organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 1-(2,4-di­nitro­phen­yl)-3,5-di­phenyl-1H-pyrazole

aChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, bChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, eKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq, and fNational Organization for Drug Control and Research, Giza, Egypt
*Correspondence e-mail: shaabankamel@yahoo.com

Edited by P. McArdle, National University of Ireland, Ireland (Received 10 November 2015; accepted 10 November 2015; online 14 November 2015)

In the title mol­ecule, C21H14N4O4, the phenyl rings make dihedral angles of 39.61 (8) and 9.4 (1)°, respectively, with the central pyrazole ring. The dihedral angle between the pyrazole and di­nitro­phenyl rings is 46.95 (5)°. In the crystal, mol­ecules pack in helical stacks parallel to the a axis aided by weak C—H⋯O inter­actions.

1. Related literature

For the synthesis and pharmaceutical activities of pyrazole-containing compounds, see: Szabó et al. (2008[Szabó, G., Fischer, J., Kis-Varga, Á. & Gyires, K. (2008). J. Med. Chem. 51, 142-147.]); Tanitame et al. (2005[Tanitame, A., Oyamada, Y., Ofuji, K., Terauchi, H., Kawasaki, M., Wachi, M. & Yamagishi, J. (2005). Bioorg. Med. Chem. Lett. 15, 4299-4303.]); Cottineau et al. (2002[Cottineau, B., Toto, P., Marot, C., Pipaud, A. & Chenault, J. (2002). Bioorg. Med. Chem. Lett. 12, 2105-2108.]); Mokhtar & El-Khawass (1988[Mokhtar, H. M. & El-Khawass, S. M. (1988). Jnl Chin. Chem. Soc. 35, 57-62.]); Rida et al. (2009[Rida, S. M., Saudi, M. N. S., Youssef, A. M. & Halim, M. A. (2009). Lett. Org. Chem. 6, 282-288.]); Abadi et al. (2003[Abadi, A. H., Eissa, A. A. H. & Hassan, E. (2003). Chem. Pharm. Bull. 51, 838-844.]); Sharma et al. (2014[Sharma, V., Sharma, V., Kumar, V. & Kumar, V. (2014). Pak. J. Pharm. Sci. 27, 1851-1855.]); Mykhailiuk (2015[Mykhailiuk, P. K. (2015). Beilstein J. Org. Chem. 11, 16-24.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C21H14N4O4

  • Mr = 386.36

  • Orthorhombic, P 21 21 21

  • a = 7.2170 (5) Å

  • b = 12.9467 (10) Å

  • c = 19.3006 (14) Å

  • V = 1803.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 150 K

  • 0.18 × 0.18 × 0.17 mm

2.2. Data collection

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2015[Bruker (2015). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.78, Tmax = 0.98

  • 17283 measured reflections

  • 4635 independent reflections

  • 3401 reflections with I > 2σ(I)

  • Rint = 0.045

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.096

  • S = 1.03

  • 4635 reflections

  • 262 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.17 e Å−3

  • Absolute structure: Flack x determined using 1193 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])

  • Absolute structure parameter: −0.3 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C21—H21⋯O1i 0.95 2.48 3.366 (3) 156
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2015[Bruker (2015). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2015[Bruker (2015). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The heterocyclic pyrazole scaffold compounds demonstrate a remarkable wide range of pharmacological activities such as anti-inflammatory (Szabó et al., 2008), anti-bacterial, antifungal (Tanitame et al., 2005), hypoglycemic (Cottineau et al., 2002; Mokhtar & El-Khawass, 1988), inhibition of cyclooxigenase-2 (Rida et al., 2009) and anti-angiogenic (Abadi et al., 2003). Different pyrazole derivatives have also shown anti-proliferative and antitumor activities (Sharma et al., 2014). More recently, the pyrazole ring system represents an advantageous choice for the synthesis of pharmaceutical compounds with different activities and good safety profiles (Mykhailiuk, 2015). In this context and following our on-going study of the synthesis of bio-active heterocyclic molecules we report in this study the synthesis and crystal structure of the title compound.

In the title compound (Fig. 1), the phenyl rings C4—C9 and C10—C15 make dihedral angles of 39.61 (8) and 9.4 (1)°, respectively, with the central pyrazole ring. The dihedral angle between the pyrazole and dinitrophenyl rings is 46.95 (5)°. The molecules form helical stacks running parallel to the a axis assisted by weak, intermolecular C21—H21···O1i (i: x + 1/2, -y + 1/2, -z + 1) interactions (Figs. 2 and 3 and Table 1).

Related literature top

For the synthesis and pharmaceutical activities of pyrazole-containing compounds, see: Szabó et al. (2008); Tanitame et al. (2005); Cottineau et al. (2002); Mokhtar & El-Khawass (1988); Rida et al. (2009); Abadi et al. (2003); Sharma et al. (2014); Mykhailiuk (2015).

Experimental top

An equimolar mixture of 1,3-diphenylpropane-1,3-dione (1 mmol, 224 mg) and (3,5-dinitrophenyl)hydrazine (1 mmol, 198 mg) was refluxed in 20 ml e thanol for 6–7 h. The mixture was cooled and the excess solvent was removed. The precipitate was collected and recrystallized from ethanol (m.p 421–423 K).

Refinement top

H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 Å). All were included as riding contributions with isotropic displacement parameters 1.2 times those of the attached atoms. The absolute structure could not be determined.

Structure description top

The heterocyclic pyrazole scaffold compounds demonstrate a remarkable wide range of pharmacological activities such as anti-inflammatory (Szabó et al., 2008), anti-bacterial, antifungal (Tanitame et al., 2005), hypoglycemic (Cottineau et al., 2002; Mokhtar & El-Khawass, 1988), inhibition of cyclooxigenase-2 (Rida et al., 2009) and anti-angiogenic (Abadi et al., 2003). Different pyrazole derivatives have also shown anti-proliferative and antitumor activities (Sharma et al., 2014). More recently, the pyrazole ring system represents an advantageous choice for the synthesis of pharmaceutical compounds with different activities and good safety profiles (Mykhailiuk, 2015). In this context and following our on-going study of the synthesis of bio-active heterocyclic molecules we report in this study the synthesis and crystal structure of the title compound.

In the title compound (Fig. 1), the phenyl rings C4—C9 and C10—C15 make dihedral angles of 39.61 (8) and 9.4 (1)°, respectively, with the central pyrazole ring. The dihedral angle between the pyrazole and dinitrophenyl rings is 46.95 (5)°. The molecules form helical stacks running parallel to the a axis assisted by weak, intermolecular C21—H21···O1i (i: x + 1/2, -y + 1/2, -z + 1) interactions (Figs. 2 and 3 and Table 1).

For the synthesis and pharmaceutical activities of pyrazole-containing compounds, see: Szabó et al. (2008); Tanitame et al. (2005); Cottineau et al. (2002); Mokhtar & El-Khawass (1988); Rida et al. (2009); Abadi et al. (2003); Sharma et al. (2014); Mykhailiuk (2015).

Computing details top

Data collection: APEX2 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title molecule with the labeling scheme and 50% probability ellipsoids.
[Figure 2] Fig. 2. Packing viewed down the a axis with weak C—H···O interactions depicted as dotted lines.
[Figure 3] Fig. 3. Packing viewed down the b axis with weak C—H···O interactions depicted as dotted lines.
1-(2,4-Dinitrophenyl)-3,5-diphenyl-1H-pyrazole top
Crystal data top
C21H14N4O4Dx = 1.423 Mg m3
Mr = 386.36Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 4944 reflections
a = 7.2170 (5) Åθ = 2.6–24.1°
b = 12.9467 (10) ŵ = 0.10 mm1
c = 19.3006 (14) ÅT = 150 K
V = 1803.4 (2) Å3Block, yellow-orange
Z = 40.18 × 0.18 × 0.17 mm
F(000) = 800
Data collection top
Bruker SMART APEX CCD
diffractometer
4635 independent reflections
Radiation source: fine-focus sealed tube3401 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
Detector resolution: 8.3333 pixels mm-1θmax = 29.1°, θmin = 1.9°
φ and ω scansh = 99
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
k = 1716
Tmin = 0.78, Tmax = 0.98l = 2626
17283 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0375P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
4635 reflectionsΔρmax = 0.21 e Å3
262 parametersΔρmin = 0.17 e Å3
0 restraintsAbsolute structure: Flack x determined using 1193 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.3 (8)
Crystal data top
C21H14N4O4V = 1803.4 (2) Å3
Mr = 386.36Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.2170 (5) ŵ = 0.10 mm1
b = 12.9467 (10) ÅT = 150 K
c = 19.3006 (14) Å0.18 × 0.18 × 0.17 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
4635 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
3401 reflections with I > 2σ(I)
Tmin = 0.78, Tmax = 0.98Rint = 0.045
17283 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.096Δρmax = 0.21 e Å3
S = 1.03Δρmin = 0.17 e Å3
4635 reflectionsAbsolute structure: Flack x determined using 1193 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
262 parametersAbsolute structure parameter: 0.3 (8)
0 restraints
Special details top

Experimental. The diffraction data were collected in three sets of 363 frames (0.5° width in ω) at φ = 0, 120 and 240°. A scan time of 40 sec/frame was used.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 Å). All were included as riding contributions with isotropic displacement parameters 1.2 times those of the attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0335 (2)0.48865 (13)0.50537 (9)0.0369 (4)
O20.1081 (3)0.56459 (13)0.40944 (10)0.0466 (5)
O30.1707 (3)0.33782 (17)0.21292 (9)0.0617 (6)
O40.2274 (3)0.17545 (18)0.22859 (9)0.0625 (6)
N10.2445 (3)0.26495 (13)0.58248 (9)0.0280 (4)
N20.3024 (2)0.33719 (12)0.53522 (9)0.0261 (4)
N30.1040 (2)0.48950 (14)0.44764 (10)0.0319 (4)
N40.2043 (3)0.2633 (2)0.24971 (11)0.0464 (6)
C10.3782 (3)0.42265 (15)0.56610 (11)0.0268 (5)
C20.3640 (3)0.40575 (17)0.63603 (11)0.0284 (5)
H20.40210.45110.67200.034*
C30.2814 (3)0.30750 (17)0.64398 (11)0.0279 (5)
C40.4636 (3)0.50690 (16)0.52632 (11)0.0260 (5)
C50.5697 (3)0.48621 (18)0.46740 (12)0.0305 (5)
H50.59170.41670.45390.037*
C60.6430 (3)0.56641 (17)0.42857 (12)0.0334 (5)
H60.71230.55190.38790.040*
C70.6152 (3)0.66760 (18)0.44903 (13)0.0377 (6)
H70.66390.72260.42200.045*
C80.5167 (4)0.68884 (19)0.50876 (13)0.0379 (6)
H80.50100.75830.52350.045*
C90.4406 (3)0.60891 (17)0.54720 (12)0.0338 (5)
H90.37230.62390.58810.041*
C100.2384 (3)0.24957 (17)0.70755 (11)0.0297 (5)
C110.2507 (3)0.29519 (19)0.77262 (12)0.0377 (6)
H110.28660.36560.77640.045*
C120.2113 (4)0.2394 (2)0.83180 (13)0.0456 (7)
H120.22200.27150.87590.055*
C130.1569 (4)0.1382 (2)0.82749 (13)0.0459 (7)
H130.12950.10040.86840.055*
C140.1421 (4)0.0917 (2)0.76378 (14)0.0491 (7)
H140.10380.02170.76050.059*
C150.1830 (4)0.14687 (18)0.70429 (13)0.0413 (6)
H150.17310.11390.66050.050*
C160.2618 (3)0.31836 (16)0.46461 (10)0.0254 (4)
C170.1820 (3)0.39223 (16)0.42117 (11)0.0277 (5)
C180.1647 (3)0.37515 (18)0.35076 (12)0.0329 (5)
H180.11680.42710.32100.040*
C190.2188 (3)0.28098 (18)0.32499 (11)0.0328 (5)
C200.2869 (3)0.20328 (18)0.36702 (12)0.0332 (5)
H200.31710.13760.34820.040*
C210.3104 (3)0.22280 (16)0.43688 (11)0.0293 (5)
H210.36000.17070.46620.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0335 (9)0.0348 (10)0.0423 (10)0.0026 (7)0.0025 (8)0.0002 (8)
O20.0523 (11)0.0286 (9)0.0588 (11)0.0032 (8)0.0003 (10)0.0159 (9)
O30.0703 (13)0.0840 (15)0.0308 (10)0.0060 (12)0.0092 (9)0.0152 (10)
O40.0708 (14)0.0772 (15)0.0394 (11)0.0100 (12)0.0055 (10)0.0219 (10)
N10.0297 (10)0.0279 (10)0.0264 (9)0.0008 (8)0.0002 (8)0.0051 (8)
N20.0293 (9)0.0228 (9)0.0261 (9)0.0012 (8)0.0007 (7)0.0017 (7)
N30.0264 (9)0.0276 (10)0.0418 (12)0.0005 (8)0.0052 (9)0.0052 (9)
N40.0402 (12)0.0702 (17)0.0289 (12)0.0053 (12)0.0022 (9)0.0018 (12)
C10.0261 (11)0.0231 (11)0.0313 (12)0.0014 (9)0.0008 (9)0.0022 (9)
C20.0300 (11)0.0255 (11)0.0297 (11)0.0004 (9)0.0019 (10)0.0021 (9)
C30.0276 (11)0.0303 (12)0.0256 (11)0.0037 (9)0.0006 (9)0.0009 (9)
C40.0235 (11)0.0260 (12)0.0286 (11)0.0011 (9)0.0032 (9)0.0004 (9)
C50.0279 (12)0.0264 (12)0.0372 (13)0.0003 (9)0.0004 (10)0.0019 (10)
C60.0280 (12)0.0363 (13)0.0360 (13)0.0027 (10)0.0023 (10)0.0017 (11)
C70.0347 (12)0.0318 (13)0.0467 (14)0.0085 (10)0.0016 (12)0.0058 (11)
C80.0421 (14)0.0253 (13)0.0462 (15)0.0045 (11)0.0027 (11)0.0031 (11)
C90.0396 (13)0.0282 (12)0.0335 (12)0.0011 (10)0.0005 (11)0.0059 (11)
C100.0274 (11)0.0340 (13)0.0278 (11)0.0006 (10)0.0014 (10)0.0005 (10)
C110.0420 (14)0.0382 (14)0.0329 (13)0.0083 (11)0.0034 (11)0.0026 (10)
C120.0544 (17)0.0531 (16)0.0293 (13)0.0042 (14)0.0032 (12)0.0003 (12)
C130.0553 (17)0.0519 (17)0.0304 (14)0.0078 (14)0.0004 (12)0.0116 (12)
C140.0721 (19)0.0360 (15)0.0394 (14)0.0103 (14)0.0031 (14)0.0091 (12)
C150.0616 (16)0.0329 (13)0.0293 (12)0.0054 (12)0.0031 (12)0.0015 (10)
C160.0234 (10)0.0264 (11)0.0265 (11)0.0034 (9)0.0013 (9)0.0024 (9)
C170.0257 (11)0.0255 (11)0.0320 (12)0.0043 (9)0.0007 (9)0.0029 (10)
C180.0300 (12)0.0364 (13)0.0324 (12)0.0055 (10)0.0040 (10)0.0092 (10)
C190.0315 (12)0.0430 (14)0.0240 (11)0.0077 (11)0.0020 (10)0.0011 (10)
C200.0321 (12)0.0335 (13)0.0340 (13)0.0033 (10)0.0014 (10)0.0056 (10)
C210.0294 (12)0.0288 (12)0.0296 (12)0.0015 (9)0.0025 (9)0.0022 (9)
Geometric parameters (Å, º) top
O1—N31.225 (2)C8—C91.387 (3)
O2—N31.220 (2)C8—H80.9500
O3—N41.222 (3)C9—H90.9500
O4—N41.220 (3)C10—C151.390 (3)
N1—C31.335 (3)C10—C111.391 (3)
N1—N21.372 (2)C11—C121.381 (3)
N2—C11.371 (3)C11—H110.9500
N2—C161.415 (3)C12—C131.371 (4)
N3—C171.471 (3)C12—H120.9500
N4—C191.475 (3)C13—C141.373 (4)
C1—C21.371 (3)C13—H130.9500
C1—C41.469 (3)C14—C151.384 (3)
C2—C31.413 (3)C14—H140.9500
C2—H20.9500C15—H150.9500
C3—C101.471 (3)C16—C211.393 (3)
C4—C91.391 (3)C16—C171.396 (3)
C4—C51.397 (3)C17—C181.382 (3)
C5—C61.385 (3)C18—C191.373 (3)
C5—H50.9500C18—H180.9500
C6—C71.383 (3)C19—C201.383 (3)
C6—H60.9500C20—C211.382 (3)
C7—C81.382 (3)C20—H200.9500
C7—H70.9500C21—H210.9500
C3—N1—N2104.42 (17)C15—C10—C11117.7 (2)
C1—N2—N1112.51 (17)C15—C10—C3120.71 (19)
C1—N2—C16129.82 (17)C11—C10—C3121.5 (2)
N1—N2—C16117.39 (16)C12—C11—C10120.8 (2)
O2—N3—O1124.5 (2)C12—C11—H11119.6
O2—N3—C17117.58 (19)C10—C11—H11119.6
O1—N3—C17117.85 (17)C13—C12—C11120.6 (2)
O4—N4—O3124.7 (2)C13—C12—H12119.7
O4—N4—C19117.7 (2)C11—C12—H12119.7
O3—N4—C19117.6 (2)C12—C13—C14119.7 (2)
N2—C1—C2105.63 (19)C12—C13—H13120.1
N2—C1—C4122.64 (19)C14—C13—H13120.1
C2—C1—C4131.6 (2)C13—C14—C15120.0 (2)
C1—C2—C3106.38 (19)C13—C14—H14120.0
C1—C2—H2126.8C15—C14—H14120.0
C3—C2—H2126.8C14—C15—C10121.2 (2)
N1—C3—C2111.04 (18)C14—C15—H15119.4
N1—C3—C10119.27 (18)C10—C15—H15119.4
C2—C3—C10129.68 (19)C21—C16—C17118.79 (19)
C9—C4—C5118.9 (2)C21—C16—N2118.11 (18)
C9—C4—C1120.2 (2)C17—C16—N2123.06 (18)
C5—C4—C1120.87 (19)C18—C17—C16121.2 (2)
C6—C5—C4120.4 (2)C18—C17—N3116.36 (19)
C6—C5—H5119.8C16—C17—N3122.39 (18)
C4—C5—H5119.8C19—C18—C17118.2 (2)
C7—C6—C5120.0 (2)C19—C18—H18120.9
C7—C6—H6120.0C17—C18—H18120.9
C5—C6—H6120.0C18—C19—C20122.3 (2)
C8—C7—C6120.1 (2)C18—C19—N4118.3 (2)
C8—C7—H7120.0C20—C19—N4119.4 (2)
C6—C7—H7120.0C21—C20—C19118.9 (2)
C7—C8—C9120.1 (2)C21—C20—H20120.6
C7—C8—H8120.0C19—C20—H20120.6
C9—C8—H8120.0C20—C21—C16120.4 (2)
C8—C9—C4120.4 (2)C20—C21—H21119.8
C8—C9—H9119.8C16—C21—H21119.8
C4—C9—H9119.8
C3—N1—N2—C11.4 (2)C11—C12—C13—C140.3 (4)
C3—N1—N2—C16173.15 (17)C12—C13—C14—C150.3 (5)
N1—N2—C1—C21.6 (2)C13—C14—C15—C100.3 (4)
C16—N2—C1—C2172.1 (2)C11—C10—C15—C140.2 (4)
N1—N2—C1—C4174.98 (19)C3—C10—C15—C14179.9 (3)
C16—N2—C1—C411.4 (3)C1—N2—C16—C21135.4 (2)
N2—C1—C2—C31.1 (2)N1—N2—C16—C2151.2 (3)
C4—C1—C2—C3175.0 (2)C1—N2—C16—C1742.3 (3)
N2—N1—C3—C20.6 (2)N1—N2—C16—C17131.2 (2)
N2—N1—C3—C10179.24 (18)C21—C16—C17—C185.3 (3)
C1—C2—C3—N10.3 (2)N2—C16—C17—C18172.3 (2)
C1—C2—C3—C10178.1 (2)C21—C16—C17—N3171.68 (19)
N2—C1—C4—C9142.0 (2)N2—C16—C17—N310.7 (3)
C2—C1—C4—C942.4 (4)O2—N3—C17—C1832.5 (3)
N2—C1—C4—C538.4 (3)O1—N3—C17—C18144.9 (2)
C2—C1—C4—C5137.2 (3)O2—N3—C17—C16150.3 (2)
C9—C4—C5—C63.2 (3)O1—N3—C17—C1632.3 (3)
C1—C4—C5—C6177.2 (2)C16—C17—C18—C193.6 (3)
C4—C5—C6—C71.6 (3)N3—C17—C18—C19173.60 (19)
C5—C6—C7—C81.0 (4)C17—C18—C19—C200.8 (3)
C6—C7—C8—C92.0 (4)C17—C18—C19—N4178.7 (2)
C7—C8—C9—C40.4 (4)O4—N4—C19—C18169.8 (2)
C5—C4—C9—C82.2 (3)O3—N4—C19—C1810.5 (3)
C1—C4—C9—C8178.2 (2)O4—N4—C19—C2010.6 (3)
N1—C3—C10—C158.4 (3)O3—N4—C19—C20169.1 (2)
C2—C3—C10—C15169.9 (2)C18—C19—C20—C213.4 (3)
N1—C3—C10—C11171.3 (2)N4—C19—C20—C21176.2 (2)
C2—C3—C10—C1110.4 (4)C19—C20—C21—C161.6 (3)
C15—C10—C11—C120.8 (4)C17—C16—C21—C202.7 (3)
C3—C10—C11—C12179.5 (2)N2—C16—C21—C20175.03 (19)
C10—C11—C12—C130.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C21—H21···O1i0.952.483.366 (3)156
Symmetry code: (i) x+1/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C21—H21···O1i0.952.483.366 (3)156
Symmetry code: (i) x+1/2, y+1/2, z+1.
 

Acknowledgements

The support of NSF–MRI Grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationAbadi, A. H., Eissa, A. A. H. & Hassan, E. (2003). Chem. Pharm. Bull. 51, 838–844.  CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2015). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCottineau, B., Toto, P., Marot, C., Pipaud, A. & Chenault, J. (2002). Bioorg. Med. Chem. Lett. 12, 2105–2108.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMokhtar, H. M. & El-Khawass, S. M. (1988). Jnl Chin. Chem. Soc. 35, 57–62.  CrossRef CAS Google Scholar
First citationMykhailiuk, P. K. (2015). Beilstein J. Org. Chem. 11, 16–24.  Web of Science CrossRef PubMed Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRida, S. M., Saudi, M. N. S., Youssef, A. M. & Halim, M. A. (2009). Lett. Org. Chem. 6, 282–288.  CrossRef CAS Google Scholar
First citationSharma, V., Sharma, V., Kumar, V. & Kumar, V. (2014). Pak. J. Pharm. Sci. 27, 1851–1855.  Web of Science CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSzabó, G., Fischer, J., Kis-Varga, Á. & Gyires, K. (2008). J. Med. Chem. 51, 142–147.  Web of Science PubMed Google Scholar
First citationTanitame, A., Oyamada, Y., Ofuji, K., Terauchi, H., Kawasaki, M., Wachi, M. & Yamagishi, J. (2005). Bioorg. Med. Chem. Lett. 15, 4299–4303.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds