research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and computational study of 3,4-dihy­dr­oxy-3-hy­dr­oxy­methyl-9-methyl-6-methyl­­idene-3a,4,5,6,6a,9,9a,9b-octa­hydro­azuleno[4,5-b]furan-2,8(3H,7H)-dione

aDepartment of Physics, Faculty of Arts and Sciences, Cumhuriyet University, 06532 Sivas, Turkey, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cDepartment of Chemistry, Faculty of Science and Art, Gaziosmanpasa University, 60240 Tokat, Turkey, and dDepartamento Química Física y Analítica, Facultad de Química, Universidad Oviedo, C/ Julián Clavería, 8, 33006 Oviedo (Asturias), Spain
*Correspondence e-mail: akkurt@erciyes.edu.tr

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 9 October 2015; accepted 16 October 2015; online 4 November 2015)

In the mol­ecule of title compound, C15H20O6, also known as cynarinin A, the cyclo­pentane ring having twist conformation and a γ-lactone ring assuming an envelope conformation are trans- and cis-fused, respectively, to a cyclo­heptane ring adopting a twist-chair conformation. In the crystal, O—H⋯O hydrogen bonds link neighbouring mol­ecules, forming a three-dimensional network. Theoretical calculations of the mol­ecular structure using the CNDO approximation and MOPAC PM3 geometry optimization are in satisfactory agreement with the results of the X-ray structure analysis.

1. Chemical context

The genus Centaurea belongs to the asteraceae family and consists of more than seven hundred species throughout the world. One hundred and ninety species are found in Turkey, one hundred of which are endemic (Davis et al., 1988[Davis, P. H., Mill, R. R. & Tan, K. (1988). In Flora of Turkey and the East Aegean Islands. Edinburgh: University Press.]). Centaurea species contain acetyl­enic compounds (Christensen & Lam, 1990[Christensen, L. P. & Lam, J. (1990). Phytochemistry, 29, 2753-2785.]), flavonoids (Gulcemal et al., 2010[Gülcemal, D., Alankuş-Çalışkan, Ö., Karaalp, C., Örs, A. U., Ballar, P. & Bedir, E. (2010). Carbohydr. Res. 345, 2529-2533.]; Kubacey et al., 2012[Kubacey, T. M., Haggag, E. G., El-Toumy, S. A., Ahmed, A. A., El-Ashmawy, I. M. & Youns, M. M. (2012). J. Pharm. Res. 5, 3352-3361.]; Khalfallah et al., 2012[Khalfallah, A., Berrehal, D., Kabouche, A., Touzani, R. & Kabouche, Z. (2012). Chem. Nat. Compd, 48, 482-483.]; Forgo et al., 2012[Forgo, P., Zupkó, I., Molnár, J., Vasas, A., Dombi, G. & Hohmann, J. (2012). Fitoterapia, 83, 921-925.]) and sesquiterpene lactones (Bruno et al., 1996[Bruno, M., Paternostro, M. P., Gedris, T. E. & Herz, W. (1996). Phytochemistry, 41, 335-336.]; Koukoulitsa et al., 2002[Koukoulitsa, E., Skaltsa, H., Karioti, A., Demetzos, C. & Dimas, K. (2002). Planta Med. 68, 649-652.]; Janackovic et al., 2004[Janaćković, P., Tešević, V., Milosavljević, S., Vajs, V. & Marin, P. D. (2004). Biochem. Syst. Ecol. 32, 355-357.]; Bensouici et al., 2012[Bensouici, C., Kabouche, A., Kabouche, Z., Touzani, R. & Bruneau, C. (2012). Chem. Nat. Compd, 48, 510-511.]), and display anti­cancer (Chicca et al., 2011[Chicca, A., Tebano, M., Adinolfi, B., Ertugrul, K., Flamini, G. & Nieri, P. (2011). Eur. J. Med. Chem. 46, 3066-3070.]; Csapi et al., 2010[Csapi, B., Hajdú, Z., Zupkó, I., Berényi, A., Ágnes, , Forgo, P., Szabó, P. & Hohmann, J. (2010). Phytother. Res. 24, 1664-1669.]), anti­microbial, and anti-oxidant activities (Uysal et al., 2013[Uysal, I., Celik, S., Saglam, H. & Guven, K. (2013). Asian J. Chem. 25, 666-670.]; Politeo et al., 2012[Politeo, O., Skocibusic, M., Carev, I., Burcul, F., Jerkovic, I., Sarolic, M. & Milos, M. (2012). Nat. Prod. Commun. 7, 1087-1090.]; Djeddi et al., 2011[Djeddi, S., Sokovic, M. & Skaltsa, H. (2011). J Essential Oil Bearing Plants, 14, 658-666.]). Sesquiterpene lactones (SLs) are a class of plant secondary metabolites of lipophilic character. SLs exhibit diverse biological activities such as anti-inflammatory, anti-ulcer, anti­bacterial, anti­viral, anti­fungal, and cytotoxic activity, and have an influence on the central nervous system and cardiovascular system (Yeşilada et al., 1995[Yeşilada, E., Honda, G., Sezik, E., Tabata, M., Fujita, T., Tanaka, T., Takeda, Y. & Takaishi, Y. (1995). J. Ethnopharmacol. 46, 133-152.]). As a contribution to this research field, the X-ray crystal structure of the title compound, also known as cynarinin A (Kamanzi et al., 1983[Kamanzi, K., Raynaud, J. & Voirin, B. (1983). Plant. Med. Phytother. 17, 57-60.]), is reported herein.

[Scheme 1]

2. Structural commentary

The title compound contains a cyclo­pentane ring and a γ-lactone ring trans- and cis-fused, respectively, to a cyclo­heptane ring (Fig. 1[link]). The relative configurations at the asymmetric centres are C1(S), C4(R), C5(R), C6(R), C7(R), C8(R) and C10(S). The cyclo­pentane ring (C4/C5/C10–C12) is in a twist conformation about the C4—C5 bond with puckering parameters Q = 0.340 (3) Å and φ = 21.3 (4)°. The γ-lactone ring (O1/C6–C9) has an envelope conformation, with C7 at the flap [puckering parameters: Q = 0.271 (2) Å, φ = 259.0 (5)°]. The cyclo­heptane ring has a twist-chair conformation [puckering parameters: Q2 = 0.534 (2) Å, φ2 = 34.5 (3)°; Q3 = 0.650 (2) Å, φ3 = 191.5 (2)° and QT = 0.841 (2) Å]. The pseudo-diad axis bis­ects the C1—C2 bond and passes through atom C5. All bond lengths and angles are unexceptional and comparable with those reported for a similar compound (Swamy et al., 2005[Swamy, G. Y. S. K., Ravikumar, K., Das, B. & Mahender, G. (2005). Acta Cryst. E61, o121-o123.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, neighbouring mol­ecules are connected by O—H⋯O hydrogen bonds (Table 1[link]; Fig. 2[link]), forming a three dimensional network.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3O⋯O2i 0.78 (5) 2.06 (4) 2.818 (3) 168 (4)
O4—H4O⋯O3ii 0.95 (5) 2.14 (5) 2.956 (3) 144 (4)
O4—H4O⋯O5ii 0.95 (5) 2.45 (5) 3.156 (3) 132 (4)
O5—H5O⋯O6 0.90 (4) 2.45 (4) 2.877 (3) 109 (3)
O5—H5O⋯O2iii 0.90 (4) 2.22 (4) 3.096 (2) 164 (4)
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y+1, z-{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
The crystal packing of the title compound, viewed down the b axis, showing the three-dimensional hydrogen-bonding network (dashed lines).

4. Theoretical calculations

According to the results of a quantum mechanical calculation using the CNDO approximation (Pople et al., 1970[Pople, J. A. & Beveridge, D. L. (1970). In Approximate Molecular Orbital Theory. New York: McGraw-Hill.]), the charges at atoms O1, O2, O3, O4, O5 and O6 are −0.270, −0.241, −0.261, −0.255, −0.243 and −0.268 e, respectively. The total energy and dipole moment of the title mol­ecule are −6339.85 eV and 3.211 Debye. The HOMO and LUMO energy levels are −12.5301 and 3.7741 eV, respectively. In addition, a geometrical optimization calculation of the title compound was performed using MOPAC PM3 (Stewart, 1985[Stewart, J. J. P. (1985). MOPAC. QCPE Program 445. Quantum Chemistry Program Exchange, Indiana University, Bloomington, IN 47405, USA.]). The spatial disposition of the atoms of the title mol­ecule calculated with PM3 is shown in Fig. 3[link]. The net charges at atoms O1, O2, O3, O4, O5 and O6 are −0.225, −0.304, −0.340, −0.318, −0.287 and −0.307e, respectively. The total energy and dipole moment of the title mol­ecule are −3848.31 eV and 3.305 Debye. The HOMO and LUMO energy levels are −10.3738 and 0.5350 eV, respectively. In the calculations, the mol­ecule was assumed to be isolated and in an absolute vacuum therefore resulting in calculated bond lengths, bond angles and torsion angles that are greater than those observed experimentally. The PM3 method gives the lowest values for the HOMO and LUMO energy levels and the dipole moment.

[Figure 3]
Figure 3
Spatial view of the mol­ecule of the title compound calculated using the PM3 method.

5. Synthesis and crystallization

Centaurea polypodiifolia Boiss. (1.0 kg) was extracted with methanol (3 × 5L), filtered, and the solvent removed in vacuo to obtain the crude material which was dissolved in water (333 K) and extracted with ethyl acetate. The organic phase was separated by separator funnel and the solvent was removed by reduced pressure to yield the extract (10 g). The extract was subjected to silica gel (60, GF254) column chromatography (2.5 cm × 60 cm). A hexa­ne/ethyl acetate mixture (6:4 v/v) was used as eluent. 24 fractions of 250 mL were collected. After checking by thin layer chromatography, 6–8 fractions were combined and crystallized in methanol to give suitable crystals of the title compound on slow evaporation of the solvent (yield: 10 mg). 13C NMR (150 MHz, DMSO-d6) δ 219.04 (C3), 178.88 (C12), 145.62 (C10), 113.64 (C14), 81.65 (C6), 78.36 (C11), 69.19 (C8), 63.68 (C13), 55.76 (C7), 51.31 (C5), 48.58 (C9), 46.91 (C4), 43.23 (C2), 39.66 (C1), 14.83 (C15). 1H NMR (600 MHz, DMSO-d6) δ 5.41 (s, 1H, 11-OH), 5.20 (t, 1H, J = 4.62 Hz 13-OH), 4.94 (s, 1H, H14a), 4.78 (d, 1H, J = 6.09 Hz, 8-OH), 4.63 (s, 1H, H14b), 4.04–3.93 (m, 3H, H6, H8 and H13a), 3.51 (dd, 1H, J = 9.78, 4.79 Hz, H13b), 3.07 (dt, 1H, J = 12.47, 4.06 Hz, H1), 2.67 (dd,1H, J = 12.28, 5.50 Hz, H9a), 2.51 (dd, 1H, J = 18.66, 8.97 Hz, H2a), 2.45 (t, 1H, J = 10.11 Hz, H7), 2.33 (dd, 1H, J = 18.66, 4.26 Hz, H2b), 2.21–2.14 (m, 2H, H4 and H5), 2.13–2.07 (m, 1H, H9b), 1.05 (d, 3H, J = 6.38 Hz, H15).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms bound to oxygen atoms were found in a difference Fourier map and allowed to ride on their parent atoms, with O—H = 0.82 Å and with Uiso = 1.5 Ueq(O). H atoms bound to carbon atoms were placed in idealized positions and allowed to ride on their parent atoms, with C—H = 0.93–0.98 Å, and with Uiso = 1.2 Ueq(C). One outlier (1 0 1) was omitted in the last cycles of refinement.

Table 2
Experimental details

Crystal data
Chemical formula C15H20O6
Mr 296.31
Crystal system, space group Orthorhombic, P212121
Temperature (K) 293
a, b, c (Å) 8.1980 (1), 10.0290 (2), 16.7720 (3)
V3) 1378.96 (4)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.92
Crystal size (mm) 0.65 × 0.47 × 0.30
 
Data collection
Diffractometer Agilent Xcalibur Ruby Gemini
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.])
Tmin, Tmax 0.773, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 12778, 2623, 2502
Rint 0.040
(sin θ/λ)max−1) 0.613
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.096, 1.05
No. of reflections 2623
No. of parameters 200
Δρmax, Δρmin (e Å−3) 0.27, −0.17
Absolute structure Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1073 Friedel pairs
Absolute structure parameter −0.09 (9)
Computer programs: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick,2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

3,4-Dihydroxy-3-hydroxymethyl-9-methyl-6-methylidene-3a,4,5,6,6a,9,9a,9b-octahydroazuleno[4,5-b]furan-2,8(3H,7H)-dione top
Crystal data top
C15H20O6F(000) = 632
Mr = 296.31Dx = 1.427 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.54184 Å
Hall symbol: P 2ac 2abCell parameters from 7099 reflections
a = 8.1980 (1) Åθ = 4.4–70.5°
b = 10.0290 (2) ŵ = 0.92 mm1
c = 16.7720 (3) ÅT = 293 K
V = 1378.96 (4) Å3Prism, colourless
Z = 40.65 × 0.47 × 0.30 mm
Data collection top
Agilent Xcalibur Ruby Gemini
diffractometer
2623 independent reflections
Radiation source: Enhance (Cu) X-ray Source2502 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 10.2673 pixels mm-1θmax = 70.9°, θmin = 5.1°
ω scansh = 107
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
k = 1212
Tmin = 0.773, Tmax = 1.000l = 2020
12778 measured reflections
Refinement top
Refinement on F2 w = 1/[σ2(Fo2) + (0.0594P)2 + 0.2045P]
where P = (Fo2 + 2Fc2)/3
Least-squares matrix: full(Δ/σ)max < 0.001
R[F2 > 2σ(F2)] = 0.035Δρmax = 0.27 e Å3
wR(F2) = 0.096Δρmin = 0.17 e Å3
S = 1.05Extinction correction: SHELXL97 (Sheldrick, 2008), FC*=KFC[1+0.001XFC2Λ3/SIN(2Θ)]-1/4
2623 reflectionsExtinction coefficient: 0.0184 (14)
200 parametersAbsolute structure: Flack (1983), 1073 Friedel pairs
0 restraintsAbsolute structure parameter: 0.09 (9)
Hydrogen site location: mixed
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2767 (2)0.42340 (18)0.94867 (10)0.0363 (5)
O20.5458 (2)0.3191 (2)1.23883 (10)0.0417 (6)
O30.6704 (3)0.7021 (2)0.83279 (12)0.0430 (6)
O40.4798 (3)0.3608 (2)0.79632 (13)0.0583 (8)
O50.2968 (2)0.68723 (17)0.81640 (11)0.0385 (5)
O60.0874 (2)0.4674 (2)0.85721 (12)0.0526 (7)
C10.6584 (3)0.5976 (2)0.89063 (13)0.0298 (7)
C20.7676 (3)0.6329 (3)0.96189 (15)0.0371 (7)
C30.7539 (3)0.5438 (2)1.03466 (14)0.0324 (7)
C40.6038 (3)0.5670 (2)1.08525 (13)0.0294 (7)
C50.4523 (3)0.4859 (2)1.05600 (13)0.0259 (6)
C60.4448 (3)0.4643 (2)0.96656 (13)0.0266 (6)
C70.4782 (3)0.5846 (2)0.91215 (13)0.0255 (6)
C80.3588 (3)0.5632 (2)0.84275 (13)0.0284 (6)
C90.2237 (3)0.4813 (2)0.88134 (14)0.0331 (7)
C100.4595 (3)0.3538 (2)1.10233 (13)0.0280 (6)
C110.5437 (3)0.3898 (2)1.17991 (13)0.0301 (7)
C120.6183 (3)0.5262 (3)1.17351 (14)0.0347 (7)
C130.8685 (3)0.4549 (3)1.05183 (18)0.0476 (9)
C140.4213 (4)0.4848 (3)0.77071 (15)0.0384 (8)
C150.3005 (3)0.2790 (3)1.11343 (15)0.0389 (8)
H10.696300.513900.866800.0360*
H2A0.880100.631700.944000.0450*
H2B0.742700.723500.978100.0450*
H3O0.755 (6)0.703 (4)0.812 (2)0.0650*
H40.576600.662001.083000.0350*
H4O0.480 (6)0.298 (5)0.754 (3)0.0880*
H50.353700.533801.072300.0310*
H5O0.200 (5)0.668 (4)0.794 (2)0.0580*
H60.519100.391700.952100.0320*
H70.445300.665500.940700.0310*
H100.533300.294601.073100.0340*
H12A0.731900.524001.189800.0420*
H12B0.560500.589001.207200.0420*
H13A0.859000.402301.097300.0570*
H13B0.958200.445101.018400.0570*
H14A0.333600.472100.732600.0460*
H14B0.508100.534100.744700.0460*
H15A0.253900.259401.062200.0580*
H15B0.320900.197201.141500.0580*
H15C0.226000.332801.143600.0580*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0354 (9)0.0441 (9)0.0295 (8)0.0134 (7)0.0076 (7)0.0066 (8)
O20.0504 (11)0.0463 (10)0.0285 (9)0.0056 (9)0.0076 (8)0.0089 (8)
O30.0399 (10)0.0489 (11)0.0403 (10)0.0025 (9)0.0115 (8)0.0163 (9)
O40.0839 (17)0.0463 (12)0.0448 (11)0.0247 (12)0.0133 (11)0.0176 (9)
O50.0447 (10)0.0302 (8)0.0407 (9)0.0053 (8)0.0094 (8)0.0039 (8)
O60.0391 (11)0.0711 (15)0.0477 (11)0.0126 (10)0.0136 (9)0.0099 (10)
C10.0314 (12)0.0314 (12)0.0266 (10)0.0001 (10)0.0055 (9)0.0032 (10)
C20.0306 (12)0.0426 (13)0.0380 (13)0.0097 (11)0.0022 (10)0.0041 (11)
