research communications
b]furan-2,8(3H,7H)-dione
and computational study of 3,4-dihydroxy-3-hydroxymethyl-9-methyl-6-methylidene-3a,4,5,6,6a,9,9a,9b-octahydroazuleno[4,5-aDepartment of Physics, Faculty of Arts and Sciences, Cumhuriyet University, 06532 Sivas, Turkey, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cDepartment of Chemistry, Faculty of Science and Art, Gaziosmanpasa University, 60240 Tokat, Turkey, and dDepartamento Química Física y Analítica, Facultad de Química, Universidad Oviedo, C/ Julián Clavería, 8, 33006 Oviedo (Asturias), Spain
*Correspondence e-mail: akkurt@erciyes.edu.tr
In the molecule of title compound, C15H20O6, also known as cynarinin A, the cyclopentane ring having twist conformation and a γ-lactone ring assuming an are trans- and cis-fused, respectively, to a cycloheptane ring adopting a twist-chair conformation. In the crystal, O—H⋯O hydrogen bonds link neighbouring molecules, forming a three-dimensional network. Theoretical calculations of the molecular structure using the CNDO approximation and MOPAC PM3 geometry optimization are in satisfactory agreement with the results of the X-ray structure analysis.
Keywords: crystal structure; cynarinin A; Centaurea polypodiifolia; theoretical investigation; CNDO; PM3; HOMO; LUMO.
CCDC reference: 1048445
1. Chemical context
The genus Centaurea belongs to the asteraceae family and consists of more than seven hundred species throughout the world. One hundred and ninety species are found in Turkey, one hundred of which are endemic (Davis et al., 1988). Centaurea species contain acetylenic compounds (Christensen & Lam, 1990), (Gulcemal et al., 2010; Kubacey et al., 2012; Khalfallah et al., 2012; Forgo et al., 2012) and sesquiterpene (Bruno et al., 1996; Koukoulitsa et al., 2002; Janackovic et al., 2004; Bensouici et al., 2012), and display anticancer (Chicca et al., 2011; Csapi et al., 2010), antimicrobial, and anti-oxidant activities (Uysal et al., 2013; Politeo et al., 2012; Djeddi et al., 2011). Sesquiterpene (SLs) are a class of plant of lipophilic character. SLs exhibit diverse biological activities such as anti-inflammatory, anti-ulcer, antibacterial, antiviral, antifungal, and cytotoxic activity, and have an influence on the central nervous system and cardiovascular system (Yeşilada et al., 1995). As a contribution to this research field, the X-ray of the title compound, also known as cynarinin A (Kamanzi et al., 1983), is reported herein.
2. Structural commentary
The title compound contains a cyclopentane ring and a γ-lactone ring trans- and cis-fused, respectively, to a cycloheptane ring (Fig. 1). The relative configurations at the asymmetric centres are C1(S), C4(R), C5(R), C6(R), C7(R), C8(R) and C10(S). The cyclopentane ring (C4/C5/C10–C12) is in a twist conformation about the C4—C5 bond with puckering parameters Q = 0.340 (3) Å and φ = 21.3 (4)°. The γ-lactone ring (O1/C6–C9) has an with C7 at the flap [puckering parameters: Q = 0.271 (2) Å, φ = 259.0 (5)°]. The cycloheptane ring has a twist-chair conformation [puckering parameters: Q2 = 0.534 (2) Å, φ2 = 34.5 (3)°; Q3 = 0.650 (2) Å, φ3 = 191.5 (2)° and QT = 0.841 (2) Å]. The pseudo-diad axis bisects the C1—C2 bond and passes through atom C5. All bond lengths and angles are unexceptional and comparable with those reported for a similar compound (Swamy et al., 2005).
3. Supramolecular features
In the crystal, neighbouring molecules are connected by O—H⋯O hydrogen bonds (Table 1; Fig. 2), forming a three dimensional network.
4. Theoretical calculations
According to the results of a quantum mechanical calculation using the CNDO approximation (Pople et al., 1970), the charges at atoms O1, O2, O3, O4, O5 and O6 are −0.270, −0.241, −0.261, −0.255, −0.243 and −0.268 e−, respectively. The total energy and of the title molecule are −6339.85 eV and 3.211 Debye. The HOMO and LUMO energy levels are −12.5301 and 3.7741 eV, respectively. In addition, a geometrical optimization calculation of the title compound was performed using MOPAC PM3 (Stewart, 1985). The spatial disposition of the atoms of the title molecule calculated with PM3 is shown in Fig. 3. The net charges at atoms O1, O2, O3, O4, O5 and O6 are −0.225, −0.304, −0.340, −0.318, −0.287 and −0.307e−, respectively. The total energy and of the title molecule are −3848.31 eV and 3.305 Debye. The HOMO and LUMO energy levels are −10.3738 and 0.5350 eV, respectively. In the calculations, the molecule was assumed to be isolated and in an absolute vacuum therefore resulting in calculated bond lengths, bond angles and torsion angles that are greater than those observed experimentally. The PM3 method gives the lowest values for the HOMO and LUMO energy levels and the dipole moment.
5. Synthesis and crystallization
Centaurea polypodiifolia Boiss. (1.0 kg) was extracted with methanol (3 × 5L), filtered, and the solvent removed in vacuo to obtain the crude material which was dissolved in water (333 K) and extracted with ethyl acetate. The organic phase was separated by separator funnel and the solvent was removed by reduced pressure to yield the extract (10 g). The extract was subjected to silica gel (60, GF254) (2.5 cm × 60 cm). A hexane/ethyl acetate mixture (6:4 v/v) was used as 24 fractions of 250 mL were collected. After checking by thin layer 6–8 fractions were combined and crystallized in methanol to give suitable crystals of the title compound on slow evaporation of the solvent (yield: 10 mg). 13C NMR (150 MHz, DMSO-d6) δ 219.04 (C3), 178.88 (C12), 145.62 (C10), 113.64 (C14), 81.65 (C6), 78.36 (C11), 69.19 (C8), 63.68 (C13), 55.76 (C7), 51.31 (C5), 48.58 (C9), 46.91 (C4), 43.23 (C2), 39.66 (C1), 14.83 (C15). 1H NMR (600 MHz, DMSO-d6) δ 5.41 (s, 1H, 11-OH), 5.20 (t, 1H, J = 4.62 Hz 13-OH), 4.94 (s, 1H, H14a), 4.78 (d, 1H, J = 6.09 Hz, 8-OH), 4.63 (s, 1H, H14b), 4.04–3.93 (m, 3H, H6, H8 and H13a), 3.51 (dd, 1H, J = 9.78, 4.79 Hz, H13b), 3.07 (dt, 1H, J = 12.47, 4.06 Hz, H1), 2.67 (dd,1H, J = 12.28, 5.50 Hz, H9a), 2.51 (dd, 1H, J = 18.66, 8.97 Hz, H2a), 2.45 (t, 1H, J = 10.11 Hz, H7), 2.33 (dd, 1H, J = 18.66, 4.26 Hz, H2b), 2.21–2.14 (m, 2H, H4 and H5), 2.13–2.07 (m, 1H, H9b), 1.05 (d, 3H, J = 6.38 Hz, H15).
6. Refinement
Crystal data, data collection and structure . H atoms bound to oxygen atoms were found in a difference Fourier map and allowed to ride on their parent atoms, with O—H = 0.82 Å and with Uiso = 1.5 Ueq(O). H atoms bound to carbon atoms were placed in idealized positions and allowed to ride on their parent atoms, with C—H = 0.93–0.98 Å, and with Uiso = 1.2 Ueq(C). One outlier (1 0 1) was omitted in the last cycles of refinement.
details are summarized in Table 2Supporting information
CCDC reference: 1048445
https://doi.org/10.1107/S2056989015019623/rz5172sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989015019623/rz5172Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989015019623/rz5172Isup3.cml
Data collection: CrysAlis PRO (Agilent, 2013); cell
CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick,2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).C15H20O6 | F(000) = 632 |
Mr = 296.31 | Dx = 1.427 Mg m−3 |
Orthorhombic, P212121 | Cu Kα radiation, λ = 1.54184 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 7099 reflections |
a = 8.1980 (1) Å | θ = 4.4–70.5° |
b = 10.0290 (2) Å | µ = 0.92 mm−1 |
c = 16.7720 (3) Å | T = 293 K |
V = 1378.96 (4) Å3 | Prism, colourless |
Z = 4 | 0.65 × 0.47 × 0.30 mm |
Agilent Xcalibur Ruby Gemini diffractometer | 2623 independent reflections |
Radiation source: Enhance (Cu) X-ray Source | 2502 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.040 |
Detector resolution: 10.2673 pixels mm-1 | θmax = 70.9°, θmin = 5.1° |
ω scans | h = −10→7 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013) | k = −12→12 |
Tmin = 0.773, Tmax = 1.000 | l = −20→20 |
12778 measured reflections |
Refinement on F2 | w = 1/[σ2(Fo2) + (0.0594P)2 + 0.2045P] where P = (Fo2 + 2Fc2)/3 |
Least-squares matrix: full | (Δ/σ)max < 0.001 |
R[F2 > 2σ(F2)] = 0.035 | Δρmax = 0.27 e Å−3 |
wR(F2) = 0.096 | Δρmin = −0.17 e Å−3 |
S = 1.05 | Extinction correction: SHELXL97 (Sheldrick, 2008), FC*=KFC[1+0.001XFC2Λ3/SIN(2Θ)]-1/4 |
2623 reflections | Extinction coefficient: 0.0184 (14) |
200 parameters | Absolute structure: Flack (1983), 1073 Friedel pairs |
0 restraints | Absolute structure parameter: −0.09 (9) |
Hydrogen site location: mixed |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.2767 (2) | 0.42340 (18) | 0.94867 (10) | 0.0363 (5) | |
O2 | 0.5458 (2) | 0.3191 (2) | 1.23883 (10) | 0.0417 (6) | |
O3 | 0.6704 (3) | 0.7021 (2) | 0.83279 (12) | 0.0430 (6) | |
O4 | 0.4798 (3) | 0.3608 (2) | 0.79632 (13) | 0.0583 (8) | |
O5 | 0.2968 (2) | 0.68723 (17) | 0.81640 (11) | 0.0385 (5) | |
O6 | 0.0874 (2) | 0.4674 (2) | 0.85721 (12) | 0.0526 (7) | |
C1 | 0.6584 (3) | 0.5976 (2) | 0.89063 (13) | 0.0298 (7) | |
C2 | 0.7676 (3) | 0.6329 (3) | 0.96189 (15) | 0.0371 (7) | |
C3 | 0.7539 (3) | 0.5438 (2) | 1.03466 (14) | 0.0324 (7) | |
C4 | 0.6038 (3) | 0.5670 (2) | 1.08525 (13) | 0.0294 (7) | |
C5 | 0.4523 (3) | 0.4859 (2) | 1.05600 (13) | 0.0259 (6) | |
C6 | 0.4448 (3) | 0.4643 (2) | 0.96656 (13) | 0.0266 (6) | |
C7 | 0.4782 (3) | 0.5846 (2) | 0.91215 (13) | 0.0255 (6) | |
C8 | 0.3588 (3) | 0.5632 (2) | 0.84275 (13) | 0.0284 (6) | |
C9 | 0.2237 (3) | 0.4813 (2) | 0.88134 (14) | 0.0331 (7) | |
C10 | 0.4595 (3) | 0.3538 (2) | 1.10233 (13) | 0.0280 (6) | |
C11 | 0.5437 (3) | 0.3898 (2) | 1.17991 (13) | 0.0301 (7) | |
C12 | 0.6183 (3) | 0.5262 (3) | 1.17351 (14) | 0.0347 (7) | |
C13 | 0.8685 (3) | 0.4549 (3) | 1.05183 (18) | 0.0476 (9) | |
C14 | 0.4213 (4) | 0.4848 (3) | 0.77071 (15) | 0.0384 (8) | |
C15 | 0.3005 (3) | 0.2790 (3) | 1.11343 (15) | 0.0389 (8) | |
H1 | 0.69630 | 0.51390 | 0.86680 | 0.0360* | |
H2A | 0.88010 | 0.63170 | 0.94400 | 0.0450* | |
H2B | 0.74270 | 0.72350 | 0.97810 | 0.0450* | |
H3O | 0.755 (6) | 0.703 (4) | 0.812 (2) | 0.0650* | |
H4 | 0.57660 | 0.66200 | 1.08300 | 0.0350* | |
H4O | 0.480 (6) | 0.298 (5) | 0.754 (3) | 0.0880* | |
H5 | 0.35370 | 0.53380 | 1.07230 | 0.0310* | |
H5O | 0.200 (5) | 0.668 (4) | 0.794 (2) | 0.0580* | |
H6 | 0.51910 | 0.39170 | 0.95210 | 0.0320* | |
H7 | 0.44530 | 0.66550 | 0.94070 | 0.0310* | |
H10 | 0.53330 | 0.29460 | 1.07310 | 0.0340* | |
H12A | 0.73190 | 0.52400 | 1.18980 | 0.0420* | |
H12B | 0.56050 | 0.58900 | 1.20720 | 0.0420* | |
H13A | 0.85900 | 0.40230 | 1.09730 | 0.0570* | |
H13B | 0.95820 | 0.44510 | 1.01840 | 0.0570* | |
H14A | 0.33360 | 0.47210 | 0.73260 | 0.0460* | |
H14B | 0.50810 | 0.53410 | 0.74470 | 0.0460* | |
H15A | 0.25390 | 0.25940 | 1.06220 | 0.0580* | |
H15B | 0.32090 | 0.19720 | 1.14150 | 0.0580* | |
H15C | 0.22600 | 0.33280 | 1.14360 | 0.0580* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0354 (9) | 0.0441 (9) | 0.0295 (8) | −0.0134 (7) | −0.0076 (7) | 0.0066 (8) |
O2 | 0.0504 (11) | 0.0463 (10) | 0.0285 (9) | −0.0056 (9) | −0.0076 (8) | 0.0089 (8) |
O3 | 0.0399 (10) | 0.0489 (11) | 0.0403 (10) | −0.0025 (9) | 0.0115 (8) | 0.0163 (9) |
O4 | 0.0839 (17) | 0.0463 (12) | 0.0448 (11) | 0.0247 (12) | −0.0133 (11) | −0.0176 (9) |
O5 | 0.0447 (10) | 0.0302 (8) | 0.0407 (9) | 0.0053 (8) | −0.0094 (8) | 0.0039 (8) |
O6 | 0.0391 (11) | 0.0711 (15) | 0.0477 (11) | −0.0126 (10) | −0.0136 (9) | 0.0099 (10) |
C1 | 0.0314 (12) | 0.0314 (12) | 0.0266 (10) | −0.0001 (10) | 0.0055 (9) | 0.0032 (10) |
C2 | 0.0306 (12) | 0.0426 (13) | 0.0380 (13) | −0.0097 (11) | 0.0022 (10) | 0.0041 (11) |
C3 | 0.0280 (12) | 0.0377 (12) | 0.0316 (12) | −0.0081 (10) | −0.0029 (9) | 0.0002 (10) |
C4 | 0.0336 (12) | 0.0265 (11) | 0.0280 (11) | −0.0041 (9) | −0.0003 (10) | −0.0019 (9) |
C5 | 0.0263 (10) | 0.0268 (10) | 0.0245 (10) | −0.0014 (8) | 0.0010 (9) | −0.0005 (8) |
C6 | 0.0271 (11) | 0.0273 (11) | 0.0254 (11) | −0.0027 (9) | −0.0011 (8) | 0.0001 (8) |
C7 | 0.0294 (11) | 0.0239 (10) | 0.0232 (10) | 0.0018 (9) | 0.0020 (9) | −0.0017 (8) |
C8 | 0.0341 (12) | 0.0255 (11) | 0.0256 (10) | 0.0043 (9) | −0.0024 (9) | −0.0004 (9) |
C9 | 0.0339 (13) | 0.0363 (12) | 0.0290 (11) | −0.0009 (10) | −0.0050 (10) | −0.0016 (10) |
C10 | 0.0322 (11) | 0.0280 (11) | 0.0239 (10) | −0.0019 (9) | 0.0002 (9) | −0.0003 (8) |
C11 | 0.0285 (11) | 0.0360 (12) | 0.0257 (11) | 0.0012 (10) | −0.0001 (10) | −0.0007 (9) |
C12 | 0.0390 (13) | 0.0385 (13) | 0.0266 (11) | −0.0052 (11) | −0.0022 (10) | −0.0040 (10) |
C13 | 0.0364 (14) | 0.0650 (19) | 0.0413 (14) | 0.0038 (13) | −0.0002 (12) | 0.0033 (14) |
C14 | 0.0478 (15) | 0.0404 (14) | 0.0269 (11) | 0.0048 (12) | −0.0004 (11) | −0.0054 (10) |
C15 | 0.0414 (14) | 0.0425 (14) | 0.0328 (12) | −0.0135 (12) | −0.0028 (11) | 0.0052 (11) |
O1—C6 | 1.469 (3) | C8—C9 | 1.523 (3) |
O1—C9 | 1.342 (3) | C10—C11 | 1.517 (3) |
O2—C11 | 1.216 (3) | C10—C15 | 1.515 (4) |
O3—C1 | 1.432 (3) | C11—C12 | 1.502 (4) |
O4—C14 | 1.400 (4) | C1—H1 | 0.9800 |
O5—C8 | 1.415 (3) | C2—H2A | 0.9700 |
O6—C9 | 1.197 (3) | C2—H2B | 0.9700 |
O3—H3O | 0.78 (5) | C4—H4 | 0.9800 |
O4—H4O | 0.95 (5) | C5—H5 | 0.9800 |
O5—H5O | 0.90 (4) | C6—H6 | 0.9800 |
C1—C2 | 1.535 (3) | C7—H7 | 0.9800 |
C1—C7 | 1.526 (3) | C10—H10 | 0.9800 |
C2—C3 | 1.517 (4) | C12—H12A | 0.9700 |
C3—C4 | 1.513 (3) | C12—H12B | 0.9700 |
C3—C13 | 1.327 (4) | C13—H13A | 0.9300 |
C4—C5 | 1.564 (3) | C13—H13B | 0.9300 |
C4—C12 | 1.540 (3) | C14—H14A | 0.9700 |
C5—C6 | 1.517 (3) | C14—H14B | 0.9700 |
C5—C10 | 1.537 (3) | C15—H15A | 0.9600 |
C6—C7 | 1.537 (3) | C15—H15B | 0.9600 |
C7—C8 | 1.536 (3) | C15—H15C | 0.9600 |
C8—C14 | 1.530 (3) | ||
C6—O1—C9 | 110.78 (17) | C2—C1—H1 | 109.00 |
C1—O3—H3O | 112 (3) | C7—C1—H1 | 109.00 |
C14—O4—H4O | 111 (3) | C1—C2—H2A | 108.00 |
C8—O5—H5O | 105 (3) | C1—C2—H2B | 108.00 |
O3—C1—C7 | 106.82 (19) | C3—C2—H2A | 108.00 |
O3—C1—C2 | 108.59 (19) | C3—C2—H2B | 108.00 |
C2—C1—C7 | 113.59 (19) | H2A—C2—H2B | 107.00 |
C1—C2—C3 | 116.6 (2) | C3—C4—H4 | 108.00 |
C2—C3—C4 | 114.90 (19) | C5—C4—H4 | 108.00 |
C4—C3—C13 | 123.9 (2) | C12—C4—H4 | 108.00 |
C2—C3—C13 | 121.2 (2) | C4—C5—H5 | 108.00 |
C5—C4—C12 | 102.98 (18) | C6—C5—H5 | 108.00 |
C3—C4—C5 | 112.96 (18) | C10—C5—H5 | 108.00 |
C3—C4—C12 | 115.8 (2) | O1—C6—H6 | 109.00 |
C4—C5—C6 | 114.63 (19) | C5—C6—H6 | 109.00 |
C4—C5—C10 | 105.03 (18) | C7—C6—H6 | 109.00 |
C6—C5—C10 | 112.24 (17) | C1—C7—H7 | 108.00 |
O1—C6—C5 | 106.26 (18) | C6—C7—H7 | 108.00 |
O1—C6—C7 | 105.37 (18) | C8—C7—H7 | 108.00 |
C5—C6—C7 | 117.89 (17) | C5—C10—H10 | 107.00 |
C1—C7—C8 | 116.72 (19) | C11—C10—H10 | 107.00 |
C1—C7—C6 | 112.32 (18) | C15—C10—H10 | 107.00 |
C6—C7—C8 | 103.10 (17) | C4—C12—H12A | 111.00 |
O5—C8—C7 | 110.05 (17) | C4—C12—H12B | 110.00 |
O5—C8—C9 | 110.22 (19) | C11—C12—H12A | 110.00 |
C9—C8—C14 | 107.58 (19) | C11—C12—H12B | 111.00 |
C7—C8—C14 | 117.2 (2) | H12A—C12—H12B | 109.00 |
O5—C8—C14 | 109.00 (19) | C3—C13—H13A | 120.00 |
C7—C8—C9 | 102.52 (18) | C3—C13—H13B | 120.00 |
O1—C9—O6 | 122.5 (2) | H13A—C13—H13B | 120.00 |
O1—C9—C8 | 110.8 (2) | O4—C14—H14A | 110.00 |
O6—C9—C8 | 126.7 (2) | O4—C14—H14B | 110.00 |
C5—C10—C11 | 104.24 (17) | C8—C14—H14A | 110.00 |
C5—C10—C15 | 117.1 (2) | C8—C14—H14B | 110.00 |
C11—C10—C15 | 113.83 (19) | H14A—C14—H14B | 108.00 |
O2—C11—C12 | 125.7 (2) | C10—C15—H15A | 109.00 |
O2—C11—C10 | 124.4 (2) | C10—C15—H15B | 109.00 |
C10—C11—C12 | 109.92 (18) | C10—C15—H15C | 110.00 |
C4—C12—C11 | 106.21 (19) | H15A—C15—H15B | 109.00 |
O4—C14—C8 | 109.2 (2) | H15A—C15—H15C | 109.00 |
O3—C1—H1 | 109.00 | H15B—C15—H15C | 109.00 |
C6—O1—C9—O6 | −176.4 (2) | C6—C5—C10—C15 | −79.1 (3) |
C6—O1—C9—C8 | 3.7 (2) | C4—C5—C6—O1 | −163.79 (17) |
C9—O1—C6—C5 | 139.66 (18) | O1—C6—C7—C1 | −151.38 (17) |
C9—O1—C6—C7 | 13.8 (2) | C5—C6—C7—C8 | −143.2 (2) |
O3—C1—C2—C3 | 171.8 (2) | O1—C6—C7—C8 | −24.9 (2) |
O3—C1—C7—C8 | 54.4 (2) | C5—C6—C7—C1 | 90.3 (2) |
C7—C1—C2—C3 | 53.2 (3) | C1—C7—C8—C14 | 32.2 (3) |
O3—C1—C7—C6 | 173.17 (17) | C6—C7—C8—O5 | 143.33 (18) |
C2—C1—C7—C6 | −67.1 (2) | C6—C7—C8—C9 | 26.1 (2) |
C2—C1—C7—C8 | 174.11 (19) | C6—C7—C8—C14 | −91.4 (2) |
C1—C2—C3—C13 | 104.8 (3) | C1—C7—C8—C9 | 149.70 (18) |
C1—C2—C3—C4 | −76.4 (3) | C1—C7—C8—O5 | −93.1 (2) |
C2—C3—C4—C5 | 86.5 (2) | O5—C8—C9—O6 | 43.5 (3) |
C2—C3—C4—C12 | −155.1 (2) | O5—C8—C9—O1 | −136.56 (19) |
C13—C3—C4—C5 | −94.8 (3) | C14—C8—C9—O1 | 104.7 (2) |
C13—C3—C4—C12 | 23.7 (3) | C14—C8—C9—O6 | −75.2 (3) |
C12—C4—C5—C10 | −34.5 (2) | O5—C8—C14—O4 | −178.8 (2) |
C12—C4—C5—C6 | −158.11 (19) | C7—C8—C14—O4 | 55.4 (3) |
C5—C4—C12—C11 | 26.5 (2) | C9—C8—C14—O4 | −59.3 (3) |
C3—C4—C5—C10 | 91.2 (2) | C7—C8—C9—O1 | −19.4 (2) |
C3—C4—C5—C6 | −32.5 (2) | C7—C8—C9—O6 | 160.6 (2) |
C3—C4—C12—C11 | −97.3 (2) | C5—C10—C11—O2 | 165.6 (2) |
C10—C5—C6—C7 | −165.7 (2) | C5—C10—C11—C12 | −12.6 (3) |
C4—C5—C10—C15 | 155.79 (19) | C15—C10—C11—O2 | 36.8 (3) |
C6—C5—C10—C11 | 154.2 (2) | C15—C10—C11—C12 | −141.4 (2) |
C4—C5—C10—C11 | 29.1 (2) | O2—C11—C12—C4 | 172.8 (2) |
C4—C5—C6—C7 | −46.0 (3) | C10—C11—C12—C4 | −9.1 (3) |
C10—C5—C6—O1 | 76.5 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3O···O2i | 0.78 (5) | 2.06 (4) | 2.818 (3) | 168 (4) |
O4—H4O···O3ii | 0.95 (5) | 2.14 (5) | 2.956 (3) | 144 (4) |
O4—H4O···O5ii | 0.95 (5) | 2.45 (5) | 3.156 (3) | 132 (4) |
O5—H5O···O6 | 0.90 (4) | 2.45 (4) | 2.877 (3) | 109 (3) |
O5—H5O···O2iii | 0.90 (4) | 2.22 (4) | 3.096 (2) | 164 (4) |
Symmetry codes: (i) −x+3/2, −y+1, z−1/2; (ii) −x+1, y−1/2, −z+3/2; (iii) −x+1/2, −y+1, z−1/2. |
Acknowledgements
This work was supported by the Scientific Research Project Fund of Cumhuriyet University under Project number F-436.
References
Agilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Bensouici, C., Kabouche, A., Kabouche, Z., Touzani, R. & Bruneau, C. (2012). Chem. Nat. Compd, 48, 510–511. Web of Science CrossRef CAS Google Scholar
Bruno, M., Paternostro, M. P., Gedris, T. E. & Herz, W. (1996). Phytochemistry, 41, 335–336. CrossRef CAS Web of Science Google Scholar
Chicca, A., Tebano, M., Adinolfi, B., Ertugrul, K., Flamini, G. & Nieri, P. (2011). Eur. J. Med. Chem. 46, 3066–3070. Web of Science CrossRef CAS PubMed Google Scholar
Christensen, L. P. & Lam, J. (1990). Phytochemistry, 29, 2753–2785. CrossRef CAS Web of Science Google Scholar
Csapi, B., Hajdú, Z., Zupkó, I., Berényi, A., Ágnes, , Forgo, P., Szabó, P. & Hohmann, J. (2010). Phytother. Res. 24, 1664–1669. Google Scholar
Davis, P. H., Mill, R. R. & Tan, K. (1988). In Flora of Turkey and the East Aegean Islands. Edinburgh: University Press. Google Scholar
Djeddi, S., Sokovic, M. & Skaltsa, H. (2011). J Essential Oil Bearing Plants, 14, 658–666. Web of Science CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Forgo, P., Zupkó, I., Molnár, J., Vasas, A., Dombi, G. & Hohmann, J. (2012). Fitoterapia, 83, 921–925. Web of Science CrossRef CAS PubMed Google Scholar
Gülcemal, D., Alankuş-Çalışkan, Ö., Karaalp, C., Örs, A. U., Ballar, P. & Bedir, E. (2010). Carbohydr. Res. 345, 2529–2533. Web of Science PubMed Google Scholar
Janaćković, P., Tešević, V., Milosavljević, S., Vajs, V. & Marin, P. D. (2004). Biochem. Syst. Ecol. 32, 355–357. Google Scholar
Kamanzi, K., Raynaud, J. & Voirin, B. (1983). Plant. Med. Phytother. 17, 57–60. CAS Google Scholar
Khalfallah, A., Berrehal, D., Kabouche, A., Touzani, R. & Kabouche, Z. (2012). Chem. Nat. Compd, 48, 482–483. Web of Science CrossRef CAS Google Scholar
Koukoulitsa, E., Skaltsa, H., Karioti, A., Demetzos, C. & Dimas, K. (2002). Planta Med. 68, 649–652. Web of Science CrossRef PubMed CAS Google Scholar
Kubacey, T. M., Haggag, E. G., El-Toumy, S. A., Ahmed, A. A., El-Ashmawy, I. M. & Youns, M. M. (2012). J. Pharm. Res. 5, 3352–3361. CAS Google Scholar
Politeo, O., Skocibusic, M., Carev, I., Burcul, F., Jerkovic, I., Sarolic, M. & Milos, M. (2012). Nat. Prod. Commun. 7, 1087–1090. Web of Science CAS PubMed Google Scholar
Pople, J. A. & Beveridge, D. L. (1970). In Approximate Molecular Orbital Theory. New York: McGraw–Hill. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stewart, J. J. P. (1985). MOPAC. QCPE Program 445. Quantum Chemistry Program Exchange, Indiana University, Bloomington, IN 47405, USA. Google Scholar
Swamy, G. Y. S. K., Ravikumar, K., Das, B. & Mahender, G. (2005). Acta Cryst. E61, o121–o123. Web of Science CSD CrossRef IUCr Journals Google Scholar
Uysal, I., Celik, S., Saglam, H. & Guven, K. (2013). Asian J. Chem. 25, 666–670. CAS Google Scholar
Yeşilada, E., Honda, G., Sezik, E., Tabata, M., Fujita, T., Tanaka, T., Takeda, Y. & Takaishi, Y. (1995). J. Ethnopharmacol. 46, 133–152. PubMed Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.