1 and 2). The four butyrate groups bridge the two ReIII metal atoms in both cases, forming the anticipated paddlewheel structures (Figs. 1 and 2).
|
The 2) also contains one co-crystallized acetonitrile solvent molecule in a general position, thus giving rise to twice that in the formula unit.
of (The X—Re—Re—X bonds in (1) and (2) are nearly linear, as can be seen in the Re—Re—Br [175.018 (7)°] and Re—Re—Cl [178.254 (11)°] bond angles, and are comparable to those observed in similar compounds (Collins et al., 1979; Thomson et al., 2014). The Re—Cl bond length [2.5056 (5) Å] of (2) is similar to those of the previously published analog without co-crystallized acetonitrile (Thomson et al., 2014), [Re2Cl2(O2CC(CH3)3)4], and [Re2Cl2(O2CC6H5)4]·2CHCl3 (Bennett et al., 1968; Collins et al., 1979). The Re—Br bond length [2.6712 (3) Å] of (1) is slightly longer than the Re—Br bond [2.603 (1) Å] found in [Re2Br2(O2CC(CH3)3)4] (Collins et al., 1979). The Re—Br and Re—Cl distances of (1) and (2) differ by 0.1656 (6) Å and those of Cotton and coworkers differ by 0.126 (3), both of which are consistent with the difference in covalent radii of Cl and Br (0.15 Å).
The structure of (1) is isotypic with the chlorido analog published by Thomson et al. (2014). Inspection of the torsion angles of the hydrocarbon chains reveals the possible effect of the co-crystallization of solvent in [Re2Cl2(O2CC3H7)4]. In compound (2), the C1—C2—C3—C4 torsion angle is −70.2 (2)°, comparable to −67.9 (2)° for C5—C6—C7—C8 (Fig. 1). In the structure of [Re2Cl2(O2CC3H7)4] without co-crystallizing solvent, the torsion angles vary more [C1—C2—C3—C4 = −55.2 (5) and C5—C6—C7—C8, 179.5 (4)°] (Thomson et al., 2014), similar to those observed in (1) (Table 1).
3. Supramolecular features
Packing arrangements are shown in Figs. 3 and 4. In (2) nitrogen atom N1 of the co-crystallized acetonitrile solvent molecule is located at distances of 3.197 (3) and 3.216 (3) Å from the carboxylate carbon atoms C1 and C5, respectively. This is just within the sum of the van der Waals radii of 3.25 Å (Bondi, 1964), and suggests the presence of a weak electrostatic interaction between the solvent and dirhenium species.
4. Database survey
There are 145 structures in the Cambridge Structural Database to date (CSD, Version 5.36, update No. 3, May 2015; Groom & Allen, 2014) that have explicitly defined Re—Re quadruple bonds. However, this appears to be an inconsistent denotation, as many other structures that contain quadruple bonds are not presented as such. For instance only six of the eleven carboxylate paddlewheel complexes in the CSD (to date) have their Re—Re bonds defined as quadruple. Thus a better way to search appears to be by bond length. There are 298 entries with Re—Re bond lengths ≤ 2.29 Å. The only examples of defined quadruple bonds greater than this (excluding obviously disordered structures) are two dirhenium structures with bridging hydride ligands (CSD refcodes BIBLED and BIBLIH; Green et al., 1982) and two with bridging di-p-tolylformamidine ligands (CSD refcodes KOZFUA and KOZGEL; Cotton & Ren, 1992).
5. Synthesis and crystallization
The title compounds were previously synthesized via microwave irradiation and fully characterized by elemental analysis and UV–Vis and IR spectroscopies (Reed et al., 2015). For crystallization each compound was dissolved in acetonitrile and a few drops of diethyl ether were added to the acetonitrile solution which produced seed crystals. Slow evaporation of the solvent at room temperature in a glovebox produced single crystals suitable for X-ray diffraction.
6. Refinement
Crystal data, data collection and structure . H atoms were placed geometrically and treated as riding atoms: methylene, C—H = 0.99 Å, with Uiso(H) = 1.2Ueq(C) and methyl, C—H = 0.98 Å, with Uiso(H) = 1.5Ueq(C).
details are summarized in Table 3
|
Supporting information
https://doi.org/10.1107/S2056989015020563/pj2025sup1.cif
contains datablocks 1, 2, global. DOI:Structure factors: contains datablock 1. DOI: https://doi.org/10.1107/S2056989015020563/pj20251sup2.hkl
Structure factors: contains datablock 2. DOI: https://doi.org/10.1107/S2056989015020563/pj20252sup3.hkl
For both compounds, data collection: APEX2 (Bruker, 2014); cell
SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SIR2011 (Burla et al., 2012); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Re2Br2(C4H7O2)4] | F(000) = 816 |
Mr = 880.60 | Dx = 2.480 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 6.6833 (5) Å | Cell parameters from 3849 reflections |
b = 12.2817 (10) Å | θ = 3.3–38.2° |
c = 14.6134 (12) Å | µ = 13.68 mm−1 |
β = 100.5380 (16)° | T = 100 K |
V = 1179.27 (16) Å3 | Needle, orange |
Z = 2 | 0.36 × 0.16 × 0.12 mm |
Bruker SMART APEXII CCD platform diffractometer | 5503 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.039 |
ω scans | θmax = 38.5°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2014) | h = −11→11 |
Tmin = 0.161, Tmax = 0.440 | k = −21→21 |
43018 measured reflections | l = −25→25 |
6464 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.021 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.047 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0202P)2 + 0.9723P] where P = (Fo2 + 2Fc2)/3 |
6464 reflections | (Δ/σ)max = 0.001 |
129 parameters | Δρmax = 2.11 e Å−3 |
0 restraints | Δρmin = −1.56 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Re1 | 0.41766 (2) | 0.44073 (2) | 0.53764 (2) | 0.00983 (2) | |
Br1 | 0.19163 (3) | 0.30257 (2) | 0.61673 (2) | 0.01786 (4) | |
O1 | 0.5665 (2) | 0.31578 (12) | 0.48971 (10) | 0.0133 (2) | |
O2 | 0.7293 (2) | 0.43464 (12) | 0.41390 (10) | 0.0128 (2) | |
O3 | 0.1966 (2) | 0.43002 (12) | 0.42259 (10) | 0.0130 (2) | |
O4 | 0.3633 (2) | 0.54841 (12) | 0.34843 (10) | 0.0131 (2) | |
C1 | 0.6954 (3) | 0.33636 (16) | 0.43620 (13) | 0.0122 (3) | |
C2 | 0.8048 (3) | 0.24669 (16) | 0.39774 (14) | 0.0146 (3) | |
H2A | 0.9528 | 0.2611 | 0.4142 | 0.018* | |
H2B | 0.7672 | 0.2486 | 0.3290 | 0.018* | |
C3 | 0.7644 (4) | 0.13262 (17) | 0.43061 (16) | 0.0182 (4) | |
H3A | 0.6184 | 0.1147 | 0.4112 | 0.022* | |
H3B | 0.7982 | 0.1293 | 0.4994 | 0.022* | |
C4 | 0.8936 (4) | 0.05015 (19) | 0.38890 (18) | 0.0239 (5) | |
H4A | 0.8633 | −0.0234 | 0.4084 | 0.036* | |
H4B | 1.0381 | 0.0661 | 0.4107 | 0.036* | |
H4C | 0.8622 | 0.0549 | 0.3208 | 0.036* | |
C5 | 0.2113 (3) | 0.48493 (16) | 0.34960 (13) | 0.0124 (3) | |
C6 | 0.0567 (3) | 0.47160 (19) | 0.26301 (14) | 0.0165 (4) | |
H6A | 0.0077 | 0.5441 | 0.2391 | 0.020* | |
H6B | −0.0611 | 0.4302 | 0.2771 | 0.020* | |
C7 | 0.1485 (4) | 0.4111 (2) | 0.18869 (17) | 0.0251 (5) | |
H7A | 0.0414 | 0.3999 | 0.1330 | 0.030* | |
H7B | 0.2565 | 0.4566 | 0.1701 | 0.030* | |
C8 | 0.2376 (4) | 0.3019 (3) | 0.2226 (2) | 0.0373 (7) | |
H8A | 0.2849 | 0.2640 | 0.1715 | 0.056* | |
H8B | 0.1331 | 0.2579 | 0.2443 | 0.056* | |
H8C | 0.3524 | 0.3130 | 0.2740 | 0.056* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Re1 | 0.01032 (3) | 0.01015 (3) | 0.00965 (3) | −0.00067 (2) | 0.00351 (2) | −0.00002 (2) |
Br1 | 0.01861 (9) | 0.01864 (9) | 0.01763 (9) | −0.00465 (7) | 0.00674 (7) | 0.00246 (7) |
O1 | 0.0140 (6) | 0.0128 (6) | 0.0137 (6) | 0.0002 (5) | 0.0045 (5) | −0.0012 (5) |
O2 | 0.0124 (6) | 0.0132 (6) | 0.0139 (6) | 0.0008 (5) | 0.0050 (5) | −0.0011 (5) |
O3 | 0.0125 (6) | 0.0153 (6) | 0.0115 (6) | −0.0009 (5) | 0.0029 (4) | −0.0002 (5) |
O4 | 0.0140 (6) | 0.0141 (6) | 0.0115 (6) | −0.0006 (5) | 0.0028 (5) | 0.0014 (5) |
C1 | 0.0113 (7) | 0.0139 (8) | 0.0112 (7) | 0.0004 (6) | 0.0018 (6) | −0.0007 (6) |
C2 | 0.0143 (8) | 0.0129 (8) | 0.0174 (8) | 0.0029 (6) | 0.0049 (7) | −0.0030 (6) |
C3 | 0.0219 (10) | 0.0139 (8) | 0.0198 (9) | 0.0030 (7) | 0.0060 (7) | −0.0017 (7) |
C4 | 0.0274 (12) | 0.0185 (10) | 0.0258 (11) | 0.0081 (8) | 0.0048 (9) | −0.0023 (8) |
C5 | 0.0122 (8) | 0.0126 (8) | 0.0125 (7) | 0.0002 (6) | 0.0030 (6) | −0.0020 (6) |
C6 | 0.0162 (9) | 0.0210 (9) | 0.0114 (8) | −0.0008 (7) | 0.0002 (6) | −0.0004 (7) |
C7 | 0.0222 (11) | 0.0361 (13) | 0.0183 (9) | −0.0110 (10) | 0.0068 (8) | −0.0097 (9) |
C8 | 0.0262 (13) | 0.0418 (17) | 0.0430 (16) | 0.0033 (12) | 0.0035 (11) | −0.0264 (13) |
Re1—O4i | 2.0102 (15) | C3—C4 | 1.528 (3) |
Re1—O2i | 2.0159 (14) | C3—H3A | 0.9900 |
Re1—O1 | 2.0225 (15) | C3—H3B | 0.9900 |
Re1—O3 | 2.0295 (14) | C4—H4A | 0.9800 |
Re1—Re1i | 2.2325 (2) | C4—H4B | 0.9800 |
Re1—Br1 | 2.6712 (3) | C4—H4C | 0.9800 |
O1—C1 | 1.290 (2) | C5—C6 | 1.489 (3) |
O2—C1 | 1.281 (2) | C6—C7 | 1.533 (3) |
O2—Re1i | 2.0159 (14) | C6—H6A | 0.9900 |
O3—C5 | 1.281 (2) | C6—H6B | 0.9900 |
O4—C5 | 1.283 (2) | C7—C8 | 1.514 (4) |
O4—Re1i | 2.0102 (14) | C7—H7A | 0.9900 |
C1—C2 | 1.488 (3) | C7—H7B | 0.9900 |
C2—C3 | 1.521 (3) | C8—H8A | 0.9800 |
C2—H2A | 0.9900 | C8—H8B | 0.9800 |
C2—H2B | 0.9900 | C8—H8C | 0.9800 |
O4i—Re1—O2i | 89.22 (6) | C2—C3—H3B | 109.7 |
O4i—Re1—O1 | 90.42 (6) | C4—C3—H3B | 109.7 |
O2i—Re1—O1 | 179.64 (6) | H3A—C3—H3B | 108.2 |
O4i—Re1—O3 | 179.91 (6) | C3—C4—H4A | 109.5 |
O2i—Re1—O3 | 90.72 (6) | C3—C4—H4B | 109.5 |
O1—Re1—O3 | 89.64 (6) | H4A—C4—H4B | 109.5 |
O4i—Re1—Re1i | 90.86 (4) | C3—C4—H4C | 109.5 |
O2i—Re1—Re1i | 89.64 (4) | H4A—C4—H4C | 109.5 |
O1—Re1—Re1i | 90.35 (4) | H4B—C4—H4C | 109.5 |
O3—Re1—Re1i | 89.08 (4) | O3—C5—O4 | 120.85 (18) |
O4i—Re1—Br1 | 93.87 (4) | O3—C5—C6 | 120.16 (18) |
O2i—Re1—Br1 | 88.85 (4) | O4—C5—C6 | 118.92 (18) |
O1—Re1—Br1 | 91.19 (4) | C5—C6—C7 | 110.48 (19) |
O3—Re1—Br1 | 86.19 (4) | C5—C6—H6A | 109.6 |
Re1i—Re1—Br1 | 175.018 (7) | C7—C6—H6A | 109.6 |
C1—O1—Re1 | 119.12 (13) | C5—C6—H6B | 109.6 |
C1—O2—Re1i | 120.39 (13) | C7—C6—H6B | 109.6 |
C5—O3—Re1 | 120.03 (13) | H6A—C6—H6B | 108.1 |
C5—O4—Re1i | 119.18 (13) | C8—C7—C6 | 112.4 (2) |
O2—C1—O1 | 120.51 (18) | C8—C7—H7A | 109.1 |
O2—C1—C2 | 118.63 (18) | C6—C7—H7A | 109.1 |
O1—C1—C2 | 120.85 (18) | C8—C7—H7B | 109.1 |
C1—C2—C3 | 115.75 (18) | C6—C7—H7B | 109.1 |
C1—C2—H2A | 108.3 | H7A—C7—H7B | 107.8 |
C3—C2—H2A | 108.3 | C7—C8—H8A | 109.5 |
C1—C2—H2B | 108.3 | C7—C8—H8B | 109.5 |
C3—C2—H2B | 108.3 | H8A—C8—H8B | 109.5 |
H2A—C2—H2B | 107.4 | C7—C8—H8C | 109.5 |
C2—C3—C4 | 109.79 (19) | H8A—C8—H8C | 109.5 |
C2—C3—H3A | 109.7 | H8B—C8—H8C | 109.5 |
C4—C3—H3A | 109.7 | ||
Re1i—O2—C1—O1 | 0.2 (2) | Re1—O3—C5—O4 | −1.1 (3) |
Re1i—O2—C1—C2 | 179.10 (13) | Re1—O3—C5—C6 | 175.86 (14) |
Re1—O1—C1—O2 | 0.2 (2) | Re1i—O4—C5—O3 | 1.0 (3) |
Re1—O1—C1—C2 | −178.66 (14) | Re1i—O4—C5—C6 | −175.98 (14) |
O2—C1—C2—C3 | 177.34 (18) | O3—C5—C6—C7 | −108.8 (2) |
O1—C1—C2—C3 | −3.7 (3) | O4—C5—C6—C7 | 68.2 (3) |
C1—C2—C3—C4 | −177.54 (19) | C5—C6—C7—C8 | 56.0 (3) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
[Re2(C4H7O2)4Cl2]·2C2H3N | F(000) = 832 |
Mr = 873.79 | Dx = 2.051 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 8.5589 (13) Å | Cell parameters from 3912 reflections |
b = 17.097 (3) Å | θ = 2.4–38.3° |
c = 10.0494 (15) Å | µ = 8.78 mm−1 |
β = 105.830 (3)° | T = 100 K |
V = 1414.8 (4) Å3 | Plate, orange |
Z = 2 | 0.36 × 0.34 × 0.12 mm |
Bruker SMART APEXII CCD platform diffractometer | 6874 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.038 |
ω scans | θmax = 38.5°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2014) | h = −14→14 |
Tmin = 0.187, Tmax = 0.440 | k = −29→29 |
51215 measured reflections | l = −17→17 |
7730 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.021 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.040 | H-atom parameters constrained |
S = 1.15 | w = 1/[σ2(Fo2) + (0.0071P)2 + 1.4405P] where P = (Fo2 + 2Fc2)/3 |
7730 reflections | (Δ/σ)max = 0.002 |
157 parameters | Δρmax = 1.42 e Å−3 |
0 restraints | Δρmin = −1.61 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Re1 | 0.03406 (2) | 0.02939 (2) | 0.41289 (2) | 0.00845 (2) | |
Cl1 | 0.11816 (5) | 0.09708 (2) | 0.22230 (4) | 0.01465 (7) | |
O1 | 0.11825 (15) | 0.12189 (7) | 0.53706 (12) | 0.0114 (2) | |
O2 | 0.05072 (15) | 0.06310 (7) | 0.71113 (12) | 0.0116 (2) | |
O3 | 0.18769 (15) | −0.08019 (7) | 0.64715 (13) | 0.0119 (2) | |
O4 | 0.25576 (15) | −0.02169 (7) | 0.47284 (13) | 0.0125 (2) | |
C1 | 0.1121 (2) | 0.12144 (9) | 0.66290 (17) | 0.0110 (3) | |
C2 | 0.1786 (2) | 0.18996 (10) | 0.75268 (19) | 0.0155 (3) | |
H2A | 0.1391 | 0.2384 | 0.7004 | 0.019* | |
H2B | 0.2984 | 0.1894 | 0.7726 | 0.019* | |
C3 | 0.1342 (3) | 0.19286 (11) | 0.88930 (19) | 0.0190 (3) | |
H3A | 0.1606 | 0.1419 | 0.9367 | 0.023* | |
H3B | 0.2011 | 0.2333 | 0.9491 | 0.023* | |
C4 | −0.0440 (3) | 0.21089 (13) | 0.8716 (3) | 0.0272 (4) | |
H4A | −0.0650 | 0.2134 | 0.9626 | 0.041* | |
H4B | −0.1109 | 0.1697 | 0.8162 | 0.041* | |
H4C | −0.0711 | 0.2613 | 0.8244 | 0.041* | |
C5 | 0.2915 (2) | −0.06622 (10) | 0.57910 (18) | 0.0128 (3) | |
C6 | 0.4563 (2) | −0.10219 (12) | 0.6230 (2) | 0.0185 (3) | |
H6A | 0.4641 | −0.1352 | 0.7055 | 0.022* | |
H6B | 0.5385 | −0.0602 | 0.6497 | 0.022* | |
C7 | 0.4947 (2) | −0.15213 (12) | 0.5097 (2) | 0.0226 (4) | |
H7A | 0.4768 | −0.1204 | 0.4245 | 0.027* | |
H7B | 0.6109 | −0.1670 | 0.5391 | 0.027* | |
C8 | 0.3925 (3) | −0.22572 (15) | 0.4773 (3) | 0.0392 (6) | |
H8A | 0.4236 | −0.2555 | 0.4053 | 0.059* | |
H8B | 0.2775 | −0.2114 | 0.4447 | 0.059* | |
H8C | 0.4104 | −0.2577 | 0.5610 | 0.059* | |
N1 | 0.4670 (3) | 0.05726 (13) | 0.8138 (2) | 0.0299 (4) | |
C9 | 0.5906 (3) | 0.05264 (13) | 0.8933 (2) | 0.0221 (4) | |
C10 | 0.7485 (3) | 0.04674 (14) | 0.9950 (2) | 0.0255 (4) | |
H10A | 0.7727 | 0.0959 | 1.0466 | 0.038* | |
H10B | 0.8324 | 0.0365 | 0.9475 | 0.038* | |
H10C | 0.7465 | 0.0038 | 1.0591 | 0.038* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Re1 | 0.00949 (2) | 0.00778 (2) | 0.00844 (2) | −0.00046 (2) | 0.00305 (2) | 0.00032 (2) |
Cl1 | 0.01616 (16) | 0.01644 (16) | 0.01207 (15) | −0.00189 (13) | 0.00506 (13) | 0.00287 (13) |
O1 | 0.0142 (5) | 0.0097 (5) | 0.0105 (5) | −0.0014 (4) | 0.0037 (4) | −0.0004 (4) |
O2 | 0.0149 (5) | 0.0103 (5) | 0.0097 (5) | −0.0016 (4) | 0.0035 (4) | −0.0003 (4) |
O3 | 0.0118 (5) | 0.0115 (5) | 0.0122 (5) | 0.0009 (4) | 0.0032 (4) | 0.0012 (4) |
O4 | 0.0112 (5) | 0.0129 (5) | 0.0140 (5) | 0.0013 (4) | 0.0048 (4) | 0.0016 (4) |
C1 | 0.0118 (6) | 0.0094 (6) | 0.0117 (6) | −0.0007 (5) | 0.0031 (5) | −0.0006 (5) |
C2 | 0.0198 (8) | 0.0115 (6) | 0.0151 (7) | −0.0042 (6) | 0.0049 (6) | −0.0036 (6) |
C3 | 0.0290 (9) | 0.0148 (7) | 0.0136 (7) | −0.0054 (7) | 0.0067 (7) | −0.0046 (6) |
C4 | 0.0316 (11) | 0.0234 (9) | 0.0325 (11) | −0.0057 (8) | 0.0185 (9) | −0.0097 (8) |
C5 | 0.0118 (6) | 0.0123 (6) | 0.0136 (7) | 0.0008 (5) | 0.0022 (5) | 0.0002 (5) |
C6 | 0.0114 (7) | 0.0213 (8) | 0.0217 (8) | 0.0047 (6) | 0.0027 (6) | 0.0018 (7) |
C7 | 0.0172 (8) | 0.0225 (9) | 0.0296 (10) | 0.0056 (7) | 0.0092 (7) | 0.0004 (8) |
C8 | 0.0315 (12) | 0.0256 (11) | 0.0572 (18) | 0.0014 (9) | 0.0066 (12) | −0.0116 (11) |
N1 | 0.0290 (10) | 0.0304 (10) | 0.0270 (9) | 0.0018 (8) | 0.0018 (8) | 0.0006 (8) |
C9 | 0.0257 (9) | 0.0199 (8) | 0.0200 (8) | −0.0010 (7) | 0.0050 (7) | 0.0002 (7) |
C10 | 0.0235 (9) | 0.0288 (10) | 0.0210 (9) | −0.0006 (8) | 0.0005 (8) | 0.0001 (8) |
Re1—O1 | 2.0216 (12) | C4—H4A | 0.9800 |
Re1—O2i | 2.0217 (12) | C4—H4B | 0.9800 |
Re1—O3i | 2.0238 (12) | C4—H4C | 0.9800 |
Re1—O4 | 2.0255 (12) | C5—C6 | 1.490 (2) |
Re1—Re1i | 2.2299 (3) | C6—C7 | 1.529 (3) |
Re1—Cl1 | 2.5056 (5) | C6—H6A | 0.9900 |
O1—C1 | 1.280 (2) | C6—H6B | 0.9900 |
O2—C1 | 1.282 (2) | C7—C8 | 1.516 (3) |
O2—Re1i | 2.0217 (12) | C7—H7A | 0.9900 |
O3—C5 | 1.283 (2) | C7—H7B | 0.9900 |
O3—Re1i | 2.0238 (12) | C8—H8A | 0.9800 |
O4—C5 | 1.279 (2) | C8—H8B | 0.9800 |
C1—C2 | 1.493 (2) | C8—H8C | 0.9800 |
C2—C3 | 1.522 (3) | N1—C9 | 1.141 (3) |
C2—H2A | 0.9900 | C9—C10 | 1.459 (3) |
C2—H2B | 0.9900 | C10—H10A | 0.9800 |
C3—C4 | 1.518 (3) | C10—H10B | 0.9800 |
C3—H3A | 0.9900 | C10—H10C | 0.9800 |
C3—H3B | 0.9900 | ||
O1—Re1—O2i | 179.84 (5) | C3—C4—H4A | 109.5 |
O1—Re1—O3i | 89.75 (5) | C3—C4—H4B | 109.5 |
O2i—Re1—O3i | 90.13 (5) | H4A—C4—H4B | 109.5 |
O1—Re1—O4 | 90.37 (5) | C3—C4—H4C | 109.5 |
O2i—Re1—O4 | 89.75 (5) | H4A—C4—H4C | 109.5 |
O3i—Re1—O4 | 179.87 (5) | H4B—C4—H4C | 109.5 |
O1—Re1—Re1i | 89.63 (4) | O4—C5—O3 | 120.86 (15) |
O2i—Re1—Re1i | 90.27 (4) | O4—C5—C6 | 118.98 (16) |
O3i—Re1—Re1i | 90.15 (4) | O3—C5—C6 | 120.16 (16) |
O4—Re1—Re1i | 89.80 (4) | C5—C6—C7 | 112.87 (16) |
O1—Re1—Cl1 | 88.98 (4) | C5—C6—H6A | 109.0 |
O2i—Re1—Cl1 | 91.13 (4) | C7—C6—H6A | 109.0 |
O3i—Re1—Cl1 | 90.89 (4) | C5—C6—H6B | 109.0 |
O4—Re1—Cl1 | 89.16 (4) | C7—C6—H6B | 109.0 |
Re1i—Re1—Cl1 | 178.254 (11) | H6A—C6—H6B | 107.8 |
C1—O1—Re1 | 120.09 (10) | C8—C7—C6 | 113.24 (19) |
C1—O2—Re1i | 119.38 (11) | C8—C7—H7A | 108.9 |
C5—O3—Re1i | 119.40 (11) | C6—C7—H7A | 108.9 |
C5—O4—Re1 | 119.78 (11) | C8—C7—H7B | 108.9 |
O1—C1—O2 | 120.63 (15) | C6—C7—H7B | 108.9 |
O1—C1—C2 | 118.72 (15) | H7A—C7—H7B | 107.7 |
O2—C1—C2 | 120.64 (15) | C7—C8—H8A | 109.5 |
C1—C2—C3 | 115.01 (15) | C7—C8—H8B | 109.5 |
C1—C2—H2A | 108.5 | H8A—C8—H8B | 109.5 |
C3—C2—H2A | 108.5 | C7—C8—H8C | 109.5 |
C1—C2—H2B | 108.5 | H8A—C8—H8C | 109.5 |
C3—C2—H2B | 108.5 | H8B—C8—H8C | 109.5 |
H2A—C2—H2B | 107.5 | N1—C9—C10 | 180.0 (3) |
C4—C3—C2 | 113.00 (17) | C9—C10—H10A | 109.5 |
C4—C3—H3A | 109.0 | C9—C10—H10B | 109.5 |
C2—C3—H3A | 109.0 | H10A—C10—H10B | 109.5 |
C4—C3—H3B | 109.0 | C9—C10—H10C | 109.5 |
C2—C3—H3B | 109.0 | H10A—C10—H10C | 109.5 |
H3A—C3—H3B | 107.8 | H10B—C10—H10C | 109.5 |
Re1—O1—C1—O2 | −1.0 (2) | Re1—O4—C5—O3 | 1.2 (2) |
Re1—O1—C1—C2 | 178.70 (12) | Re1—O4—C5—C6 | −178.97 (12) |
Re1i—O2—C1—O1 | 0.8 (2) | Re1i—O3—C5—O4 | −1.1 (2) |
Re1i—O2—C1—C2 | −178.84 (12) | Re1i—O3—C5—C6 | 179.11 (12) |
O1—C1—C2—C3 | 167.38 (16) | O4—C5—C6—C7 | −58.1 (2) |
O2—C1—C2—C3 | −12.9 (2) | O3—C5—C6—C7 | 121.71 (19) |
C1—C2—C3—C4 | −70.2 (2) | C5—C6—C7—C8 | −67.9 (2) |
Symmetry code: (i) −x, −y, −z+1. |
Acknowledgements
The authors thank The College at Brockport, SUNY, and the University of Rochester Chemistry Department for financial support as well as Marcy A. Merritt and Callen Feeney who contributed to the initial preparation of the compounds.
References
Bennett, M. J., Bratton, W. K., Cotton, F. A. & Robinson, W. R. (1968). Inorg. Chem. 7, 1570–1575. CSD CrossRef CAS Web of Science Google Scholar
Bera, J. K., Angaridis, P., Cotton, F. A., Petrukhina, M. A., Fanwick, P. E. & Walton, R. A. (2001). J. Am. Chem. Soc. 123, 1515–1516. Web of Science CSD CrossRef CAS Google Scholar
Bera, J. K., Smucker, B. W., Walton, R. A. & Dunbar, K. R. (2001). Chem. Commun. pp. 2562–2563. Web of Science CSD CrossRef Google Scholar
Bondi, A. (1964). J. Phys. Chem. 68, 441–451. CrossRef CAS Web of Science Google Scholar
Bruker (2014). APEX2 and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA. Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357–361. Web of Science CrossRef CAS IUCr Journals Google Scholar
Calvo, C., Jayadevan, N. C., Lock, C. J. L. & Restivo, R. (1970). Can. J. Chem. 48, 219–224. CrossRef CAS Web of Science Google Scholar
Collins, D. M., Cotton, F. A. & Gage, L. D. (1979). Inorg. Chem. 18, 1712–1715. CSD CrossRef CAS Web of Science Google Scholar
Cotton, F. A., Daniels, L. M., Lu, J. & Ren, T. (1997). Acta Cryst. C53, 714–716. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Cotton, F. A. & Harris, C. B. (1965). Inorg. Chem. 4, 330–333. CrossRef CAS Web of Science Google Scholar
Cotton, F. A., Murillo, C. A. & Walton, R. A. (2005). Multiple Bonds Between Metal Atoms, 3rd ed. New York: Springer Science and Business Media Inc. Google Scholar
Cotton, F. A., Oldham, C. & Robinson, W. R. (1966). Inorg. Chem. 5, 1798–1802. CrossRef CAS Web of Science Google Scholar
Cotton, F. A. & Ren, T. (1992). J. Am. Chem. Soc. 114, 2495–2502. CSD CrossRef CAS Web of Science Google Scholar
Green, M. A., Huffman, J. C. & Caulton, K. G. (1982). J. Am. Chem. Soc. 104, 2319–2320. CSD CrossRef CAS Web of Science Google Scholar
Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. Web of Science CSD CrossRef CAS Google Scholar
Koz'min, P. A., Surazhskaya, M. D., Larina, T. B., Kotel'nikova, A. S. & Misailova, T. V. (1980). Koord. Khim. 6, 1256–1258. CAS Google Scholar
Reed, C. R., Feeney, C. & Merritt, M. A. (2015). J. Coord. Chem. 68, 3449–3456. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2014). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shtemenko, A. V., Golichenko, A. A. & Domasevitch, K. V. (2001). Z. Naturforsch. Teil B, 56, 381–385. CAS Google Scholar
Thomson, M. P., O'Rourke, N. F., Wang, R. & Aquino, M. A. S. (2014). Acta Cryst. E70, m349–m350. CSD CrossRef IUCr Journals Google Scholar
Vega, A., Calvo, V., Manzur, J., Spodine, E. & Saillard, J.-Y. (2002). Inorg. Chem. 41, 5382–5387. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.