C30.0280 (12)0.0377 (12)0.0316 (12)0.0081 (10)0.0029 (9)0.0002 (10)
C40.0336 (12)0.0265 (11)0.0280 (11)0.0041 (9)0.0003 (10)0.0019 (9)
C50.0263 (10)0.0268 (10)0.0245 (10)0.0014 (8)0.0010 (9)0.0005 (8)
C60.0271 (11)0.0273 (11)0.0254 (11)0.0027 (9)0.0011 (8)0.0001 (8)
C70.0294 (11)0.0239 (10)0.0232 (10)0.0018 (9)0.0020 (9)0.0017 (8)
C80.0341 (12)0.0255 (11)0.0256 (10)0.0043 (9)0.0024 (9)0.0004 (9)
C90.0339 (13)0.0363 (12)0.0290 (11)0.0009 (10)0.0050 (10)0.0016 (10)
C100.0322 (11)0.0280 (11)0.0239 (10)0.0019 (9)0.0002 (9)0.0003 (8)
C110.0285 (11)0.0360 (12)0.0257 (11)0.0012 (10)0.0001 (10)0.0007 (9)
C120.0390 (13)0.0385 (13)0.0266 (11)0.0052 (11)0.0022 (10)0.0040 (10)
C130.0364 (14)0.0650 (19)0.0413 (14)0.0038 (13)0.0002 (12)0.0033 (14)
C140.0478 (15)0.0404 (14)0.0269 (11)0.0048 (12)0.0004 (11)0.0054 (10)
C150.0414 (14)0.0425 (14)0.0328 (12)0.0135 (12)0.0028 (11)0.0052 (11)
Geometric parameters (Å, º) top
O1—C61.469 (3)C8—C91.523 (3)
O1—C91.342 (3)C10—C111.517 (3)
O2—C111.216 (3)C10—C151.515 (4)
O3—C11.432 (3)C11—C121.502 (4)
O4—C141.400 (4)C1—H10.9800
O5—C81.415 (3)C2—H2A0.9700
O6—C91.197 (3)C2—H2B0.9700
O3—H3O0.78 (5)C4—H40.9800
O4—H4O0.95 (5)C5—H50.9800
O5—H5O0.90 (4)C6—H60.9800
C1—C21.535 (3)C7—H70.9800
C1—C71.526 (3)C10—H100.9800
C2—C31.517 (4)C12—H12A0.9700
C3—C41.513 (3)C12—H12B0.9700
C3—C131.327 (4)C13—H13A0.9300
C4—C51.564 (3)C13—H13B0.9300
C4—C121.540 (3)C14—H14A0.9700
C5—C61.517 (3)C14—H14B0.9700
C5—C101.537 (3)C15—H15A0.9600
C6—C71.537 (3)C15—H15B0.9600
C7—C81.536 (3)C15—H15C0.9600
C8—C141.530 (3)
C6—O1—C9110.78 (17)C2—C1—H1109.00
C1—O3—H3O112 (3)C7—C1—H1109.00
C14—O4—H4O111 (3)C1—C2—H2A108.00
C8—O5—H5O105 (3)C1—C2—H2B108.00
O3—C1—C7106.82 (19)C3—C2—H2A108.00
O3—C1—C2108.59 (19)C3—C2—H2B108.00
C2—C1—C7113.59 (19)H2A—C2—H2B107.00
C1—C2—C3116.6 (2)C3—C4—H4108.00
C2—C3—C4114.90 (19)C5—C4—H4108.00
C4—C3—C13123.9 (2)C12—C4—H4108.00
C2—C3—C13121.2 (2)C4—C5—H5108.00
C5—C4—C12102.98 (18)C6—C5—H5108.00
C3—C4—C5112.96 (18)C10—C5—H5108.00
C3—C4—C12115.8 (2)O1—C6—H6109.00
C4—C5—C6114.63 (19)C5—C6—H6109.00
C4—C5—C10105.03 (18)C7—C6—H6109.00
C6—C5—C10112.24 (17)C1—C7—H7108.00
O1—C6—C5106.26 (18)C6—C7—H7108.00
O1—C6—C7105.37 (18)C8—C7—H7108.00
C5—C6—C7117.89 (17)C5—C10—H10107.00
C1—C7—C8116.72 (19)C11—C10—H10107.00
C1—C7—C6112.32 (18)C15—C10—H10107.00
C6—C7—C8103.10 (17)C4—C12—H12A111.00
O5—C8—C7110.05 (17)C4—C12—H12B110.00
O5—C8—C9110.22 (19)C11—C12—H12A110.00
C9—C8—C14107.58 (19)C11—C12—H12B111.00
C7—C8—C14117.2 (2)H12A—C12—H12B109.00
O5—C8—C14109.00 (19)C3—C13—H13A120.00
C7—C8—C9102.52 (18)C3—C13—H13B120.00
O1—C9—O6122.5 (2)H13A—C13—H13B120.00
O1—C9—C8110.8 (2)O4—C14—H14A110.00
O6—C9—C8126.7 (2)O4—C14—H14B110.00
C5—C10—C11104.24 (17)C8—C14—H14A110.00
C5—C10—C15117.1 (2)C8—C14—H14B110.00
C11—C10—C15113.83 (19)H14A—C14—H14B108.00
O2—C11—C12125.7 (2)C10—C15—H15A109.00
O2—C11—C10124.4 (2)C10—C15—H15B109.00
C10—C11—C12109.92 (18)C10—C15—H15C110.00
C4—C12—C11106.21 (19)H15A—C15—H15B109.00
O4—C14—C8109.2 (2)H15A—C15—H15C109.00
O3—C1—H1109.00H15B—C15—H15C109.00
C6—O1—C9—O6176.4 (2)C6—C5—C10—C1579.1 (3)
C6—O1—C9—C83.7 (2)C4—C5—C6—O1163.79 (17)
C9—O1—C6—C5139.66 (18)O1—C6—C7—C1151.38 (17)
C9—O1—C6—C713.8 (2)C5—C6—C7—C8143.2 (2)
O3—C1—C2—C3171.8 (2)O1—C6—C7—C824.9 (2)
O3—C1—C7—C854.4 (2)C5—C6—C7—C190.3 (2)
C7—C1—C2—C353.2 (3)C1—C7—C8—C1432.2 (3)
O3—C1—C7—C6173.17 (17)C6—C7—C8—O5143.33 (18)
C2—C1—C7—C667.1 (2)C6—C7—C8—C926.1 (2)
C2—C1—C7—C8174.11 (19)C6—C7—C8—C1491.4 (2)
C1—C2—C3—C13104.8 (3)C1—C7—C8—C9149.70 (18)
C1—C2—C3—C476.4 (3)C1—C7—C8—O593.1 (2)
C2—C3—C4—C586.5 (2)O5—C8—C9—O643.5 (3)
C2—C3—C4—C12155.1 (2)O5—C8—C9—O1136.56 (19)
C13—C3—C4—C594.8 (3)C14—C8—C9—O1104.7 (2)
C13—C3—C4—C1223.7 (3)C14—C8—C9—O675.2 (3)
C12—C4—C5—C1034.5 (2)O5—C8—C14—O4178.8 (2)
C12—C4—C5—C6158.11 (19)C7—C8—C14—O455.4 (3)
C5—C4—C12—C1126.5 (2)C9—C8—C14—O459.3 (3)
C3—C4—C5—C1091.2 (2)C7—C8—C9—O119.4 (2)
C3—C4—C5—C632.5 (2)C7—C8—C9—O6160.6 (2)
C3—C4—C12—C1197.3 (2)C5—C10—C11—O2165.6 (2)
C10—C5—C6—C7165.7 (2)C5—C10—C11—C1212.6 (3)
C4—C5—C10—C15155.79 (19)C15—C10—C11—O236.8 (3)
C6—C5—C10—C11154.2 (2)C15—C10—C11—C12141.4 (2)
C4—C5—C10—C1129.1 (2)O2—C11—C12—C4172.8 (2)
C4—C5—C6—C746.0 (3)C10—C11—C12—C49.1 (3)
C10—C5—C6—O176.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O2i0.78 (5)2.06 (4)2.818 (3)168 (4)
O4—H4O···O3ii0.95 (5)2.14 (5)2.956 (3)144 (4)
O4—H4O···O5ii0.95 (5)2.45 (5)3.156 (3)132 (4)
O5—H5O···O60.90 (4)2.45 (4)2.877 (3)109 (3)
O5—H5O···O2iii0.90 (4)2.22 (4)3.096 (2)164 (4)
Symmetry codes: (i) x+3/2, y+1, z1/2; (ii) x+1, y1/2, z+3/2; (iii) x+1/2, y+1, z1/2.
 

Acknowledgements

This work was supported by the Scientific Research Project Fund of Cumhuriyet University under Project number F-436.

References

First citationAgilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBensouici, C., Kabouche, A., Kabouche, Z., Touzani, R. & Bruneau, C. (2012). Chem. Nat. Compd, 48, 510–511.  Web of Science CrossRef CAS Google Scholar
First citationBruno, M., Paternostro, M. P., Gedris, T. E. & Herz, W. (1996). Phytochemistry, 41, 335–336.  CrossRef CAS Web of Science Google Scholar
First citationChicca, A., Tebano, M., Adinolfi, B., Ertugrul, K., Flamini, G. & Nieri, P. (2011). Eur. J. Med. Chem. 46, 3066–3070.  Web of Science CrossRef CAS PubMed Google Scholar
First citationChristensen, L. P. & Lam, J. (1990). Phytochemistry, 29, 2753–2785.  CrossRef CAS Web of Science Google Scholar
First citationCsapi, B., Hajdú, Z., Zupkó, I., Berényi, A., Ágnes, , Forgo, P., Szabó, P. & Hohmann, J. (2010). Phytother. Res. 24, 1664–1669.  Google Scholar
First citationDavis, P. H., Mill, R. R. & Tan, K. (1988). In Flora of Turkey and the East Aegean Islands. Edinburgh: University Press.  Google Scholar
First citationDjeddi, S., Sokovic, M. & Skaltsa, H. (2011). J Essential Oil Bearing Plants, 14, 658–666.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationForgo, P., Zupkó, I., Molnár, J., Vasas, A., Dombi, G. & Hohmann, J. (2012). Fitoterapia, 83, 921–925.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGülcemal, D., Alankuş-Çalışkan, Ö., Karaalp, C., Örs, A. U., Ballar, P. & Bedir, E. (2010). Carbohydr. Res. 345, 2529–2533.  Web of Science PubMed Google Scholar
First citationJanaćković, P., Tešević, V., Milosavljević, S., Vajs, V. & Marin, P. D. (2004). Biochem. Syst. Ecol. 32, 355–357.  Google Scholar
First citationKamanzi, K., Raynaud, J. & Voirin, B. (1983). Plant. Med. Phytother. 17, 57–60.  CAS Google Scholar
First citationKhalfallah, A., Berrehal, D., Kabouche, A., Touzani, R. & Kabouche, Z. (2012). Chem. Nat. Compd, 48, 482–483.  Web of Science CrossRef CAS Google Scholar
First citationKoukoulitsa, E., Skaltsa, H., Karioti, A., Demetzos, C. & Dimas, K. (2002). Planta Med. 68, 649–652.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKubacey, T. M., Haggag, E. G., El-Toumy, S. A., Ahmed, A. A., El-Ashmawy, I. M. & Youns, M. M. (2012). J. Pharm. Res. 5, 3352–3361.  CAS Google Scholar
First citationPoliteo, O., Skocibusic, M., Carev, I., Burcul, F., Jerkovic, I., Sarolic, M. & Milos, M. (2012). Nat. Prod. Commun. 7, 1087–1090.  Web of Science CAS PubMed Google Scholar
First citationPople, J. A. & Beveridge, D. L. (1970). In Approximate Molecular Orbital Theory. New York: McGraw–Hill.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStewart, J. J. P. (1985). MOPAC. QCPE Program 445. Quantum Chemistry Program Exchange, Indiana University, Bloomington, IN 47405, USA.  Google Scholar
First citationSwamy, G. Y. S. K., Ravikumar, K., Das, B. & Mahender, G. (2005). Acta Cryst. E61, o121–o123.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationUysal, I., Celik, S., Saglam, H. & Guven, K. (2013). Asian J. Chem. 25, 666–670.  CAS Google Scholar
First citationYeşilada, E., Honda, G., Sezik, E., Tabata, M., Fujita, T., Tanaka, T., Takeda, Y. & Takaishi, Y. (1995). J. Ethnopharmacol. 46, 133–152.  PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds