organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (E)-di­ethyl 2-[(1-phenyl­sulfonyl-1H-indol-3-yl)methyl­­idene]succinate

aResearch and Development Centre, Bharathiar University, Coimbatore 641 046, India, bDepartment of Chemistry, Pallavan College of Engineering, Kanchipuram 631 502, India, cDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, dDepartment of Sciences, Chemistry and Materials Research Lab, Amrita Vishwa Vidyapeetham University, Ettimadai, Coimbatore 641 112, India, and eDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India
*Correspondence e-mail: ryamuna1@gmail.com, chakkaravarthi_2005@yahoo.com

Edited by V. Rybakov, Moscow State University, Russia (Received 22 November 2015; accepted 1 December 2015; online 9 December 2015)

In the title compound, C23H23NO6S, the phenyl ring is perpendicular [dihedral angle = 89.34 (9)°] to the indole ring system. In the mol­ecule, the eth­oxy groups are each disordered over two sets of sites with occupancy ratios of 0.671 (6):0.329 (6) and 0.75 (3):0.25 (3). The mol­ecular conformation is consolidated by a weak C—H⋯O interaction, which generates an S(6) graph–set motif. The packing of the mol­ecules in the crystal structure features weak C—H⋯π inter­actions.

1. Related literature

For the biological activity of indole derivatives, see: Andreani et al. (2001[Andreani, A., Granaiola, M., Leoni, A., Locatelli, A., Morigi, R., Rambaldi, M., Giorgi, G., Salvini, L. & Garaliene, V. (2001). Anticancer Drug. Des. 16, 167-174.]); Kolocouris et al. (1994[Kolocouris, N., Foscolos, G. B., Kolocouris, A., Marakos, P., Pouli, N., Fytas, G., Ikeda, S. & De Clercq, E. (1994). J. Med. Chem. 37, 2896-2902.]). For the structures of closely related compounds, see: Chakkaravarthi et al. (2007[Chakkaravarthi, G., Ramesh, N., Mohanakrishnan, A. K. & Manivannan, V. (2007). Acta Cryst. E63, o3564.], 2008[Chakkaravarthi, G., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2008). Acta Cryst. E64, o542.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C23H23NO6S

  • Mr = 441.48

  • Monoclinic, P 21 /n

  • a = 8.3458 (8) Å

  • b = 24.657 (2) Å

  • c = 10.9448 (9) Å

  • β = 91.121 (3)°

  • V = 2251.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 295 K

  • 0.30 × 0.24 × 0.20 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.947, Tmax = 0.965

  • 31225 measured reflections

  • 4631 independent reflections

  • 2889 reflections with I > 2σ(I)

  • Rint = 0.045

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.139

  • S = 1.03

  • 4631 reflections

  • 322 parameters

  • 5 restraints

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯O1 0.93 2.44 3.012 (4) 120
C12—H12⋯Cg2i 0.93 2.80 3.561 (4) 140
Symmetry code: (i) [x-{\script{1\over 2}}, -y-{\script{1\over 2}}, z-{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Structural commentary top

Indole derivatives exhibit anti­tumour (Andreani et al., 2001) and anti­viral (Kolocouris et al., 1994) activities. The molecular structure of the title compound is illustrated in (Fig. 1). The geometric parameters of the title molecule agree well with the reported similar structures (Chakkaravarthi et al. 2007, 2008).

The phenyl ring (C1–C6) is perpendicular [dihedral angle of 89.34 (9)°] to indole ring (N1/C7–C14) system in the molecule. In the terminal site, the eth­oxy group is disordered over two positions with site occupancies of 0.671 (6) for major component (O4/C19/C20) and 0.329 (6) for minor component (O4A/C19A/C20A). The other eth­oxy group is also disordered over two positions with site occupancies of 0.75 (3) for major component (O6/C23/C24) and 0.25 (3) for minor component (O6A/C23A/C24A). The torsion angles O1—S1—N1—C14 and O2—S1—N1—C7 [39.9 (2)° and -32.8 (2)°, respectively] indicate the syn–conformation of the sulfonyl moiety. The molecular structure is stabilized by weak non–classical C—H···O hydrogen bond which generates S(6) graph–set (Table 1 & Fig. 1) motif. The crystal structure is influenced by weak C—H···π (Table 1) inter­actions in a three–dimensional network.

Synthesis and crystallization top

To a solution of 1–(phenyl­sulfonyl)–1H–indole–3–carboxaldehyde (0.5 g, 1.84 mmol) and phospho­rous ylide (C26H27O4P) (0.96 g, 2.21 mmol) [prepared from (carbeth­oxy­methyl­ene)tri­phenyl­phospho­rane and ethyl bromo­acetate] in dry toluene (10 ml) was refluxed for 24 h. Then the solvent was removed under reduced pressure. The solid obtained was recrystallized from methanol (3 ml) to afford the title compound as a colourless crystal suitable for X–Ray diffraction analysis.

Refinement top

The H atoms were positioned geometrically and refined using riding model, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic H, C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for methyl­ene H and C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl H.

The reflections [1 2 2], [0 2 0] and [0 1 1] were omitted during refinement which were owing poor agreement. The bond distances (C19—C20), (C19A—C20A), (C22—C23) and (C22A—C23A) were restraint to 1.54 (1)Å. The anisotropic displacement parameters of terminal site disordered atoms were equalized for the major and minor components with EADP instruction for C20 & C20A and C19 & C19A. The anisotropic displacement parameters in the direction of S1 and O2 were restraint within 0.001 using DELU instruction in SHELXL refinement.

Related literature top

For the biological activity of indole derivatives, see: Andreani et al. (2001); Kolocouris et al. (1994). For the structures of closely related compounds, see: Chakkaravarthi et al. (2007, 2008).

Structure description top

Indole derivatives exhibit anti­tumour (Andreani et al., 2001) and anti­viral (Kolocouris et al., 1994) activities. The molecular structure of the title compound is illustrated in (Fig. 1). The geometric parameters of the title molecule agree well with the reported similar structures (Chakkaravarthi et al. 2007, 2008).

The phenyl ring (C1–C6) is perpendicular [dihedral angle of 89.34 (9)°] to indole ring (N1/C7–C14) system in the molecule. In the terminal site, the eth­oxy group is disordered over two positions with site occupancies of 0.671 (6) for major component (O4/C19/C20) and 0.329 (6) for minor component (O4A/C19A/C20A). The other eth­oxy group is also disordered over two positions with site occupancies of 0.75 (3) for major component (O6/C23/C24) and 0.25 (3) for minor component (O6A/C23A/C24A). The torsion angles O1—S1—N1—C14 and O2—S1—N1—C7 [39.9 (2)° and -32.8 (2)°, respectively] indicate the syn–conformation of the sulfonyl moiety. The molecular structure is stabilized by weak non–classical C—H···O hydrogen bond which generates S(6) graph–set (Table 1 & Fig. 1) motif. The crystal structure is influenced by weak C—H···π (Table 1) inter­actions in a three–dimensional network.

For the biological activity of indole derivatives, see: Andreani et al. (2001); Kolocouris et al. (1994). For the structures of closely related compounds, see: Chakkaravarthi et al. (2007, 2008).

Synthesis and crystallization top

To a solution of 1–(phenyl­sulfonyl)–1H–indole–3–carboxaldehyde (0.5 g, 1.84 mmol) and phospho­rous ylide (C26H27O4P) (0.96 g, 2.21 mmol) [prepared from (carbeth­oxy­methyl­ene)tri­phenyl­phospho­rane and ethyl bromo­acetate] in dry toluene (10 ml) was refluxed for 24 h. Then the solvent was removed under reduced pressure. The solid obtained was recrystallized from methanol (3 ml) to afford the title compound as a colourless crystal suitable for X–Ray diffraction analysis.

Refinement details top

The H atoms were positioned geometrically and refined using riding model, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic H, C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for methyl­ene H and C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl H.

The reflections [1 2 2], [0 2 0] and [0 1 1] were omitted during refinement which were owing poor agreement. The bond distances (C19—C20), (C19A—C20A), (C22—C23) and (C22A—C23A) were restraint to 1.54 (1)Å. The anisotropic displacement parameters of terminal site disordered atoms were equalized for the major and minor components with EADP instruction for C20 & C20A and C19 & C19A. The anisotropic displacement parameters in the direction of S1 and O2 were restraint within 0.001 using DELU instruction in SHELXL refinement.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound, with atom labels. Displacement ellipsoids are drawn at 30% probability level. The H atoms are presented as a small spheres of arbitrary radius. The minor components of the disordered ethyl groups are omitted for clarity.
(E)-Diethyl 2-[(1-phenylsulfonyl-1H-indol-3-yl)methylidene]succinate top
Crystal data top
C23H23NO6SF(000) = 928
Mr = 441.48Dx = 1.302 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6504 reflections
a = 8.3458 (8) Åθ = 2.5–23.4°
b = 24.657 (2) ŵ = 0.18 mm1
c = 10.9448 (9) ÅT = 295 K
β = 91.121 (3)°Block, colourless
V = 2251.8 (3) Å30.30 × 0.24 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4631 independent reflections
Radiation source: fine–focus sealed tube2889 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ω and φ scanθmax = 26.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.947, Tmax = 0.965k = 3030
31225 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0555P)2 + 0.8923P]
where P = (Fo2 + 2Fc2)/3
4631 reflections(Δ/σ)max < 0.001
322 parametersΔρmax = 0.31 e Å3
5 restraintsΔρmin = 0.35 e Å3
Crystal data top
C23H23NO6SV = 2251.8 (3) Å3
Mr = 441.48Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.3458 (8) ŵ = 0.18 mm1
b = 24.657 (2) ÅT = 295 K
c = 10.9448 (9) Å0.30 × 0.24 × 0.20 mm
β = 91.121 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4631 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2889 reflections with I > 2σ(I)
Tmin = 0.947, Tmax = 0.965Rint = 0.045
31225 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0495 restraints
wR(F2) = 0.139H-atom parameters constrained
S = 1.03Δρmax = 0.31 e Å3
4631 reflectionsΔρmin = 0.35 e Å3
322 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.6466 (3)0.30006 (9)0.3924 (2)0.0459 (6)
C20.6500 (3)0.26226 (10)0.2988 (2)0.0567 (7)
H20.74650.25220.26410.068*
C30.5073 (4)0.23988 (12)0.2582 (3)0.0763 (9)
H30.50690.21450.19530.092*
C40.3674 (5)0.25465 (15)0.3095 (4)0.0955 (12)
H40.27170.23960.28080.115*
C50.3651 (4)0.29161 (15)0.4035 (4)0.0997 (13)
H50.26860.30070.43930.120*
C60.5061 (4)0.31516 (11)0.4447 (3)0.0715 (8)
H60.50560.34080.50690.086*
C70.7896 (3)0.43043 (9)0.3542 (2)0.0478 (6)
H70.74000.44390.42320.057*
C80.8039 (3)0.45752 (9)0.2475 (2)0.0454 (6)
C90.8822 (3)0.42149 (9)0.1642 (2)0.0485 (6)
C100.9268 (4)0.42694 (12)0.0431 (3)0.0663 (8)
H100.90710.45900.00060.080*
C111.0001 (4)0.38407 (14)0.0123 (3)0.0844 (10)
H111.02870.38690.09370.101*
C121.0325 (4)0.33661 (13)0.0507 (3)0.0806 (10)
H121.08280.30820.01070.097*
C130.9924 (3)0.33027 (11)0.1709 (3)0.0662 (8)
H131.01550.29850.21340.079*
C140.9159 (3)0.37344 (9)0.2258 (2)0.0485 (6)
C150.7460 (3)0.51183 (9)0.2172 (2)0.0505 (6)
H150.70020.51610.13960.061*
C160.7508 (3)0.55562 (9)0.2867 (2)0.0477 (6)
C170.8300 (3)0.55776 (10)0.4103 (2)0.0528 (7)
H17A0.90830.52880.41670.063*
H17B0.88690.59190.41880.063*
C180.7145 (4)0.55251 (11)0.5119 (3)0.0588 (7)
O40.7948 (8)0.5510 (3)0.6172 (6)0.104 (2)0.671 (6)
C190.6975 (11)0.5455 (4)0.7255 (6)0.152 (3)0.671 (6)
H19A0.58600.55360.70650.182*0.671 (6)
H19B0.73500.56980.78970.182*0.671 (6)
C200.7170 (10)0.4872 (4)0.7640 (6)0.152 (3)0.671 (6)
H20A0.66000.46420.70730.228*0.671 (6)
H20B0.67500.48240.84430.228*0.671 (6)
H20C0.82870.47780.76490.228*0.671 (6)
O4A0.7807 (15)0.5214 (4)0.6047 (10)0.066 (2)0.329 (6)
C19A0.677 (3)0.5038 (8)0.7017 (13)0.152 (3)0.329 (6)
H19C0.70580.46690.72330.182*0.329 (6)
H19D0.56780.50300.66940.182*0.329 (6)
C20A0.678 (2)0.5367 (8)0.8154 (11)0.152 (3)0.329 (6)
H20D0.78470.53690.85060.228*0.329 (6)
H20E0.60550.52120.87250.228*0.329 (6)
H20F0.64630.57310.79650.228*0.329 (6)
C210.6780 (4)0.60772 (11)0.2456 (3)0.0597 (7)
O60.605 (2)0.6030 (5)0.1389 (16)0.076 (3)0.75 (3)
C220.501 (2)0.6514 (6)0.1022 (11)0.111 (4)0.75 (3)
H22A0.39800.65020.14140.133*0.75 (3)
H22B0.55400.68540.12260.133*0.75 (3)
C230.4834 (17)0.6446 (6)0.0316 (10)0.129 (5)0.75 (3)
H23A0.58740.64120.06680.193*0.75 (3)
H23B0.42930.67550.06590.193*0.75 (3)
H23C0.42200.61250.04900.193*0.75 (3)
O6A0.569 (7)0.6022 (18)0.153 (5)0.096 (12)0.25 (3)
C22A0.567 (3)0.6554 (16)0.084 (4)0.077 (7)0.25 (3)
H22C0.65980.65960.03340.093*0.25 (3)
H22D0.55760.68630.13840.093*0.25 (3)
C23A0.415 (4)0.6461 (18)0.009 (5)0.138 (15)0.25 (3)
H23D0.43650.62170.05700.207*0.25 (3)
H23E0.37730.68010.02380.207*0.25 (3)
H23F0.33390.63080.05970.207*0.25 (3)
N10.8600 (2)0.37943 (7)0.34558 (19)0.0484 (5)
O10.9526 (2)0.29189 (7)0.42972 (19)0.0672 (6)
O20.8019 (2)0.35559 (7)0.55794 (16)0.0678 (5)
O30.5734 (3)0.55723 (9)0.5029 (2)0.0778 (6)
O50.6935 (3)0.64938 (7)0.2993 (2)0.0852 (7)
S10.82591 (8)0.32957 (2)0.44398 (6)0.0503 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0451 (14)0.0345 (12)0.0580 (15)0.0042 (11)0.0034 (12)0.0042 (11)
C20.0622 (18)0.0516 (15)0.0561 (16)0.0040 (13)0.0039 (13)0.0003 (12)
C30.083 (2)0.0685 (19)0.077 (2)0.0151 (18)0.0250 (18)0.0036 (16)
C40.062 (2)0.073 (2)0.151 (4)0.0129 (18)0.035 (2)0.005 (2)
C50.049 (2)0.079 (2)0.171 (4)0.0067 (18)0.009 (2)0.003 (3)
C60.0562 (19)0.0530 (16)0.105 (2)0.0061 (14)0.0061 (17)0.0103 (16)
C70.0529 (15)0.0371 (12)0.0533 (15)0.0003 (11)0.0010 (12)0.0034 (11)
C80.0440 (14)0.0376 (12)0.0546 (15)0.0014 (11)0.0003 (11)0.0006 (11)
C90.0478 (15)0.0429 (13)0.0549 (15)0.0076 (11)0.0051 (12)0.0045 (11)
C100.078 (2)0.0557 (16)0.0657 (19)0.0134 (15)0.0154 (16)0.0019 (14)
C110.100 (3)0.079 (2)0.076 (2)0.016 (2)0.0355 (19)0.0140 (18)
C120.086 (2)0.064 (2)0.093 (3)0.0013 (17)0.036 (2)0.0192 (18)
C130.0634 (19)0.0469 (15)0.089 (2)0.0050 (14)0.0201 (16)0.0047 (14)
C140.0420 (14)0.0398 (13)0.0640 (17)0.0027 (11)0.0070 (12)0.0047 (11)
C150.0556 (16)0.0413 (13)0.0543 (15)0.0008 (11)0.0018 (12)0.0085 (11)
C160.0479 (14)0.0352 (12)0.0601 (16)0.0023 (11)0.0053 (12)0.0058 (11)
C170.0507 (15)0.0410 (13)0.0667 (17)0.0065 (11)0.0003 (13)0.0009 (11)
C180.0604 (19)0.0555 (16)0.0604 (18)0.0053 (14)0.0010 (15)0.0051 (13)
O40.077 (3)0.180 (7)0.056 (3)0.019 (4)0.006 (2)0.001 (4)
C190.125 (4)0.269 (9)0.063 (3)0.051 (6)0.014 (3)0.008 (4)
C200.125 (4)0.269 (9)0.063 (3)0.051 (6)0.014 (3)0.008 (4)
O4A0.068 (5)0.082 (6)0.048 (4)0.018 (5)0.002 (3)0.003 (4)
C19A0.125 (4)0.269 (9)0.063 (3)0.051 (6)0.014 (3)0.008 (4)
C20A0.125 (4)0.269 (9)0.063 (3)0.051 (6)0.014 (3)0.008 (4)
C210.0659 (19)0.0443 (15)0.0691 (19)0.0003 (13)0.0066 (16)0.0096 (14)
O60.086 (5)0.047 (4)0.094 (5)0.010 (4)0.018 (3)0.017 (4)
C220.118 (10)0.065 (4)0.148 (9)0.027 (8)0.043 (8)0.031 (5)
C230.097 (7)0.127 (7)0.160 (9)0.017 (7)0.056 (7)0.073 (7)
O6A0.11 (3)0.078 (18)0.095 (17)0.055 (14)0.047 (17)0.023 (13)
C22A0.054 (11)0.060 (12)0.119 (15)0.028 (11)0.013 (12)0.021 (9)
C23A0.071 (17)0.107 (18)0.23 (4)0.021 (18)0.03 (2)0.02 (2)
N10.0516 (12)0.0369 (10)0.0567 (13)0.0023 (9)0.0038 (10)0.0013 (9)
O10.0516 (11)0.0501 (10)0.0993 (15)0.0089 (9)0.0161 (10)0.0131 (10)
O20.0949 (15)0.0554 (11)0.0524 (9)0.0092 (10)0.0127 (10)0.0002 (8)
O30.0607 (14)0.0908 (15)0.0824 (15)0.0018 (12)0.0100 (11)0.0054 (11)
O50.125 (2)0.0359 (10)0.0949 (16)0.0041 (11)0.0001 (14)0.0016 (10)
S10.0524 (4)0.0392 (3)0.0587 (4)0.0003 (3)0.0119 (3)0.0059 (3)
Geometric parameters (Å, º) top
C1—C61.366 (4)C18—O41.323 (7)
C1—C21.386 (3)C18—O4A1.380 (12)
C1—S11.748 (2)O4—C191.456 (10)
C2—C31.379 (4)C19—C201.507 (8)
C2—H20.9300C19—H19A0.9700
C3—C41.355 (5)C19—H19B0.9700
C3—H30.9300C20—H20A0.9600
C4—C51.375 (5)C20—H20B0.9600
C4—H40.9300C20—H20C0.9600
C5—C61.380 (4)O4A—C19A1.45 (2)
C5—H50.9300C19A—C20A1.485 (10)
C6—H60.9300C19A—H19C0.9700
C7—C81.352 (3)C19A—H19D0.9700
C7—N11.392 (3)C20A—H20D0.9600
C7—H70.9300C20A—H20E0.9600
C8—C91.439 (3)C20A—H20F0.9600
C8—C151.460 (3)C21—O51.189 (3)
C9—C141.389 (3)C21—O61.313 (17)
C9—C101.391 (4)C21—O6A1.36 (5)
C10—C111.369 (4)O6—C221.52 (2)
C10—H100.9300C22—C231.479 (8)
C11—C121.382 (5)C22—H22A0.9700
C11—H110.9300C22—H22B0.9700
C12—C131.372 (4)C23—H23A0.9600
C12—H120.9300C23—H23B0.9600
C13—C141.385 (3)C23—H23C0.9600
C13—H130.9300O6A—C22A1.51 (6)
C14—N11.408 (3)C22A—C23A1.516 (10)
C15—C161.321 (3)C22A—H22C0.9700
C15—H150.9300C22A—H22D0.9700
C16—C211.487 (3)C23A—H23D0.9600
C16—C171.494 (3)C23A—H23E0.9600
C17—C181.492 (4)C23A—H23F0.9600
C17—H17A0.9700N1—S11.663 (2)
C17—H17B0.9700O1—S11.4185 (18)
C18—O31.185 (3)O2—S11.4202 (19)
C6—C1—C2121.6 (3)O4—C18—C17109.2 (4)
C6—C1—S1119.2 (2)O4A—C18—C17110.0 (6)
C2—C1—S1119.2 (2)C18—O4—C19115.5 (6)
C3—C2—C1118.5 (3)O4—C19—C20104.9 (7)
C3—C2—H2120.8O4—C19—H19A110.8
C1—C2—H2120.8C20—C19—H19A110.8
C4—C3—C2120.3 (3)O4—C19—H19B110.8
C4—C3—H3119.8C20—C19—H19B110.8
C2—C3—H3119.8H19A—C19—H19B108.8
C3—C4—C5120.9 (3)C18—O4A—C19A117.9 (13)
C3—C4—H4119.5O4A—C19A—C20A117.0 (14)
C5—C4—H4119.5O4A—C19A—H19C108.1
C4—C5—C6119.9 (3)C20A—C19A—H19C108.1
C4—C5—H5120.1O4A—C19A—H19D108.1
C6—C5—H5120.1C20A—C19A—H19D108.1
C1—C6—C5118.8 (3)H19C—C19A—H19D107.3
C1—C6—H6120.6C19A—C20A—H20D109.5
C5—C6—H6120.6C19A—C20A—H20E109.5
C8—C7—N1110.1 (2)H20D—C20A—H20E109.5
C8—C7—H7125.0C19A—C20A—H20F109.5
N1—C7—H7125.0H20D—C20A—H20F109.5
C7—C8—C9106.9 (2)H20E—C20A—H20F109.5
C7—C8—C15128.0 (2)O5—C21—O6124.1 (7)
C9—C8—C15125.1 (2)O5—C21—O6A121 (2)
C14—C9—C10119.3 (2)O5—C21—C16123.9 (3)
C14—C9—C8108.0 (2)O6—C21—C16111.9 (7)
C10—C9—C8132.7 (2)O6A—C21—C16114 (2)
C11—C10—C9118.5 (3)C21—O6—C22114.6 (13)
C11—C10—H10120.7C23—C22—O6102.5 (13)
C9—C10—H10120.7C23—C22—H22A111.2
C10—C11—C12121.2 (3)O6—C22—H22A111.3
C10—C11—H11119.4C23—C22—H22B111.2
C12—C11—H11119.4O6—C22—H22B111.3
C13—C12—C11121.7 (3)H22A—C22—H22B109.2
C13—C12—H12119.2C21—O6A—C22A107 (3)
C11—C12—H12119.2O6A—C22A—C23A98 (4)
C12—C13—C14116.9 (3)O6A—C22A—H22C112.3
C12—C13—H13121.6C23A—C22A—H22C112.1
C14—C13—H13121.6O6A—C22A—H22D111.9
C13—C14—C9122.4 (3)C23A—C22A—H22D112.2
C13—C14—N1130.5 (2)H22C—C22A—H22D109.8
C9—C14—N1107.1 (2)C22A—C23A—H23D109.5
C16—C15—C8127.8 (2)C22A—C23A—H23E109.5
C16—C15—H15116.1H23D—C23A—H23E109.5
C8—C15—H15116.1C22A—C23A—H23F109.5
C15—C16—C21121.6 (2)H23D—C23A—H23F109.5
C15—C16—C17123.9 (2)H23E—C23A—H23F109.5
C21—C16—C17114.5 (2)C7—N1—C14107.80 (19)
C18—C17—C16113.0 (2)C7—N1—S1123.13 (18)
C18—C17—H17A109.0C14—N1—S1126.13 (16)
C16—C17—H17A109.0O1—S1—O2120.72 (12)
C18—C17—H17B109.0O1—S1—N1106.02 (11)
C16—C17—H17B109.0O2—S1—N1105.29 (10)
H17A—C17—H17B107.8O1—S1—C1109.09 (11)
O3—C18—O4124.1 (4)O2—S1—C1109.70 (13)
O3—C18—O4A119.9 (6)N1—S1—C1104.75 (11)
O3—C18—C17125.8 (3)
C6—C1—C2—C30.2 (4)C18—O4—C19—C20104.0 (8)
S1—C1—C2—C3179.2 (2)O3—C18—O4A—C19A11.3 (11)
C1—C2—C3—C40.2 (4)O4—C18—O4A—C19A96.2 (17)
C2—C3—C4—C50.7 (5)C17—C18—O4A—C19A169.3 (9)
C3—C4—C5—C61.6 (6)C18—O4A—C19A—C20A97.2 (18)
C2—C1—C6—C50.6 (4)C15—C16—C21—O5172.0 (3)
S1—C1—C6—C5179.9 (3)C17—C16—C21—O57.1 (4)
C4—C5—C6—C11.5 (5)C15—C16—C21—O63.4 (9)
N1—C7—C8—C92.2 (3)C17—C16—C21—O6177.5 (8)
N1—C7—C8—C15179.5 (2)C15—C16—C21—O6A19 (3)
C7—C8—C9—C141.2 (3)C17—C16—C21—O6A162 (3)
C15—C8—C9—C14178.7 (2)O5—C21—O6—C2215.6 (18)
C7—C8—C9—C10179.4 (3)O6A—C21—O6—C2268 (10)
C15—C8—C9—C101.9 (4)C16—C21—O6—C22169.0 (11)
C14—C9—C10—C111.2 (4)C21—O6—C22—C23160.5 (12)
C8—C9—C10—C11179.5 (3)O5—C21—O6A—C22A37 (5)
C9—C10—C11—C121.2 (5)O6—C21—O6A—C22A68 (9)
C10—C11—C12—C130.2 (5)C16—C21—O6A—C22A154 (3)
C11—C12—C13—C140.8 (5)C21—O6A—C22A—C23A167 (3)
C12—C13—C14—C90.8 (4)C8—C7—N1—C142.3 (3)
C12—C13—C14—N1179.9 (3)C8—C7—N1—S1163.95 (17)
C10—C9—C14—C130.1 (4)C13—C14—N1—C7179.1 (3)
C8—C9—C14—C13179.6 (2)C9—C14—N1—C71.5 (3)
C10—C9—C14—N1179.3 (2)C13—C14—N1—S118.2 (4)
C8—C9—C14—N10.2 (3)C9—C14—N1—S1162.42 (17)
C7—C8—C15—C1641.3 (4)C7—N1—S1—O1161.85 (19)
C9—C8—C15—C16141.8 (3)C14—N1—S1—O139.9 (2)
C8—C15—C16—C21176.4 (2)C7—N1—S1—O232.8 (2)
C8—C15—C16—C174.6 (4)C14—N1—S1—O2169.0 (2)
C15—C16—C17—C1899.6 (3)C7—N1—S1—C182.8 (2)
C21—C16—C17—C1881.3 (3)C14—N1—S1—C175.4 (2)
C16—C17—C18—O315.0 (4)C6—C1—S1—O1149.7 (2)
C16—C17—C18—O4175.7 (4)C2—C1—S1—O130.8 (2)
C16—C17—C18—O4A141.5 (4)C6—C1—S1—O215.5 (2)
O3—C18—O4—C1910.8 (9)C2—C1—S1—O2165.07 (19)
O4A—C18—O4—C1982.3 (14)C6—C1—S1—N197.1 (2)
C17—C18—O4—C19179.6 (6)C2—C1—S1—N182.3 (2)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C13—H13···O10.932.443.012 (4)120
C12—H12···Cg2i0.932.803.561 (4)140
Symmetry code: (i) x1/2, y1/2, z3/2.
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C13—H13···O10.932.443.012 (4)120
C12—H12···Cg2i0.932.803.561 (4)140
Symmetry code: (i) x1/2, y1/2, z3/2.
 

Acknowledgements

The authors acknowledge the SAIF, IIT, Madras, for the data collection.

References

First citationAndreani, A., Granaiola, M., Leoni, A., Locatelli, A., Morigi, R., Rambaldi, M., Giorgi, G., Salvini, L. & Garaliene, V. (2001). Anticancer Drug. Des. 16, 167–174.  Web of Science PubMed CAS Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChakkaravarthi, G., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2008). Acta Cryst. E64, o542.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChakkaravarthi, G., Ramesh, N., Mohanakrishnan, A. K. & Manivannan, V. (2007). Acta Cryst. E63, o3564.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKolocouris, N., Foscolos, G. B., Kolocouris, A., Marakos, P., Pouli, N., Fytas, G., Ikeda, S. & De Clercq, E. (1994). J. Med. Chem. 37, 2896–2902.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds