research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of three mercury(II) complexes [HgCl2L] where L is a bidentate chiral imine ligand

aLaboratorio de Síntesis de Complejos, Facultad de Ciencias Químicas, Universidad Autónoma de Puebla, A.P. 1067, 72001 Puebla, Pue., Mexico, bInstituto de Física, Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur, 72570 Puebla, Pue., Mexico, and cDepartamento de Microbiología, Facultad de Ciencias Químicas, Universidad Autónoma de Puebla, Puebla, Pue., Mexico
*Correspondence e-mail: sylvain_bernes@hotmail.com

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 19 October 2015; accepted 28 October 2015; online 7 November 2015)

The crystal structures of three complexes [HgCl2L] were determined, namely, (S)-(+)-di­chlorido­[1-phenyl-N-(pyridin-2-yl­methyl­idene)ethyl­amine-κ2N,N′]mercury(II), [HgCl2(C14H14N2)], (S)-(+)-di­chlorido­[1-(4-methyl­phen­yl)-N-(pyridin-2-yl­methyl­idene)ethyl­amine-κ2N,N′]mercury(II), [HgCl2(C15H16N2)], and (1S,2S,3S,5R)-(+)-di­chlorido­[N-(pyridin-2-yl­methyl­idene)isopino­camph­eyl­amine-κ2N,N′]mercury(II), [HgCl2(C16H22N2)]. The complexes consist of a bidentate chiral imine ligand coordinating to HgCl2 and crystallize with four independent mol­ecules in the first complex and two independent mol­ecules in the other two. The coordination geometry of mercury is tetra­hedral, with strong distortion towards a disphenoidal geometry, as a consequence of the imine bite angle being close to 70°. The Cl—Hg—Cl angles span a large range, 116.0 (2)–138.3 (3)°, which is related to the aggregation state in the crystals. For small Cl—Hg—Cl angles, complexes have a tendency to form dimers, via inter­molecular Hg⋯Cl contacts. These contacts become less significant in the third complex, which features the largest intra­molecular Cl—Hg—Cl angles.

1. Chemical context

The coordination geometry for HgII is very versatile, in particular because the available coordination numbers for this 5d10 metal ion cover a large range, from 2 (e.g. Moreno-Alcántar et al., 2013[Moreno-Alcántar, G., Arroyo, M., Bautista, J. L., Bernès, S., Esturau-Escofet, N. & Torrens, H. (2013). J. Fluor. Chem. 156, 61-65.]) to 10 (Williams et al., 2009[Williams, N. J., Hancock, R. D., Riebenspies, J. H., Fernandes, M. & de Sousa, A. S. (2009). Inorg. Chem. 48, 11724-11733.]). In the case of tetra­coordinated HgII complexes, the possible geometry extends from square planar, similar to d8 transition metals, to tetra­hedral, as for d7 transition metals. Inter­mediate situations resulting from a distortion of the tetra­hedral geometry are, however, the most common. The disphenoidal arrangement, also known as a seesaw geometry, is frequently observed in mononuclear HgII complexes bearing non-sterically demanding ligands with significant σ-donating ability. This geometry, resulting from the formal distortion TdC2v, may be regarded as derived from a trigonal bipyramid, with an unoccupied site in the equatorial plane (e.g. Bell et al., 1988[Bell, N. A., Chudley, N. A., March, L. A. & Nowell, I. W. (1988). Inorg. Chim. Acta, 141, 155-156.]; Wang et al., 2005[Wang, L.-Y., Zhang, C.-X., Liao, D.-Z., Jiang, Z.-H. & Yan, S.-P. (2005). J. Coord. Chem. 58, 969-973.]). Much less frequently observed is the symmetry distortion TdC3v, for which one axial site of the trigonal bipyramid is vacant (e.g. Adams et al., 1970[Adams, M. J., Hodgkin, D. C. & Raeburn, U. A. (1970). J. Chem. Soc. A, pp. 2632-2635.]).

Within this class of complexes, the coordination of the HgCl2 mol­ecule to a Schiff base is of inter­est, especially if the donor atoms from the ligand form a bite angle on the metal. Since this angle is generally less than 90°, a substantial distortion of the Td geometry is expected, which could modulate inter­molecular inter­actions in the crystal.

We gained experience in the synthesis of such ligands via sustainable processes, using solvent-free one-pot reactions between a chiral amine and an aldehyde, providing that at least one reactant is liquid at room temperature. Three Schiff bases in this series, synthesized from 2-pyridine­carboxaldehyde, have been coordinated to HgCl2, and we now report the crystal structures of the resulting complexes. The main purpose of the X-ray characterization is to assess the consequence of the N—Hg—N bite angle on the coordination geometry. Moreover, the synthetic chemistry of HgII compounds is still topical, mainly due to their potential applications as electroluminescent devices (Fan et al., 2009[Fan, R., Yang, Y., Yin, Y., Hasi, W. & Mu, Y. (2009). Inorg. Chem. 48, 6034-6043.]), sensors (Zhou et al., 2010[Zhou, Y., Zhu, C.-Y., Gao, X.-S., You, X.-Y. & Yao, C. (2010). Org. Lett. 12, 2566-2569.]), fluorescent lamps, batteries and preservatives in wood-pulp industry, etc. The inter­ference of this metal in biological systems, mainly by targeting and eventually inactivating thio-containing enzymes, also requires a better understanding of its coordinative properties (Shettihalli & Gummadi, 2013[Shettihalli, A. K. & Gummadi, S. N. (2013). Chem. Res. Toxicol. 26, 918-925.]).

[Scheme 1]

2. Structural commentary

The first imine, L1, was obtained by condensation between 2-pyridine­carboxaldehyde and (S)-(−)-1-phenyl­ethyl­amine, and coordination to HgCl2 afforded complex (I)[link], [HgCl2L1]. The monoclinic unit cell contains four mol­ecules per asymmetric unit (Fig. 1[link]), each one displaying a slightly different conformation for the ligand. The imine bond is coplanar with the pyridine ring in all independent mol­ecules, favoring the coordination of both N donors of L1 to the metal. However, the phenyl ring has a degree of free rotation, generating four conformers: the observed dihedral angles between the pyridine and phenyl rings in complexes built on Hg1, Hg2, Hg3 and Hg4, are 71.1 (6), 78.0 (5), 82.3 (4) and 86.3 (6)°, respectively. These angles thus span a quite broad range of ca 15°, which could account for the Z′ = 4 character of the crystal.

[Figure 1]
Figure 1
The asymmetric unit for complex (I)[link], with displacement ellipsoids at the 30% probability level. The labels for C and N atoms in mol­ecules Hg2, Hg3 and Hg4 are as in mol­ecule Hg1, but increased by 20, 40 and 60, respectively.

Regarding the coordination geometry, the four complexes present an arrangement inter­mediate between tetra­hedral and disphenoidal. The N—Hg—N bite angles formed by the Schiff base range from 69.7 (5) to 71.3 (5)°, confirming the rigid character of this part of L1. In contrast, Cl—Hg—Cl angles are found in a larger range, from 116.0 (2) to 126.78 (17)° (Table 1[link]). The coordination is however far from the idealized C2v-disphenoidal or C3v-trigonal pyramid arrangements.

Table 1
Comparison of key conformation parameters (°) for compounds (I)[link], (II)[link] and (III)[link]

Compound/Mol­ecule δpy—Pha Bite angleb Cl—Hg—Cl
(I)/Hg1 71.1 (6) 69.7 (5) 122.39 (19)
(I)/Hg2 78.0 (5) 70.4 (5) 117.1 (2)
(I)/Hg3 82.3 (4) 71.3 (5) 116.0 (2)
(I)/Hg4 86.3 (6) 69.9 (5) 126.78 (17)
       
(II)/Hg1 78.5 (7) 71.3 (7) 129.6 (2)
(II)/Hg2 78.2 (7) 70.1 (7) 121.7 (3)
       
(III)/Hg1 - 69.3 (7) 138.3 (3)
(III)/Hg2 - 70.3 (7) 132.1 (4)
Notes: (a) dihedral angle between aromatic rings in the ligand L; (b) N—Hg—N angle.

Ligand L2 was obtained using (S)-(−)-1-(4-methyl­phen­yl)ethyl­amine for the Schiff condensation, and complex (II)[link], [HgCl2L2] crystallized in the triclinic system, with two independent mol­ecules in the asymmetric unit (Fig. 2[link]). Although the relative position of these mol­ecules emulates a non-crystallographic inversion centre, the structure was refined in space group P1 on the basis of the chiral nature of (II)[link]. The correctness of this choice was confirmed by the refinement of the Flack parameter (see Refinement section). Geometric features related to the conformation for L2 and to its coordination geometry are compiled in Table 1[link], for comparison purposes. As expected, only small differences between (I)[link] and (II)[link] are observed. The most significant difference is for the bent conformation of the ligand, since L1 seems to be more flexible than L2. This difference could be sufficient to produce a symmetry reduction from P21 to P1, accompanied by the halving of independent conformers in the crystals, from Z′ = 4 to Z′ = 2.

[Figure 2]
Figure 2
The asymmetric unit for complex (II)[link], with displacement ellipsoids at the 30% probability level.

The third imine, L3, was obtained by condensation between 2-pyridine­carboxaldehyde and (1S,2S,3S,5R)-(+)-isopino­campheyl­amine. The complex formed upon coordination to HgCl2, (III)[link], crystallizes with two mol­ecules in the asymmetric unit (Fig. 3[link]), which have very similar conformations: the r.m.s.d. for a fit between the independent mol­ecules is 0.47 Å (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]). As for (II)[link], the independent mol­ecules are related by a non-crystallographic inversion centre, at least until chiral centres are considered. The bite angle formed by L3 is comparable to that formed by L1 or L2 (Table 1[link]). However, in the case of (III)[link], the Cl—Hg—Cl angles are larger and, as a consequence, the tetra­hedral coordination geometry in that case is more distorted towards the C2v-disphenoidal geometry, compared to (I)[link] and (II)[link]. No robust correlations between N—Hg—N and Cl—Hg—Cl angles were found after mining the CSD for tetra­coordinated HgII complexes, making a rationalization on distortion trends in these complexes difficult to draw.

[Figure 3]
Figure 3
The asymmetric unit for complex (III)[link], with displacement ellipsoids at the 30% probability level. The labels for C and N atoms in mol­ecule Hg2 are as in mol­ecule Hg1, but increased by 20.

3. Supra­molecular features

The most preeminent feature in the crystal structures of (I)–(III) is related to their multi-Z′ character. Within and beyond asymmetric units, inter­molecular Hg⋯Cl contacts are observed, which could be inter­preted as a pattern of dimerization, to form complexes of formula [Hg2L2(μ-Cl)2Cl2]. For (I)[link], mol­ecules based on Hg1 and Hg3 give contacts Hg1⋯Cl5i = 3.172 (6) Å and Hg3i⋯Cl2 = 3.258 (5) Å (symmetry code: (i) −1 + x, y, z; sum of van der Waals radii: 3.3 Å; Bondi, 1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]). In the asymmetric unit, mol­ecules based on Hg2 and Hg4 aggregate in a similar manner, with separations Hg2⋯Cl8ii = 3.189 (5) Å and Cl3⋯Hg4ii = 3.021 (6) Å [symmetry code: (ii) 1 − x, −[{1\over 2}] + y, 1 − z). The resulting asymmetric dimers are arranged in the crystal as depicted in Fig. 4[link].

[Figure 4]
Figure 4
A part of the crystal structure of (I)[link], emphasizing the aggregation of complexes in form of dimers. Dashed red bonds are non-covalent Hg⋯Cl inter­molecular contacts forming dimeric species. H atoms have been omitted. [Symmetry code: (i) x − 1, y, z.]

The same dimerization tendency is observed for Z′ = 2 structures: in the crystal structure of (II)[link], the asymmetric (μ-Cl)2 double bridge is characterized by separations Hg1⋯Cl3 = 3.089 (9) Å and Hg2⋯Cl2 = 3.211 (8) Å. In the crystal structure of (III)[link], the asymmetry of the bridge is more pronounced, with separations Hg1⋯Cl4 = 3.395 (8) Å and Hg2⋯Cl2 = 3.564 (9) Å, longer than the sum of van der Waals radii for Hg and Cl.

The point of inter­est is that in all cases, the dimeric species are formed through a non-crystallographic inversion centre, if chiral centres in ligands L1–3 are ignored. Since the chiral nature of the complexes forces them to crystallize in a Sohncke space group, the stabilization of the crystal structures through the formation of such pseudo-centrosymmetric dimers is possible only if Z′ > 1, as observed. On the other hand, it appears that the coordination geometry in the reported complexes is far enough from a disphenoidal geometry in order to promote dimerization. Indeed, the idealized C2v-disphenoidal coordination would prevent the formation of the (μ-Cl)2 bridge, since in that case the metal⋯metal separation would become too short.

4. Database survey

The crystal structures of L1–3 remain unknown, presumably because these compounds are obtained as oils at room temperature. However, L1 has been widely used as a ligand for coordination chemistry. The current release of the CSD (Version 5.36 with all updates; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) reports complexes with numerous transition metals, for example MnII, ZnII, NiII, CoII and CoIII (Howson et al., 2011[Howson, S. E., Allan, L. E. N., Chmel, N. P., Clarkson, G. J., Deeth, R. J., Faulkner, A. D., Simpson, D. H. & Scott, P. (2011). Dalton Trans. 40, 10416-10433.]), CuII (Min et al., 2010[Min, K. S., Park, A. H., Shin, J. W., Rowthu, S. R., Kim, S. K. & Ryoo, J. J. (2010). Dalton Trans. 39, 8741-8747.]), PdII (Mishnev et al., 2000[Mishnev, A., Iovel, I., Popelis, J., Vosekalna, I. & Lukevics, E. (2000). J. Organomet. Chem. 608, 1-5.]), and RhIII (Carmona et al., 1999[Carmona, D., Vega, C., Lahoz, F. J., Elipe, S., Oro, L. A., Lamata, M. P., Viguri, F., García-Correas, R., Cativiela, C. & López-Ram de Víu, M. P. (1999). Organometallics, 18, 3364-3371.]). Nevertheless, no crystal structures have been deposited for HgII complexes. An HgII complex bearing a non-chiral Schiff base close to L1 has been published (Kim & Kang, 2010[Kim, Y.-I. & Kang, S. K. (2010). Acta Cryst. E66, m1251.]). There are no structures including ligands L2 or L3 deposited in the CSD.

5. Biological activity

The anti­microbial activity of the complexes (I)–(III) was evaluated against Gram positive (Staphylococcus aureus) and Gram negative (E. coli, Pseudomonas aeruginosa) bacteria, and yeast (Candida albicans). All complexes were found to possess noteworthy anti­microbial activity (see supporting information). Among the compounds analyzed, (I)[link] and (III)[link] show high anti­microbial activity against all strains assessed. In general, all complexes tested displayed anti­fungal activity against the strains of C. albicans.

6. Synthesis and crystallization

Caution!! Any mercury compound poses potential health risks, and appropriate safety precautions along with disposal procedures must be taken in handling the complexes here reported. HgCl2 sublimes to emit highly poisonous fumes, and must be handled only by trained persons, under appropriate conditions.

Synthesis of ligands. Compounds L1–3 were obtained by direct reaction between equimolar amounts of 2-pyridine­carboxaldehyde (1.6 g., 15 mmol) and the suitable optically active amine, (S)-(−)-1-phenyl­ethyl­amine (affording L1, yield: 95%), (S)-(−)-1-(4-methyl­phen­yl)ethyl­amine (affording L2, yield: 93%), or (1S,2S,3S,5R)-(+)-isopinocampheyl­amine (affording L3, yield: 90%), under solvent-free conditions. The products, obtained as light-yellow oils, were characterized by spectroscopic techniques (see supporting information) and were used without further purification.

Synthesis of complexes. A solution of the chiral imine L1–3 (0.35 mmol) in methanol (20 ml) was treated with HgCl2 (0.1 g, 0.35 mmol) with stirring at room temperature for 1 h. The solid obtained was filtered out and dried in vacuo, and then dissolved in di­chloro­methane. The resulting solution was slowly evaporated in a non-controlled atmosphere, and after a few days, colourless crystals of complexes (I)–(III) were collected, with yields of 81, 75, and 77%, respectively. Spectroscopic data are available from the supporting information.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. In the case of the triclinic crystal (II)[link], the refined model contains a pseudo-inversion centre, at a confidence level of 95%. However, Wilson statistics, 〈|E2 − 1|〉 = 0.726, point to the space group P1. This is confirmed by the optical activity measured for (II)[link], and the convergence of the Flack parameter to the expected value. For (II)[link], diffraction data for two crystals from different synthesis were collected, giving the same space group and final model. The best data set has been retained. However, due to strong correlations between parameters of p-tolyl groups in the independent mol­ecules, these groups were restrained to have the same geometry, with effective standard deviations of 0.02 and 0.04 Å for the 1,2- and 1,3-distances, respectively (SAME command in SHELXL; Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]). In all structures, H atoms were placed in idealized positions and refined in the riding approximation, with C—H distances constrained to 0.93 (aromatic CH), 0.96 (methyl CH3), 0.97 (methyl­ene CH2) or 0.98 Å (methine CH). Isotropic displacement parameters for H atoms were calculated as Uiso(H) = xUeq(carrier C), with x = 1.5 (methyl groups) or 1.2 (other H atoms).

Table 2
Experimental details

  (I) (II) (III)
Crystal data
Chemical formula [HgCl2(C14H14N2)] [HgCl2(C15H16N2)] [HgCl2(C16H22N2)]
Mr 481.76 495.79 513.84
Crystal system, space group Monoclinic, P21 Triclinic, P1 Monoclinic, P21
Temperature (K) 298 294 298
a, b, c (Å) 7.5335 (12), 43.246 (6), 9.3069 (11) 7.6194 (3), 9.2982 (4), 12.2341 (8) 10.216 (3), 7.392 (2), 23.352 (6)
α, β, γ (°) 90, 90.486 (15), 90 94.597 (4), 103.178 (4), 94.222 (3) 90, 97.459 (14), 90
V3) 3032.0 (7) 837.43 (7) 1748.6 (8)
Z 8 2 4
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 10.49 9.50 9.10
Crystal size (mm) 0.50 × 0.18 × 0.08 0.67 × 0.36 × 0.11 0.4 × 0.2 × 0.1
 
Data collection
Diffractometer Bruker P4 Agilent Xcalibur (Atlas, Gemini) Bruker P4
Absorption correction ψ scan (XSCANS; Fait, 1996[Fait, J. (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]) Analytical (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]) Part of the refinement model (ΔF) (Walker & Stuart, 1983[Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158-166.])
Tmin, Tmax 0.205, 0.431 0.052, 0.467 0.075, 0.405
No. of measured, independent and observed [I > 2σ(I)] reflections 11312, 5884, 4961 17266, 6767, 5013 9195, 6573, 4910
Rint 0.049 0.046 0.045
(sin θ/λ)max−1) 0.595 0.625 0.622
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.101, 1.06 0.036, 0.059, 0.98 0.057, 0.166, 1.11
No. of reflections 5884 6767 6573
No. of parameters 689 365 386
No. of restraints 1 18 1
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.99, −2.17 1.07, −1.06 1.84, −1.76
Absolute structure Classical Flack method preferred over Parsons because s.u. lower; 497 Friedel pairs measured Flack x determined using 1903 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]). Flack x determined using 1701 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.011 (10) −0.006 (12) −0.05 (2)
Computer programs: XSCANS (Fait, 1996[Fait, J. (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]), CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]), SHELXS2014/7 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Supporting information


Computing details top

Data collection: XSCANS (Fait, 1996) for (I), (III); CrysAlis PRO (Agilent, 2013) for (II). Cell refinement: XSCANS (Fait, 1996) for (I), (III); CrysAlis PRO (Agilent, 2013) for (II). Data reduction: XSCANS (Fait, 1996) for (I), (III); CrysAlis PRO (Agilent, 2013) for (II). For all compounds, program(s) used to solve structure: SHELXS2014/7 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014/7 (Sheldrick, 2015).

(I) (S)-(+)-Dichlorido[1-phenyl-N-(pyridin-2-ylmethylidene)ethylamine-κ2N,N']mercury(II) top
Crystal data top
[HgCl2(C14H14N2)]Dx = 2.111 Mg m3
Mr = 481.76Melting point: 412 K
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 7.5335 (12) ÅCell parameters from 80 reflections
b = 43.246 (6) Åθ = 4.7–12.4°
c = 9.3069 (11) ŵ = 10.49 mm1
β = 90.486 (15)°T = 298 K
V = 3032.0 (7) Å3Plate, colourless
Z = 80.50 × 0.18 × 0.08 mm
F(000) = 1808
Data collection top
Bruker P4
diffractometer
4961 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube, FN4Rint = 0.049
Graphite monochromatorθmax = 25.0°, θmin = 2.2°
ω scansh = 88
Absorption correction: ψ scan
(XSCANS; Fait, 1996)
k = 5139
Tmin = 0.205, Tmax = 0.431l = 1111
11312 measured reflections3 standard reflections every 97 reflections
5884 independent reflections intensity decay: 1.5%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.0612P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.002
5884 reflectionsΔρmax = 0.99 e Å3
689 parametersΔρmin = 2.17 e Å3
1 restraintAbsolute structure: Classical Flack method preferred over Parsons because s.u. lower; 497 Friedel pairs measured.
0 constraintsAbsolute structure parameter: 0.011 (10)
Primary atom site location: structure-invariant direct methods
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.13474 (9)0.52723 (2)0.04097 (7)0.0519 (2)
Cl10.2879 (7)0.54184 (12)0.1805 (5)0.0573 (12)
Cl20.2514 (8)0.53847 (12)0.2722 (5)0.0697 (15)
N10.0433 (19)0.4915 (3)0.0830 (13)0.042 (3)
C20.025 (3)0.4680 (4)0.1581 (17)0.050 (4)
H2A0.14510.46330.14850.060*
C30.078 (3)0.4506 (4)0.2499 (18)0.049 (4)
H3A0.02770.43460.30310.059*
C40.251 (3)0.4572 (4)0.2613 (18)0.052 (5)
H4A0.32370.44540.31980.062*
C50.318 (2)0.4818 (4)0.1844 (17)0.044 (4)
H5A0.43840.48670.19040.052*
C60.209 (2)0.4993 (4)0.0988 (16)0.041 (4)
C70.273 (2)0.5258 (4)0.0201 (18)0.051 (4)
H7A0.39350.53010.01910.061*
N80.1696 (18)0.5433 (3)0.0470 (12)0.038 (3)
C90.241 (3)0.5717 (4)0.126 (2)0.055 (5)
H9A0.27220.56590.22450.066*
C100.403 (3)0.5860 (5)0.056 (3)0.084 (7)
H10A0.44320.60330.11260.126*
H10B0.37310.59290.03890.126*
H10C0.49640.57090.05130.126*
C110.096 (2)0.5955 (4)0.1296 (18)0.044 (4)
C120.047 (3)0.6080 (5)0.264 (2)0.070 (6)
H12A0.09750.60000.34740.084*
C130.073 (4)0.6317 (5)0.274 (3)0.094 (9)
H13A0.09980.64040.36250.113*
C140.154 (3)0.6426 (5)0.150 (4)0.097 (10)
H14A0.23900.65810.15470.116*
C150.109 (4)0.6305 (5)0.020 (3)0.100 (10)
H15A0.16200.63830.06310.120*
C160.015 (3)0.6067 (5)0.008 (2)0.069 (6)
H16A0.04320.59860.08120.083*
Hg20.00753 (9)0.27508 (2)0.10580 (7)0.0529 (2)
Cl30.1318 (8)0.28498 (13)0.3397 (6)0.0773 (17)
Cl40.1643 (7)0.29633 (14)0.0993 (6)0.0682 (14)
N210.1699 (18)0.2386 (3)0.0054 (14)0.041 (3)
C220.112 (3)0.2127 (4)0.070 (2)0.055 (5)
H22A0.00600.20680.05710.066*
C230.220 (3)0.1946 (4)0.155 (2)0.062 (5)
H23A0.17590.17650.19430.075*
C240.391 (3)0.2028 (4)0.182 (2)0.060 (5)
H24A0.46380.19140.24420.072*
C250.453 (2)0.2298 (4)0.1107 (16)0.044 (4)
H25A0.57050.23610.12220.053*
C260.340 (2)0.2464 (3)0.0251 (17)0.040 (4)
C270.402 (2)0.2748 (4)0.0464 (17)0.043 (4)
H27A0.52330.27910.04900.052*
N280.2969 (18)0.2928 (3)0.1024 (13)0.036 (3)
C290.376 (3)0.3222 (4)0.1642 (19)0.054 (5)
H29A0.50210.31870.18340.065*
C300.283 (3)0.3298 (4)0.3019 (18)0.064 (6)
H30A0.27270.31140.35920.095*
H30B0.35070.34500.35330.095*
H30C0.16740.33780.28210.095*
C310.359 (3)0.3477 (3)0.0512 (18)0.048 (4)
C320.192 (3)0.3576 (4)0.012 (2)0.063 (5)
H32A0.09100.34900.05300.075*
C330.180 (4)0.3810 (5)0.094 (2)0.082 (7)
H33A0.06890.38780.12390.098*
C340.328 (4)0.3936 (5)0.151 (2)0.070 (6)
H34A0.31920.40920.21920.084*
C350.491 (4)0.3838 (5)0.109 (2)0.087 (8)
H35A0.59190.39300.14790.105*
C360.507 (3)0.3607 (4)0.012 (2)0.061 (5)
H36A0.61930.35350.01210.073*
Hg30.50699 (9)0.47731 (2)0.33042 (7)0.0527 (2)
Cl50.6382 (8)0.46702 (14)0.1035 (5)0.0777 (17)
Cl60.6675 (7)0.45758 (13)0.5410 (5)0.0650 (13)
N410.3328 (19)0.5139 (3)0.4461 (14)0.041 (3)
C420.397 (3)0.5383 (4)0.5172 (19)0.054 (5)
H42A0.51700.54310.50690.065*
C430.296 (3)0.5566 (4)0.605 (2)0.057 (5)
H43A0.34460.57340.65440.068*
C440.122 (3)0.5492 (4)0.618 (2)0.056 (5)
H44A0.04900.56080.67720.068*
C450.054 (2)0.5248 (4)0.5436 (17)0.050 (4)
H45A0.06580.52000.55030.060*
C460.1616 (19)0.5076 (3)0.4601 (14)0.032 (3)
C470.109 (3)0.4794 (4)0.382 (2)0.057 (5)
H47A0.01300.47660.37000.068*
N480.2003 (18)0.4594 (3)0.3300 (15)0.042 (3)
C490.126 (2)0.4316 (4)0.2696 (16)0.042 (4)
H49A0.00060.43530.25160.051*
C500.212 (3)0.4232 (5)0.1270 (19)0.068 (6)
H50A0.16640.43640.05260.102*
H50B0.18550.40210.10390.102*
H50C0.33830.42580.13490.102*
C510.143 (2)0.4065 (4)0.3805 (17)0.045 (4)
C520.306 (3)0.3955 (5)0.427 (2)0.071 (6)
H52A0.40920.40360.38740.085*
C530.319 (4)0.3732 (5)0.530 (2)0.080 (7)
H53A0.43010.36610.55900.096*
C540.172 (5)0.3614 (5)0.589 (2)0.098 (10)
H54A0.18180.34630.65930.117*
C550.011 (4)0.3715 (6)0.546 (2)0.084 (7)
H55A0.09080.36340.58800.101*
C560.005 (3)0.3938 (4)0.441 (2)0.057 (5)
H56A0.11710.40020.41110.069*
Hg40.65551 (9)0.72714 (2)0.59963 (7)0.05081 (19)
Cl70.8089 (7)0.70943 (12)0.3893 (5)0.0607 (12)
Cl80.7367 (7)0.71712 (11)0.8472 (5)0.0608 (12)
N610.4716 (19)0.7631 (3)0.4763 (14)0.042 (3)
C620.528 (3)0.7869 (4)0.4014 (18)0.050 (5)
H62A0.64720.79250.40900.060*
C630.418 (3)0.8041 (4)0.312 (2)0.057 (5)
H63A0.46160.82070.25940.068*
C640.247 (3)0.7960 (4)0.3020 (16)0.054 (5)
H64A0.16910.80710.24310.065*
C650.186 (3)0.7712 (4)0.3806 (18)0.051 (4)
H65A0.06710.76570.37700.061*
C660.300 (2)0.7547 (3)0.4626 (15)0.037 (4)
C670.241 (2)0.7276 (4)0.5469 (17)0.044 (4)
H67A0.12090.72250.54950.053*
N680.3517 (17)0.7116 (4)0.6147 (15)0.047 (4)
C690.304 (2)0.6831 (4)0.693 (2)0.058 (5)
H69A0.33580.68620.79420.069*
C700.111 (3)0.6737 (5)0.687 (3)0.091 (8)
H70A0.03800.69110.71200.136*
H70B0.09080.65720.75450.136*
H70C0.08090.66680.59220.136*
C710.416 (3)0.6568 (4)0.638 (2)0.053 (5)
C720.539 (3)0.6417 (4)0.731 (2)0.061 (5)
H72A0.55090.64780.82600.073*
C730.637 (4)0.6187 (5)0.678 (3)0.085 (8)
H73A0.71270.60800.73980.102*
C740.629 (4)0.6104 (5)0.538 (3)0.089 (8)
H74A0.70580.59520.50440.106*
C750.514 (4)0.6235 (6)0.449 (3)0.087 (8)
H75A0.50410.61650.35520.105*
C760.408 (3)0.6482 (5)0.497 (2)0.074 (6)
H76A0.33230.65840.43360.089*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.0462 (4)0.0696 (4)0.0401 (3)0.0122 (4)0.0074 (3)0.0021 (3)
Cl10.051 (3)0.072 (3)0.049 (2)0.014 (2)0.001 (2)0.006 (2)
Cl20.080 (4)0.081 (3)0.049 (3)0.017 (3)0.026 (3)0.013 (2)
N10.042 (9)0.058 (8)0.026 (6)0.022 (7)0.001 (6)0.007 (6)
C20.044 (11)0.060 (12)0.046 (10)0.003 (9)0.008 (8)0.006 (8)
C30.052 (13)0.048 (9)0.047 (9)0.005 (9)0.002 (8)0.006 (7)
C40.064 (14)0.043 (9)0.048 (10)0.028 (9)0.019 (9)0.014 (8)
C50.032 (9)0.050 (10)0.049 (9)0.004 (8)0.012 (7)0.001 (8)
C60.040 (11)0.047 (9)0.037 (8)0.010 (8)0.016 (7)0.000 (7)
C70.052 (11)0.042 (9)0.058 (10)0.003 (9)0.015 (9)0.012 (9)
N80.044 (8)0.044 (7)0.025 (6)0.012 (6)0.010 (6)0.017 (5)
C90.068 (14)0.030 (8)0.066 (12)0.006 (8)0.001 (10)0.017 (8)
C100.050 (14)0.085 (15)0.12 (2)0.008 (12)0.003 (14)0.033 (14)
C110.029 (9)0.055 (10)0.048 (10)0.002 (8)0.007 (8)0.009 (8)
C120.075 (16)0.066 (12)0.069 (13)0.001 (11)0.017 (12)0.012 (10)
C130.11 (2)0.050 (13)0.12 (2)0.031 (14)0.034 (19)0.037 (14)
C140.055 (16)0.063 (15)0.17 (3)0.021 (12)0.042 (18)0.060 (19)
C150.13 (2)0.055 (12)0.12 (2)0.021 (14)0.071 (19)0.015 (13)
C160.074 (15)0.075 (13)0.058 (12)0.032 (12)0.021 (11)0.009 (10)
Hg20.0438 (4)0.0721 (5)0.0427 (4)0.0078 (4)0.0053 (3)0.0016 (3)
Cl30.087 (4)0.091 (4)0.053 (3)0.023 (3)0.032 (3)0.015 (2)
Cl40.046 (3)0.100 (4)0.059 (3)0.006 (3)0.001 (2)0.028 (3)
N210.028 (8)0.053 (8)0.042 (8)0.002 (6)0.006 (6)0.002 (6)
C220.040 (11)0.062 (11)0.062 (11)0.011 (9)0.014 (9)0.006 (9)
C230.068 (15)0.054 (11)0.066 (12)0.016 (10)0.007 (11)0.013 (9)
C240.041 (12)0.075 (12)0.064 (12)0.004 (10)0.029 (10)0.025 (10)
C250.033 (9)0.054 (10)0.045 (9)0.004 (8)0.010 (7)0.000 (8)
C260.027 (9)0.043 (8)0.051 (9)0.004 (7)0.001 (8)0.001 (7)
C270.031 (9)0.045 (8)0.055 (9)0.002 (8)0.007 (8)0.008 (8)
N280.036 (8)0.043 (7)0.030 (6)0.006 (6)0.001 (6)0.008 (5)
C290.051 (12)0.052 (10)0.059 (11)0.013 (9)0.025 (9)0.002 (8)
C300.098 (17)0.055 (10)0.038 (9)0.033 (11)0.013 (10)0.003 (8)
C310.066 (13)0.034 (8)0.044 (9)0.004 (8)0.006 (9)0.005 (7)
C320.055 (13)0.067 (12)0.066 (12)0.002 (10)0.013 (11)0.023 (10)
C330.11 (2)0.061 (13)0.076 (15)0.036 (14)0.003 (15)0.011 (11)
C340.11 (2)0.058 (12)0.039 (10)0.006 (13)0.001 (12)0.013 (9)
C350.13 (2)0.070 (14)0.064 (14)0.034 (15)0.011 (15)0.009 (11)
C360.071 (14)0.052 (10)0.058 (11)0.013 (10)0.016 (10)0.010 (9)
Hg30.0446 (4)0.0722 (4)0.0413 (3)0.0082 (4)0.0055 (3)0.0004 (3)
Cl50.085 (4)0.094 (4)0.054 (3)0.022 (3)0.027 (3)0.018 (3)
Cl60.047 (3)0.094 (3)0.054 (3)0.008 (3)0.003 (2)0.022 (3)
N410.050 (10)0.039 (7)0.035 (7)0.002 (6)0.006 (6)0.001 (6)
C420.039 (11)0.075 (12)0.048 (10)0.002 (9)0.005 (9)0.003 (9)
C430.058 (14)0.064 (11)0.050 (10)0.010 (10)0.023 (9)0.011 (9)
C440.063 (14)0.049 (10)0.058 (11)0.027 (10)0.018 (10)0.010 (9)
C450.038 (10)0.063 (11)0.049 (9)0.018 (9)0.011 (8)0.004 (9)
C460.019 (8)0.050 (9)0.028 (7)0.001 (7)0.002 (6)0.009 (6)
C470.053 (12)0.042 (9)0.074 (12)0.002 (9)0.031 (10)0.020 (9)
N480.033 (8)0.036 (7)0.056 (8)0.005 (6)0.004 (7)0.005 (6)
C490.031 (9)0.058 (10)0.037 (8)0.001 (7)0.014 (7)0.007 (7)
C500.087 (16)0.072 (12)0.045 (10)0.016 (12)0.013 (10)0.005 (9)
C510.046 (11)0.050 (9)0.039 (9)0.012 (8)0.002 (8)0.009 (7)
C520.071 (15)0.068 (12)0.073 (14)0.014 (11)0.007 (12)0.013 (11)
C530.10 (2)0.068 (14)0.071 (14)0.018 (13)0.010 (14)0.022 (11)
C540.20 (4)0.042 (11)0.051 (12)0.004 (17)0.005 (18)0.011 (9)
C550.11 (2)0.084 (16)0.061 (14)0.024 (15)0.033 (14)0.002 (12)
C560.063 (13)0.042 (9)0.066 (12)0.024 (9)0.004 (10)0.000 (9)
Hg40.0400 (4)0.0726 (4)0.0397 (3)0.0087 (4)0.0042 (3)0.0015 (3)
Cl70.051 (3)0.077 (3)0.054 (3)0.008 (2)0.005 (2)0.014 (2)
Cl80.059 (3)0.082 (3)0.041 (2)0.002 (2)0.009 (2)0.001 (2)
N610.054 (9)0.031 (6)0.042 (7)0.010 (6)0.010 (7)0.007 (6)
C620.047 (11)0.059 (11)0.044 (10)0.007 (9)0.021 (9)0.011 (8)
C630.062 (14)0.060 (11)0.048 (10)0.012 (10)0.001 (10)0.003 (8)
C640.075 (15)0.065 (11)0.023 (8)0.016 (11)0.004 (9)0.011 (7)
C650.051 (11)0.051 (10)0.050 (10)0.015 (9)0.002 (8)0.005 (8)
C660.044 (10)0.041 (8)0.025 (7)0.014 (7)0.004 (7)0.015 (6)
C670.030 (9)0.041 (8)0.060 (10)0.002 (8)0.004 (8)0.002 (8)
N680.011 (7)0.081 (10)0.049 (8)0.003 (7)0.005 (6)0.009 (7)
C690.037 (11)0.076 (12)0.060 (11)0.009 (9)0.009 (9)0.019 (10)
C700.076 (17)0.075 (14)0.12 (2)0.014 (12)0.034 (15)0.045 (14)
C710.051 (12)0.055 (10)0.053 (11)0.013 (9)0.017 (9)0.006 (8)
C720.053 (12)0.066 (12)0.062 (11)0.018 (10)0.031 (10)0.010 (9)
C730.12 (2)0.049 (11)0.088 (17)0.027 (13)0.035 (16)0.001 (11)
C740.09 (2)0.061 (14)0.11 (2)0.007 (13)0.033 (17)0.014 (14)
C750.11 (2)0.089 (17)0.065 (14)0.044 (16)0.010 (15)0.020 (13)
C760.101 (19)0.077 (14)0.044 (11)0.013 (13)0.008 (12)0.021 (10)
Geometric parameters (Å, º) top
Hg1—N12.356 (13)Hg3—N412.327 (13)
Hg1—Cl22.382 (5)Hg3—Cl52.381 (5)
Hg1—N82.396 (14)Hg3—N482.437 (14)
Hg1—Cl12.437 (4)Hg3—Cl62.448 (5)
N1—C61.30 (2)N41—C461.327 (19)
N1—C21.33 (2)N41—C421.33 (2)
C2—C31.38 (2)C42—C431.38 (3)
C2—H2A0.9300C42—H42A0.9300
C3—C41.34 (3)C43—C441.35 (3)
C3—H3A0.9300C43—H43A0.9300
C4—C51.38 (2)C44—C451.36 (3)
C4—H4A0.9300C44—H44A0.9300
C5—C61.37 (2)C45—C461.35 (2)
C5—H5A0.9300C45—H45A0.9300
C6—C71.44 (2)C46—C471.47 (2)
C7—N81.25 (2)C47—N481.21 (2)
C7—H7A0.9300C47—H47A0.9300
N8—C91.53 (2)N48—C491.44 (2)
C9—C111.50 (2)C49—C511.50 (2)
C9—C101.52 (3)C49—C501.53 (2)
C9—H9A0.9800C49—H49A0.9800
C10—H10A0.9600C50—H50A0.9600
C10—H10B0.9600C50—H50B0.9600
C10—H10C0.9600C50—H50C0.9600
C11—C161.37 (3)C51—C561.37 (2)
C11—C121.41 (3)C51—C521.38 (3)
C12—C131.37 (3)C52—C531.36 (3)
C12—H12A0.9300C52—H52A0.9300
C13—C141.38 (4)C53—C541.34 (4)
C13—H13A0.9300C53—H53A0.9300
C14—C151.36 (4)C54—C551.35 (4)
C14—H14A0.9300C54—H54A0.9300
C15—C161.39 (3)C55—C561.38 (3)
C15—H15A0.9300C55—H55A0.9300
C16—H16A0.9300C56—H56A0.9300
Hg2—N212.307 (13)Hg4—N612.373 (12)
Hg2—Cl32.401 (5)Hg4—N682.390 (13)
Hg2—N282.417 (13)Hg4—Cl72.406 (5)
Hg2—Cl42.433 (5)Hg4—Cl82.418 (4)
N21—C261.34 (2)N61—C621.32 (2)
N21—C221.35 (2)N61—C661.35 (2)
C22—C231.38 (3)C62—C631.39 (3)
C22—H22A0.9300C62—H62A0.9300
C23—C241.36 (3)C63—C641.34 (3)
C23—H23A0.9300C63—H63A0.9300
C24—C251.43 (2)C64—C651.38 (3)
C24—H24A0.9300C64—H64A0.9300
C25—C261.37 (2)C65—C661.35 (2)
C25—H25A0.9300C65—H65A0.9300
C26—C271.47 (2)C66—C671.48 (2)
C27—N281.225 (19)C67—N681.25 (2)
C27—H27A0.9300C67—H67A0.9300
N28—C291.52 (2)N68—C691.48 (2)
C29—C301.49 (3)C69—C701.51 (3)
C29—C311.53 (2)C69—C711.51 (3)
C29—H29A0.9800C69—H69A0.9800
C30—H30A0.9600C70—H70A0.9600
C30—H30B0.9600C70—H70B0.9600
C30—H30C0.9600C70—H70C0.9600
C31—C361.38 (3)C71—C761.36 (3)
C31—C321.38 (3)C71—C721.42 (3)
C32—C331.42 (3)C72—C731.34 (3)
C32—H32A0.9300C72—H72A0.9300
C33—C341.35 (3)C73—C741.35 (4)
C33—H33A0.9300C73—H73A0.9300
C34—C351.35 (3)C74—C751.32 (4)
C34—H34A0.9300C74—H74A0.9300
C35—C361.36 (3)C75—C761.41 (3)
C35—H35A0.9300C75—H75A0.9300
C36—H36A0.9300C76—H76A0.9300
N1—Hg1—Cl2142.4 (3)N41—Hg3—Cl5141.0 (4)
N1—Hg1—N869.7 (5)N41—Hg3—N4871.3 (5)
Cl2—Hg1—N8106.3 (3)Cl5—Hg3—N48109.9 (4)
N1—Hg1—Cl191.3 (3)N41—Hg3—Cl698.2 (4)
Cl2—Hg1—Cl1122.39 (19)Cl5—Hg3—Cl6116.0 (2)
N8—Hg1—Cl1113.0 (3)N48—Hg3—Cl6110.6 (3)
C6—N1—C2120.4 (15)C46—N41—C42117.9 (15)
C6—N1—Hg1115.8 (11)C46—N41—Hg3117.1 (10)
C2—N1—Hg1122.4 (12)C42—N41—Hg3124.2 (13)
N1—C2—C3121.3 (18)N41—C42—C43123.2 (18)
N1—C2—H2A119.3N41—C42—H42A118.4
C3—C2—H2A119.3C43—C42—H42A118.4
C4—C3—C2119.1 (16)C44—C43—C42117.2 (18)
C4—C3—H3A120.5C44—C43—H43A121.4
C2—C3—H3A120.5C42—C43—H43A121.4
C3—C4—C5118.7 (15)C43—C44—C45120.0 (17)
C3—C4—H4A120.7C43—C44—H44A120.0
C5—C4—H4A120.7C45—C44—H44A120.0
C6—C5—C4120.3 (17)C46—C45—C44119.8 (17)
C6—C5—H5A119.9C46—C45—H45A120.1
C4—C5—H5A119.9C44—C45—H45A120.1
N1—C6—C5120.1 (15)N41—C46—C45121.9 (15)
N1—C6—C7117.5 (15)N41—C46—C47112.5 (15)
C5—C6—C7122.3 (16)C45—C46—C47125.5 (16)
N8—C7—C6122.1 (17)N48—C47—C46129.4 (17)
N8—C7—H7A119.0N48—C47—H47A115.3
C6—C7—H7A119.0C46—C47—H47A115.3
C7—N8—C9120.4 (15)C47—N48—C49122.1 (15)
C7—N8—Hg1114.2 (11)C47—N48—Hg3108.5 (12)
C9—N8—Hg1125.4 (11)C49—N48—Hg3129.2 (11)
C11—C9—C10108.8 (15)N48—C49—C51107.8 (12)
C11—C9—N8107.8 (15)N48—C49—C50111.9 (14)
C10—C9—N8114.0 (15)C51—C49—C50113.0 (15)
C11—C9—H9A108.7N48—C49—H49A108.0
C10—C9—H9A108.7C51—C49—H49A108.0
N8—C9—H9A108.7C50—C49—H49A108.0
C9—C10—H10A109.5C49—C50—H50A109.5
C9—C10—H10B109.5C49—C50—H50B109.5
H10A—C10—H10B109.5H50A—C50—H50B109.5
C9—C10—H10C109.5C49—C50—H50C109.5
H10A—C10—H10C109.5H50A—C50—H50C109.5
H10B—C10—H10C109.5H50B—C50—H50C109.5
C16—C11—C12118.5 (18)C56—C51—C52117.2 (17)
C16—C11—C9122.8 (16)C56—C51—C49120.7 (16)
C12—C11—C9118.6 (17)C52—C51—C49122.1 (17)
C13—C12—C11122 (2)C53—C52—C51121 (2)
C13—C12—H12A119.2C53—C52—H52A119.3
C11—C12—H12A119.2C51—C52—H52A119.3
C12—C13—C14119 (2)C54—C53—C52120 (2)
C12—C13—H13A120.6C54—C53—H53A119.9
C14—C13—H13A120.6C52—C53—H53A119.9
C15—C14—C13120 (3)C53—C54—C55120 (2)
C15—C14—H14A120.0C53—C54—H54A119.9
C13—C14—H14A120.0C55—C54—H54A119.9
C14—C15—C16122 (2)C54—C55—C56120 (2)
C14—C15—H15A119.2C54—C55—H55A119.8
C16—C15—H15A119.2C56—C55—H55A119.8
C11—C16—C15119 (2)C51—C56—C55121 (2)
C11—C16—H16A120.3C51—C56—H56A119.7
C15—C16—H16A120.3C55—C56—H56A119.7
N21—Hg2—Cl3138.5 (4)N61—Hg4—N6869.9 (5)
N21—Hg2—N2870.4 (5)N61—Hg4—Cl795.6 (4)
Cl3—Hg2—N28108.5 (3)N68—Hg4—Cl7115.1 (4)
N21—Hg2—Cl4100.9 (4)N61—Hg4—Cl8136.1 (3)
Cl3—Hg2—Cl4117.1 (2)N68—Hg4—Cl897.4 (4)
N28—Hg2—Cl4109.7 (3)Cl7—Hg4—Cl8126.78 (17)
C26—N21—C22117.6 (14)C62—N61—C66118.4 (14)
C26—N21—Hg2116.1 (10)C62—N61—Hg4125.3 (12)
C22—N21—Hg2125.5 (12)C66—N61—Hg4115.1 (10)
N21—C22—C23122.4 (18)N61—C62—C63122.7 (18)
N21—C22—H22A118.8N61—C62—H62A118.7
C23—C22—H22A118.8C63—C62—H62A118.7
C24—C23—C22121.3 (18)C64—C63—C62118.4 (18)
C24—C23—H23A119.4C64—C63—H63A120.8
C22—C23—H23A119.4C62—C63—H63A120.8
C23—C24—C25116.0 (15)C63—C64—C65119.2 (18)
C23—C24—H24A122.0C63—C64—H64A120.4
C25—C24—H24A122.0C65—C64—H64A120.4
C26—C25—C24120.0 (15)C66—C65—C64120.1 (18)
C26—C25—H25A120.0C66—C65—H65A119.9
C24—C25—H25A120.0C64—C65—H65A119.9
N21—C26—C25122.7 (15)N61—C66—C65121.1 (15)
N21—C26—C27117.2 (14)N61—C66—C67117.3 (14)
C25—C26—C27120.1 (15)C65—C66—C67121.5 (16)
N28—C27—C26120.8 (15)N68—C67—C66120.0 (15)
N28—C27—H27A119.6N68—C67—H67A120.0
C26—C27—H27A119.6C66—C67—H67A120.0
C27—N28—C29115.9 (15)C67—N68—C69123.0 (14)
C27—N28—Hg2114.6 (11)C67—N68—Hg4116.8 (12)
C29—N28—Hg2129.4 (11)C69—N68—Hg4120.0 (11)
C30—C29—N28109.1 (14)N68—C69—C70116.5 (15)
C30—C29—C31113.1 (16)N68—C69—C71108.7 (14)
N28—C29—C31108.0 (13)C70—C69—C71109.2 (18)
C30—C29—H29A108.9N68—C69—H69A107.4
N28—C29—H29A108.9C70—C69—H69A107.4
C31—C29—H29A108.9C71—C69—H69A107.4
C29—C30—H30A109.5C69—C70—H70A109.5
C29—C30—H30B109.5C69—C70—H70B109.5
H30A—C30—H30B109.5H70A—C70—H70B109.5
C29—C30—H30C109.5C69—C70—H70C109.5
H30A—C30—H30C109.5H70A—C70—H70C109.5
H30B—C30—H30C109.5H70B—C70—H70C109.5
C36—C31—C32119.7 (17)C76—C71—C72119 (2)
C36—C31—C29121.0 (18)C76—C71—C69120.7 (19)
C32—C31—C29119.3 (17)C72—C71—C69120.1 (17)
C31—C32—C33118 (2)C73—C72—C71118.6 (19)
C31—C32—H32A120.8C73—C72—H72A120.7
C33—C32—H32A120.8C71—C72—H72A120.7
C34—C33—C32120 (2)C72—C73—C74122 (2)
C34—C33—H33A120.0C72—C73—H73A118.9
C32—C33—H33A120.0C74—C73—H73A118.9
C33—C34—C35121 (2)C75—C74—C73121 (2)
C33—C34—H34A119.7C75—C74—H74A119.6
C35—C34—H34A119.7C73—C74—H74A119.6
C34—C35—C36121 (2)C74—C75—C76120 (2)
C34—C35—H35A119.7C74—C75—H75A120.0
C36—C35—H35A119.7C76—C75—H75A120.0
C35—C36—C31121 (2)C71—C76—C75119 (2)
C35—C36—H36A119.7C71—C76—H76A120.4
C31—C36—H36A119.7C75—C76—H76A120.4
C6—N1—C2—C33 (2)C46—N41—C42—C431 (3)
Hg1—N1—C2—C3168.5 (12)Hg3—N41—C42—C43168.4 (14)
N1—C2—C3—C41 (3)N41—C42—C43—C440 (3)
C2—C3—C4—C52 (3)C42—C43—C44—C451 (3)
C3—C4—C5—C60 (3)C43—C44—C45—C462 (3)
C2—N1—C6—C55 (2)C42—N41—C46—C450 (2)
Hg1—N1—C6—C5172.1 (12)Hg3—N41—C46—C45169.9 (12)
C2—N1—C6—C7176.9 (14)C42—N41—C46—C47177.4 (14)
Hg1—N1—C6—C710.0 (18)Hg3—N41—C46—C477.3 (16)
C4—C5—C6—N14 (2)C44—C45—C46—N411 (2)
C4—C5—C6—C7178.0 (15)C44—C45—C46—C47175.8 (15)
N1—C6—C7—N89 (2)N41—C46—C47—N4814 (2)
C5—C6—C7—N8173.3 (15)C45—C46—C47—N48163.0 (18)
C6—C7—N8—C9178.2 (15)C46—C47—N48—C49173.3 (15)
C6—C7—N8—Hg12.7 (19)C46—C47—N48—Hg312 (2)
C7—N8—C9—C11151.8 (15)C47—N48—C49—C5199.1 (18)
Hg1—N8—C9—C1129.2 (19)Hg3—N48—C49—C5187.0 (16)
C7—N8—C9—C1031 (2)C47—N48—C49—C50136.1 (17)
Hg1—N8—C9—C10150.1 (14)Hg3—N48—C49—C5037.8 (18)
C10—C9—C11—C1666 (2)N48—C49—C51—C56114.1 (16)
N8—C9—C11—C1658 (2)C50—C49—C51—C56121.7 (17)
C10—C9—C11—C12110 (2)N48—C49—C51—C5265 (2)
N8—C9—C11—C12126.0 (18)C50—C49—C51—C5259 (2)
C16—C11—C12—C132 (3)C56—C51—C52—C531 (3)
C9—C11—C12—C13174.0 (19)C49—C51—C52—C53178.6 (19)
C11—C12—C13—C143 (4)C51—C52—C53—C540 (3)
C12—C13—C14—C152 (4)C52—C53—C54—C550 (4)
C13—C14—C15—C161 (4)C53—C54—C55—C560 (4)
C12—C11—C16—C151 (3)C52—C51—C56—C551 (3)
C9—C11—C16—C15174.9 (19)C49—C51—C56—C55177.8 (18)
C14—C15—C16—C111 (4)C54—C55—C56—C511 (3)
C26—N21—C22—C230 (3)C66—N61—C62—C631 (2)
Hg2—N21—C22—C23168.8 (16)Hg4—N61—C62—C63168.6 (14)
N21—C22—C23—C243 (3)N61—C62—C63—C641 (3)
C22—C23—C24—C254 (3)C62—C63—C64—C650 (3)
C23—C24—C25—C262 (3)C63—C64—C65—C662 (2)
C22—N21—C26—C252 (2)C62—N61—C66—C654 (2)
Hg2—N21—C26—C25168.2 (13)Hg4—N61—C66—C65172.1 (11)
C22—N21—C26—C27180.0 (15)C62—N61—C66—C67179.4 (14)
Hg2—N21—C26—C279.8 (18)Hg4—N61—C66—C6711.0 (16)
C24—C25—C26—N211 (3)C64—C65—C66—N614 (2)
C24—C25—C26—C27178.5 (16)C64—C65—C66—C67179.2 (14)
N21—C26—C27—N2811 (2)N61—C66—C67—N688 (2)
C25—C26—C27—N28167.2 (15)C65—C66—C67—N68175.4 (15)
C26—C27—N28—C29176.2 (14)C66—C67—N68—C69175.7 (15)
C26—C27—N28—Hg25.9 (18)C66—C67—N68—Hg40 (2)
C27—N28—C29—C30140.9 (16)C67—N68—C69—C700 (3)
Hg2—N28—C29—C3036.7 (19)Hg4—N68—C69—C70175.4 (15)
C27—N28—C29—C3195.9 (18)C67—N68—C69—C71124.0 (18)
Hg2—N28—C29—C3186.6 (17)Hg4—N68—C69—C7151.6 (19)
C30—C29—C31—C36124.6 (18)N68—C69—C71—C7661 (2)
N28—C29—C31—C36114.6 (17)C70—C69—C71—C7667 (2)
C30—C29—C31—C3256 (2)N68—C69—C71—C72116.3 (18)
N28—C29—C31—C3265 (2)C70—C69—C71—C72116 (2)
C36—C31—C32—C330 (3)C76—C71—C72—C733 (3)
C29—C31—C32—C33179.6 (17)C69—C71—C72—C73180 (2)
C31—C32—C33—C341 (3)C71—C72—C73—C743 (4)
C32—C33—C34—C351 (3)C72—C73—C74—C755 (4)
C33—C34—C35—C361 (4)C73—C74—C75—C765 (4)
C34—C35—C36—C313 (3)C72—C71—C76—C753 (3)
C32—C31—C36—C352 (3)C69—C71—C76—C75179.9 (18)
C29—C31—C36—C35178.3 (17)C74—C75—C76—C714 (3)
(II) (S)-(+)-Dichlorido[1-(4-methylphenyl)-N-(pyridin-2-ylmethylidene)ethylamine-κ2N,N']mercury(II) top
Crystal data top
[HgCl2(C15H16N2)]F(000) = 468
Mr = 495.79Dx = 1.966 Mg m3
Triclinic, P1Melting point: 418 K
a = 7.6194 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.2982 (4) ÅCell parameters from 4707 reflections
c = 12.2341 (8) Åθ = 3.6–24.6°
α = 94.597 (4)°µ = 9.50 mm1
β = 103.178 (4)°T = 294 K
γ = 94.222 (3)°Plate, colourless
V = 837.43 (7) Å30.67 × 0.36 × 0.11 mm
Z = 2
Data collection top
Agilent Xcalibur (Atlas, Gemini)
diffractometer
6767 independent reflections
Radiation source: Enhance (Mo) X-ray Source5013 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
Detector resolution: 10.5564 pixels mm-1θmax = 26.4°, θmin = 2.9°
ω scansh = 99
Absorption correction: analytical
(CrysAlis PRO; Agilent, 2013)
k = 1111
Tmin = 0.052, Tmax = 0.467l = 1515
17266 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.059 w = 1/[σ2(Fo2) + (0.0149P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max = 0.001
6767 reflectionsΔρmax = 1.07 e Å3
365 parametersΔρmin = 1.06 e Å3
18 restraintsAbsolute structure: Flack x determined using 1903 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013).
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.006 (12)
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.35646 (4)0.24939 (4)0.25613 (4)0.0504 (4)
Cl10.5356 (9)0.0590 (7)0.3269 (8)0.062 (2)
Cl20.4313 (9)0.5077 (7)0.2824 (7)0.0612 (18)
N10.124 (3)0.1109 (19)0.1251 (19)0.041 (5)
C20.141 (3)0.027 (2)0.037 (3)0.051 (7)
H2A0.25470.02960.02090.061*
C30.006 (4)0.065 (3)0.033 (3)0.065 (8)
H3A0.02680.12330.09280.078*
C40.166 (3)0.067 (2)0.008 (2)0.056 (7)
H4A0.26270.12520.05520.067*
C50.191 (3)0.014 (2)0.082 (2)0.044 (6)
H5A0.30350.01040.09970.053*
C60.043 (3)0.106 (2)0.148 (2)0.037 (6)
C70.062 (3)0.196 (2)0.251 (2)0.039 (5)
H7A0.17530.20420.26590.047*
N80.080 (3)0.2634 (19)0.3184 (19)0.038 (5)
C90.064 (3)0.352 (2)0.419 (2)0.049 (6)
H9A0.14550.44010.42480.059*
C100.1166 (17)0.4005 (14)0.4218 (13)0.070 (4)
H10A0.11010.45440.49310.105*
H10B0.20360.31750.41170.105*
H10C0.15260.46100.36210.105*
C110.152 (3)0.266 (2)0.5207 (19)0.048 (6)
C120.047 (3)0.181 (3)0.572 (2)0.068 (8)
H12A0.07800.17460.54820.082*
C130.125 (4)0.104 (3)0.658 (2)0.092 (11)
H13A0.05160.05410.69630.110*
C140.307 (3)0.099 (3)0.689 (2)0.079 (10)
C150.415 (3)0.184 (3)0.639 (2)0.098 (12)
H15A0.54030.18720.66210.118*
C160.335 (2)0.266 (3)0.553 (2)0.065 (8)
H16A0.40850.31980.51650.078*
C170.396 (4)0.005 (3)0.780 (2)0.125 (12)
H17A0.30410.05830.79870.187*
H17B0.45910.06650.84630.187*
H17C0.47940.05130.75200.187*
Hg20.60575 (4)0.54275 (4)0.06949 (4)0.0524 (4)
Cl30.4965 (11)0.2909 (7)0.0418 (8)0.084 (3)
Cl40.4179 (9)0.7262 (8)0.0077 (8)0.069 (2)
N210.833 (3)0.680 (2)0.209 (2)0.043 (5)
C220.795 (3)0.762 (2)0.294 (2)0.045 (6)
H22A0.67810.75720.30620.054*
C230.936 (3)0.854 (3)0.365 (3)0.053 (7)
H23A0.91330.90850.42690.064*
C241.100 (3)0.866 (2)0.346 (2)0.050 (6)
H24A1.19130.93070.39200.060*
C251.134 (3)0.779 (3)0.258 (2)0.052 (7)
H25A1.25000.78220.24590.063*
C260.996 (3)0.690 (2)0.189 (2)0.041 (6)
C271.022 (3)0.609 (3)0.090 (2)0.050 (7)
H27A1.13910.60630.08040.060*
N280.895 (3)0.543 (2)0.015 (2)0.045 (5)
C290.929 (3)0.476 (2)0.094 (3)0.061 (7)
H29A1.05840.49460.09000.073*
C300.884 (2)0.3118 (14)0.1048 (13)0.075 (4)
H30A0.90460.26990.17460.113*
H30B0.75970.29010.10340.113*
H30C0.96060.27230.04290.113*
C310.832 (3)0.549 (2)0.190 (2)0.055 (7)
C320.922 (3)0.632 (3)0.254 (2)0.078 (9)
H32A1.04710.63440.24100.094*
C330.830 (4)0.709 (3)0.333 (2)0.095 (12)
H33A0.89500.77090.36910.114*
C340.647 (4)0.699 (3)0.362 (2)0.104 (14)
C350.552 (3)0.615 (3)0.303 (2)0.086 (10)
H35A0.42660.60940.31940.103*
C360.646 (3)0.539 (3)0.218 (2)0.073 (9)
H36A0.58220.48050.17900.088*
C370.532 (6)0.776 (3)0.456 (3)0.19 (2)
H37A0.41000.77300.44670.285*
H37B0.53300.72750.52780.285*
H37C0.58140.87460.45070.285*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.0358 (6)0.0412 (6)0.0731 (12)0.0041 (5)0.0102 (7)0.0063 (7)
Cl10.044 (3)0.046 (3)0.104 (7)0.014 (3)0.024 (4)0.022 (4)
Cl20.064 (3)0.036 (3)0.089 (5)0.0049 (19)0.029 (3)0.008 (3)
N10.050 (11)0.027 (9)0.046 (14)0.004 (8)0.011 (10)0.005 (9)
C20.040 (10)0.044 (12)0.08 (2)0.013 (8)0.026 (11)0.008 (12)
C30.090 (18)0.034 (12)0.06 (2)0.000 (13)0.007 (16)0.001 (12)
C40.042 (10)0.049 (13)0.08 (2)0.004 (9)0.003 (11)0.039 (12)
C50.042 (10)0.035 (10)0.056 (15)0.006 (7)0.013 (9)0.006 (9)
C60.025 (9)0.042 (11)0.048 (16)0.007 (8)0.012 (10)0.021 (11)
C70.046 (11)0.040 (10)0.037 (13)0.015 (8)0.020 (9)0.007 (9)
N80.044 (10)0.030 (8)0.041 (12)0.005 (7)0.012 (9)0.007 (8)
C90.048 (10)0.043 (11)0.056 (13)0.007 (8)0.011 (9)0.008 (9)
C100.070 (9)0.065 (9)0.079 (12)0.030 (7)0.019 (8)0.001 (8)
C110.072 (15)0.037 (9)0.039 (14)0.007 (9)0.020 (11)0.005 (9)
C120.084 (17)0.074 (16)0.052 (18)0.017 (12)0.026 (14)0.006 (13)
C130.14 (3)0.078 (18)0.09 (3)0.026 (17)0.07 (2)0.027 (16)
C140.13 (3)0.062 (18)0.05 (2)0.022 (18)0.02 (2)0.007 (15)
C150.09 (2)0.13 (3)0.06 (2)0.03 (2)0.016 (17)0.01 (2)
C160.047 (13)0.078 (16)0.06 (2)0.006 (11)0.000 (12)0.004 (14)
C170.19 (3)0.15 (3)0.06 (2)0.09 (2)0.05 (2)0.05 (2)
Hg20.0386 (6)0.0432 (7)0.0746 (12)0.0031 (5)0.0112 (7)0.0083 (7)
Cl30.116 (5)0.051 (3)0.094 (6)0.024 (3)0.060 (5)0.012 (3)
Cl40.042 (3)0.077 (5)0.098 (7)0.019 (3)0.019 (4)0.042 (4)
N210.032 (9)0.044 (11)0.054 (15)0.001 (8)0.010 (9)0.011 (10)
C220.054 (11)0.040 (10)0.046 (15)0.001 (8)0.024 (10)0.004 (10)
C230.060 (13)0.050 (13)0.048 (17)0.004 (10)0.016 (12)0.003 (12)
C240.062 (13)0.030 (9)0.047 (14)0.002 (9)0.001 (11)0.022 (9)
C250.024 (8)0.066 (14)0.070 (19)0.008 (9)0.008 (11)0.032 (13)
C260.044 (12)0.027 (10)0.051 (16)0.008 (9)0.009 (11)0.010 (10)
C270.023 (9)0.061 (13)0.071 (19)0.007 (9)0.014 (11)0.022 (13)
N280.043 (11)0.051 (10)0.044 (14)0.008 (8)0.010 (9)0.010 (9)
C290.065 (12)0.058 (12)0.074 (16)0.018 (10)0.034 (12)0.021 (11)
C300.116 (13)0.051 (9)0.070 (12)0.033 (8)0.032 (10)0.019 (8)
C310.055 (13)0.058 (13)0.045 (16)0.010 (10)0.006 (11)0.015 (11)
C320.11 (2)0.043 (12)0.08 (2)0.022 (13)0.038 (18)0.007 (13)
C330.19 (4)0.037 (11)0.046 (19)0.004 (17)0.01 (2)0.000 (12)
C340.21 (4)0.059 (19)0.03 (2)0.06 (2)0.00 (2)0.006 (16)
C350.11 (2)0.070 (17)0.08 (2)0.038 (16)0.001 (18)0.007 (17)
C360.09 (2)0.073 (17)0.06 (2)0.026 (15)0.017 (16)0.020 (14)
C370.36 (5)0.10 (2)0.07 (3)0.09 (3)0.05 (3)0.014 (19)
Geometric parameters (Å, º) top
Hg1—N12.32 (2)Hg2—N212.35 (2)
Hg1—N82.405 (19)Hg2—Cl32.397 (7)
Hg1—Cl22.406 (6)Hg2—Cl42.419 (7)
Hg1—Cl12.410 (6)Hg2—N282.443 (19)
N1—C21.32 (3)N21—C261.32 (3)
N1—C61.37 (3)N21—C221.34 (3)
C2—C31.37 (4)C22—C231.40 (3)
C2—H2A0.9300C22—H22A0.9300
C3—C41.40 (3)C23—C241.32 (3)
C3—H3A0.9300C23—H23A0.9300
C4—C51.35 (4)C24—C251.37 (3)
C4—H4A0.9300C24—H24A0.9300
C5—C61.41 (3)C25—C261.37 (3)
C5—H5A0.9300C25—H25A0.9300
C6—C71.50 (4)C26—C271.44 (4)
C7—N81.28 (3)C27—N281.25 (3)
C7—H7A0.9300C27—H27A0.9300
N8—C91.46 (3)N28—C291.51 (4)
C9—C101.49 (2)C29—C311.47 (3)
C9—C111.57 (3)C29—C301.53 (2)
C9—H9A0.9800C29—H29A0.9800
C10—H10A0.9600C30—H30A0.9600
C10—H10B0.9600C30—H30B0.9600
C10—H10C0.9600C30—H30C0.9600
C11—C161.366 (17)C31—C361.371 (17)
C11—C121.369 (17)C31—C321.387 (18)
C12—C131.364 (19)C32—C331.352 (19)
C12—H12A0.9300C32—H32A0.9300
C13—C141.355 (18)C33—C341.36 (2)
C13—H13A0.9300C33—H33A0.9300
C14—C151.377 (18)C34—C351.378 (19)
C14—C171.532 (18)C34—C371.530 (19)
C15—C161.402 (18)C35—C361.400 (18)
C15—H15A0.9300C35—H35A0.9300
C16—H16A0.9300C36—H36A0.9300
C17—H17A0.9600C37—H37A0.9600
C17—H17B0.9600C37—H37B0.9600
C17—H17C0.9600C37—H37C0.9600
N1—Hg1—N871.3 (7)N21—Hg2—Cl3132.8 (5)
N1—Hg1—Cl2129.7 (5)N21—Hg2—Cl4102.2 (5)
N8—Hg1—Cl293.7 (5)Cl3—Hg2—Cl4121.7 (3)
N1—Hg1—Cl199.4 (5)N21—Hg2—N2870.1 (7)
N8—Hg1—Cl1115.1 (5)Cl3—Hg2—N28103.1 (5)
Cl2—Hg1—Cl1129.6 (2)Cl4—Hg2—N28114.3 (5)
C2—N1—C6117 (2)C26—N21—C22121 (2)
C2—N1—Hg1126.5 (17)C26—N21—Hg2116.1 (18)
C6—N1—Hg1116.4 (16)C22—N21—Hg2121.9 (16)
N1—C2—C3126 (2)N21—C22—C23118 (2)
N1—C2—H2A117.2N21—C22—H22A121.1
C3—C2—H2A117.2C23—C22—H22A121.1
C2—C3—C4117 (3)C24—C23—C22122 (3)
C2—C3—H3A121.7C24—C23—H23A119.2
C4—C3—H3A121.7C22—C23—H23A119.2
C5—C4—C3121 (2)C23—C24—C25119 (2)
C5—C4—H4A119.7C23—C24—H24A120.7
C3—C4—H4A119.7C25—C24—H24A120.7
C4—C5—C6118 (2)C26—C25—C24120 (2)
C4—C5—H5A120.9C26—C25—H25A120.1
C6—C5—H5A120.9C24—C25—H25A120.1
N1—C6—C5122 (2)N21—C26—C25121 (2)
N1—C6—C7117 (2)N21—C26—C27118 (2)
C5—C6—C7121 (2)C25—C26—C27121 (2)
N8—C7—C6119 (2)N28—C27—C26124 (2)
N8—C7—H7A120.3N28—C27—H27A118.1
C6—C7—H7A120.3C26—C27—H27A118.1
C7—N8—C9120 (2)C27—N28—C29121 (2)
C7—N8—Hg1115.3 (17)C27—N28—Hg2111.8 (17)
C9—N8—Hg1124.3 (14)C29—N28—Hg2127.3 (16)
N8—C9—C10117.5 (19)C31—C29—N28110 (2)
N8—C9—C11105.0 (18)C31—C29—C30115 (2)
C10—C9—C11115.3 (18)N28—C29—C30109.9 (19)
N8—C9—H9A106.0C31—C29—H29A107.2
C10—C9—H9A106.0N28—C29—H29A107.2
C11—C9—H9A106.0C30—C29—H29A107.2
C9—C10—H10A109.5C29—C30—H30A109.5
C9—C10—H10B109.5C29—C30—H30B109.5
H10A—C10—H10B109.5H30A—C30—H30B109.5
C9—C10—H10C109.5C29—C30—H30C109.5
H10A—C10—H10C109.5H30A—C30—H30C109.5
H10B—C10—H10C109.5H30B—C30—H30C109.5
C16—C11—C12118.3 (16)C36—C31—C32117.4 (18)
C16—C11—C9119.9 (17)C36—C31—C29120.0 (19)
C12—C11—C9121.5 (17)C32—C31—C29123 (2)
C13—C12—C11120.9 (17)C33—C32—C31121 (2)
C13—C12—H12A119.6C33—C32—H32A119.4
C11—C12—H12A119.6C31—C32—H32A119.4
C14—C13—C12121.8 (17)C32—C33—C34122 (2)
C14—C13—H13A119.1C32—C33—H33A119.0
C12—C13—H13A119.1C34—C33—H33A119.0
C13—C14—C15118.3 (17)C33—C34—C35118.5 (18)
C13—C14—C17122.5 (19)C33—C34—C37126 (2)
C15—C14—C17119.2 (19)C35—C34—C37116 (2)
C14—C15—C16119.8 (18)C34—C35—C36119.8 (18)
C14—C15—H15A120.1C34—C35—H35A120.1
C16—C15—H15A120.1C36—C35—H35A120.1
C11—C16—C15120.6 (17)C31—C36—C35121.0 (18)
C11—C16—H16A119.7C31—C36—H36A119.5
C15—C16—H16A119.7C35—C36—H36A119.5
C14—C17—H17A109.5C34—C37—H37A109.5
C14—C17—H17B109.5C34—C37—H37B109.5
H17A—C17—H17B109.5H37A—C37—H37B109.5
C14—C17—H17C109.5C34—C37—H37C109.5
H17A—C17—H17C109.5H37A—C37—H37C109.5
H17B—C17—H17C109.5H37B—C37—H37C109.5
C6—N1—C2—C30 (4)C26—N21—C22—C232 (4)
Hg1—N1—C2—C3173 (2)Hg2—N21—C22—C23172.1 (17)
N1—C2—C3—C41 (4)N21—C22—C23—C243 (4)
C2—C3—C4—C52 (4)C22—C23—C24—C253 (4)
C3—C4—C5—C63 (4)C23—C24—C25—C263 (4)
C2—N1—C6—C50 (3)C22—N21—C26—C252 (4)
Hg1—N1—C6—C5173.5 (18)Hg2—N21—C26—C25172.8 (18)
C2—N1—C6—C7177 (2)C22—N21—C26—C27174 (2)
Hg1—N1—C6—C74 (3)Hg2—N21—C26—C273 (3)
C4—C5—C6—N12 (4)C24—C25—C26—N213 (4)
C4—C5—C6—C7179 (2)C24—C25—C26—C27173 (2)
N1—C6—C7—N87 (3)N21—C26—C27—N288 (4)
C5—C6—C7—N8171 (2)C25—C26—C27—N28169 (2)
C6—C7—N8—C9180 (2)C26—C27—N28—C29173 (2)
C6—C7—N8—Hg16 (3)C26—C27—N28—Hg27 (3)
C7—N8—C9—C1020 (3)C27—N28—C29—C31115 (3)
Hg1—N8—C9—C10154.2 (13)Hg2—N28—C29—C3164 (2)
C7—N8—C9—C11110 (2)C27—N28—C29—C30117 (2)
Hg1—N8—C9—C1176.1 (19)Hg2—N28—C29—C3063 (3)
N8—C9—C11—C1675 (3)N28—C29—C31—C3665 (3)
C10—C9—C11—C16154 (2)C30—C29—C31—C3660 (3)
N8—C9—C11—C1299 (3)N28—C29—C31—C32113 (3)
C10—C9—C11—C1232 (3)C30—C29—C31—C32122 (3)
C16—C11—C12—C134 (4)C36—C31—C32—C335 (4)
C9—C11—C12—C13178 (3)C29—C31—C32—C33173 (3)
C11—C12—C13—C146 (4)C31—C32—C33—C346 (5)
C12—C13—C14—C156 (5)C32—C33—C34—C355 (5)
C12—C13—C14—C17176 (3)C32—C33—C34—C37176 (3)
C13—C14—C15—C164 (5)C33—C34—C35—C362 (5)
C17—C14—C15—C16177 (3)C37—C34—C35—C36179 (3)
C12—C11—C16—C153 (4)C32—C31—C36—C353 (4)
C9—C11—C16—C15177 (3)C29—C31—C36—C35175 (3)
C14—C15—C16—C113 (5)C34—C35—C36—C312 (5)
(III) (1S,2S,3S,5R)-(+)-Dichlorido[N-(pyridin-2-ylmethylidene)isopinocampheylamine-κ2N,N']mercury(II) top
Crystal data top
[HgCl2(C16H22N2)]Dx = 1.952 Mg m3
Mr = 513.84Melting point: 487 K
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 10.216 (3) ÅCell parameters from 72 reflections
b = 7.392 (2) Åθ = 4.9–12.5°
c = 23.352 (6) ŵ = 9.10 mm1
β = 97.459 (14)°T = 298 K
V = 1748.6 (8) Å3Irregular, colourless
Z = 40.4 × 0.2 × 0.1 mm
F(000) = 984
Data collection top
Bruker P4
diffractometer
4910 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.045
Graphite monochromatorθmax = 26.2°, θmin = 1.8°
ω scansh = 129
Absorption correction: part of the refinement model (ΔF)
(Walker & Stuart, 1983)
k = 99
Tmin = 0.075, Tmax = 0.405l = 2929
9195 measured reflections3 standard reflections every 97 reflections
6573 independent reflections intensity decay: 5%
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.057 w = 1/[σ2(Fo2) + (0.0554P)2 + 18.0971P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.166(Δ/σ)max = 0.001
S = 1.11Δρmax = 1.84 e Å3
6573 reflectionsΔρmin = 1.76 e Å3
386 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.0014 (4)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack x determined using 1701 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.05 (2)
Special details top

Experimental. 1H NMR and 13C NMR spectra were recorded on a Varian spectrometer, using CDCl3 as solvent and TMS as internal reference. IR spectra were performed on a Perkin-Elmer 283 B or 1420 spectrometer. The FAB spectra were obtained on a JEOL JMS SX 102A mass spectrometer operated at an accelerating voltage of 10 kV. Melting points were measured using an Electrothermal Mel-Temp 3.0 apparatus and are uncorrected.

Spectroscopy for ligand L1: (S)-(+)-1-phenyl-N-(2-pyridylmethylidene)ethylamine. Yield (95%), light yellow oil. FT-IR: 1658 cm-1 (C=N). 1H NMR (500 MHz, CDCl3): δ 1.58 (d, 3H, CHCH3), 4.59 (q, 1H, CH), 7.17-8.58 (m, 9H, Ar), 8.46 (s, 1H, HC=N). 13C NMR (500 MHz, CDCl3): δ 24.81 (CCH3), 69.81 (CHCH3), 121.70, 124.93, 126.94, 127.24, 128.73, 136.68, 136.74, 149.58, 160.69 (Ar), 155.00 (HC=N). MS-EI m/z = 210 (M+). [α]D25 = +42.0 (c=1, CHCl3).

Spectroscopy for ligand L2: (S)-(+)-1-(4-methylphenyl)-N-(2-pyridylmethylidene)ethylamine. Yield (93%), light yellow oil. FT-IR: 1644 cm-1 (C=N). 1H NMR (500 MHz, CDCl3): δ 1.59 (d, 3H, CHCH3), 2.31 (d, 3H, ArCH3), 4.58 (q, 1H, CH), 7.14-8.64 (m, 8H, Ar), 8.44 (s, 1H, HC=N). 13C NMR (500 MHz, CDCl3): δ 21.13 (CCH3), 24.50 (ArCH3), 69.25 (CHCH3), 121.26, 124.45, 126.42, 128.97, 136.24, 136.38, 141.31, 149.06, 159.99 (Ar), 154.57 (HC=N). MS-EI m/z = 224 (M+). [α]D25 = +31.3 (c=1, CHCl3).

Spectroscopy for ligand L3: (1S,2S,3S,5R)-(+)-(2-pyridylmethylidene)isopinocampheylamine. Yield (90%), light yellow oil. FT-IR: 1644 cm-1 (C=N). 1H NMR (500 MHz, CDCl3): δ 1.01-1.29 (m, 9H, 3 CH3), 1.26-2.42 (m, 7H, H-Aliph), 3.60 (m, 1H, N-CH), 7.29 (m, 1H, Ar), 7.73 (m, 1H, Ar), 8.05 (m, 1H, Ar), 8.63 (m, 1H, Ar), 8.27 (s, 1H, HC=N). 13C NMR (500 MHz, CDCl3): δ 19.77, 23.56, 27.97, 33.76, 35.66, 38.86, 41.61, 43.80, 47.49 (C-Aliph), 70.06 (N-CH), 121.52, 124.40, 136.48, 149.31, 158.71 (Ar), 154.90 (HC=N). MS-EI m/z =242 (M+). [α]D25 = +30.1 (c=1, CHCl3).

Spectroscopy for complex (I): (S)-(+)-[1-phenyl-N-(2-pyridylmethylidene)ethylamine-κ2N,N']-dichloridomercury(II). Yield (81%), colourless crystals. Mp 139-141 °C (dec). FT-IR: 1647 cm-1 (C=N). 1H NMR (500 MHz, CDCl3): δ 1.91 (d, 3H, CHCH3), 5.08 (q, 1H, CH), 7.26-8.67 (m, 9H, Ar), 8.53 (s, 1H, HC=N). 13C NMR (500 MHz, CDCl3): δ 22.91(CCH3), 67.70 (CHCH3), 127.42, 128.30, 128.46, 128.67, 129.37, 139.73, 140.58, 147.74, 158.49 (Ar), 150.31 (HC=N). MS-EI m/z = 482 (M+). [α]D25 = +9.3 (c=1, CHCl3).

Spectroscopy for complex (II): (S)-(+)-[1-(4-methylphenyl)-N-(2-pyridylmethylidene)ethylamine-κ2N,N']-dichloridomercury(II). Yield (75%), colourless crystals. Mp 145-147 °C (dec). FT-IR: 1641 cm-1 (C=N). 1H NMR (500 MHz, CDCl3): δ 1.89 (d, 3H, CHCH3), 2.36 (d, 3H, ArCH3), 5.05 (q, 1H, CH), 7.21-8.68 (m, 8H Ar), 8.50 (s, 1H, HC=N). 13C NMR (500 MHz, CDCl3): δ 21.14 (CCH3), 22.93 (ArCH3), 67.35 (CHCH3), 127.38, 128.26, 128.39, 130.01, 137.53, 138.53, 139.70, 147.79, 158.33 (Ar), 150.32 (HC=N). MS-EI m/z = 496 (M+). [α]D25 = +8.8 (c=1, CHCl3).

Spectroscopy for complex (III): (1S,2S,3S,5R)-(+)-[N-(2-pyridylmethylidene)isopinocampheylamine-κ2N,N']-dichloridomercury(II). Yield (77%), colourless crystals. Mp 214-216 °C (dec). FT-IR: 1641.5 cm-1 (C=N). 1H NMR (500 MHz, CDCl3): δ 1.06-1.39 (m, 9H, 3 CH3), 1.36-2.57 (m, 7H, H-Aliph), 4.15 (m, 1H, N-CH), 7.70-7.74 (m, 2H, Ar), 8.06-8.10 (m, 1H, Ar), 8.69-8.71 (m, 1H, Ar), 8.58 (s, 1H, HC=N). 13C NMR (500 MHz, CDCl3): δ 19.86, 23.50, 27.86, 35.04, 35.65, 38.79, 41.43, 43.46, 47.33 (C-Aliph), 70.60 (N-CH), 128.32, 128.36, 139.50, 147.24, 157.14 (Ar), 150.32 (HC=N). MS-EI m/z = 514 (M+). [α]D25 = +22.7 (c=1, CHCl3).

Biological activity of complexes: The antimicrobial activity of the Hg(II)-complexes (I-III) was evaluated against Gram positive (Staphylococcus aureus) and Gram negative (E. coli and Pseudomonas aeruginosa) bacteria and yeast (Candida albicans). The antimicrobial activity were assessed by measuring the Inhibitory zone diameters with the Disk Diffusion Test. We used disk of Amikacin 30 µg, Chloramphenicol 30 µg, Cefepime 30 µg and Fluconazole 25 µg (BD) used for in vitro susceptibility testing by the agar disk diffusion test procedure of bacterial and fungal pathogens as antimicrobial control (see Table at the end of this section).

According to the results, all complexes were found to possess noteworthy antimicrobial activity. Among the compounds analyzed, (I) and (III) show high antimicrobial activity against all strains assessed, mainly Gram positive bacteria and fungi. In general all complexes tested displayed antifungal activity against the strains of Candida albicans.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.15484 (10)0.69493 (14)0.30398 (5)0.0738 (3)
Cl10.0188 (9)0.5444 (11)0.3448 (4)0.101 (3)
Cl20.3813 (7)0.6602 (13)0.3012 (4)0.099 (2)
N10.0120 (17)0.852 (4)0.2299 (7)0.057 (4)
C20.058 (3)0.767 (4)0.1854 (10)0.070 (7)
H2B0.04560.64390.17970.084*
C30.149 (2)0.866 (6)0.1474 (10)0.075 (8)
H3B0.19550.80970.11530.090*
C40.169 (3)1.038 (4)0.1573 (11)0.074 (7)
H4B0.23131.10240.13280.089*
C50.098 (2)1.125 (4)0.2037 (10)0.068 (6)
H5B0.10871.24800.21000.082*
C60.010 (2)1.021 (4)0.2406 (9)0.058 (6)
C70.0603 (18)1.111 (4)0.2953 (10)0.069 (7)
H7A0.06161.23590.30070.083*
N80.1175 (19)1.000 (3)0.3331 (7)0.057 (4)
C90.169 (3)1.082 (4)0.3899 (9)0.067 (6)
H9B0.15371.21300.38630.081*
C100.314 (3)1.057 (6)0.4041 (11)0.094 (10)
H10A0.33750.94770.38390.112*
C110.352 (3)1.024 (5)0.4676 (11)0.094 (11)
H11A0.44681.02010.48020.113*
C120.276 (5)0.854 (5)0.4821 (16)0.133 (16)
H12B0.25310.77230.44990.160*
H12C0.31530.79010.51640.160*
C130.167 (4)0.987 (6)0.4925 (12)0.101 (11)
H13A0.11640.95300.52390.121*
C140.085 (3)1.013 (5)0.4353 (11)0.090 (9)
H14B0.01551.09950.43930.108*
H14C0.04450.89940.42240.108*
C150.272 (3)1.121 (4)0.5085 (11)0.073 (7)
C160.389 (5)1.209 (11)0.3825 (15)0.24 (4)
H16A0.37141.21430.34120.354*
H16B0.48181.19080.39390.354*
H16C0.36241.32060.39860.354*
C170.339 (3)1.110 (5)0.5709 (12)0.102 (10)
H17A0.36010.98600.58060.153*
H17B0.28011.15600.59630.153*
H17C0.41841.18040.57500.153*
C180.238 (4)1.320 (5)0.4994 (14)0.102 (10)
H18A0.17711.33440.46480.153*
H18B0.31691.38780.49600.153*
H18C0.19821.36460.53180.153*
Hg20.40926 (11)0.34137 (13)0.18895 (4)0.0716 (3)
Cl30.5827 (10)0.4884 (12)0.1462 (4)0.106 (3)
Cl40.1863 (9)0.4162 (14)0.1910 (5)0.125 (4)
N210.5612 (17)0.194 (4)0.2595 (7)0.058 (4)
C220.640 (3)0.272 (5)0.3028 (11)0.081 (8)
H22A0.62830.39460.30960.097*
C230.737 (2)0.181 (6)0.3379 (10)0.077 (7)
H23A0.79310.24090.36630.092*
C240.746 (3)0.002 (5)0.3290 (11)0.081 (8)
H24A0.80760.06580.35290.097*
C250.665 (3)0.082 (4)0.2848 (11)0.072 (7)
H25A0.67220.20610.27890.087*
C260.577 (2)0.017 (3)0.2506 (9)0.055 (5)
C270.5008 (18)0.061 (4)0.1998 (10)0.062 (6)
H27A0.51270.18170.19070.074*
N280.4178 (16)0.0339 (17)0.1675 (8)0.048 (4)
C290.352 (2)0.059 (3)0.1136 (9)0.056 (5)
H29A0.37400.18850.11640.067*
C300.409 (2)0.020 (3)0.0602 (9)0.056 (5)
H30A0.44720.13780.07150.067*
C310.299 (2)0.052 (3)0.0105 (9)0.052 (5)
H31A0.32960.09140.02560.063*
C320.199 (2)0.176 (4)0.0329 (10)0.065 (6)
H32A0.23660.25490.06420.078*
H32B0.14570.24440.00300.078*
C330.133 (2)0.010 (3)0.0527 (9)0.058 (5)
H33A0.03620.01550.04940.070*
C340.201 (2)0.039 (4)0.1110 (10)0.063 (6)
H34A0.16470.15150.12310.076*
H34B0.18270.05420.13820.076*
C350.188 (2)0.086 (3)0.0030 (9)0.055 (5)
C360.516 (2)0.095 (3)0.0422 (11)0.065 (6)
H36A0.56360.02800.01630.097*
H36B0.47870.20150.02300.097*
H36C0.57560.12990.07560.097*
C370.102 (3)0.069 (4)0.0549 (9)0.074 (7)
H37A0.15260.10070.08530.110*
H37B0.07180.05400.06030.110*
H37C0.02750.14800.05580.110*
C380.217 (2)0.286 (4)0.0113 (11)0.069 (6)
H38A0.26830.32730.01790.103*
H38B0.13580.35230.00840.103*
H38C0.26620.30560.04870.103*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.0653 (6)0.0756 (6)0.0795 (7)0.0004 (5)0.0054 (4)0.0036 (6)
Cl10.109 (6)0.070 (4)0.135 (7)0.005 (4)0.057 (5)0.009 (4)
Cl20.065 (4)0.119 (7)0.111 (5)0.005 (4)0.011 (4)0.022 (5)
N10.056 (10)0.060 (11)0.054 (9)0.003 (11)0.004 (7)0.003 (11)
C20.072 (15)0.076 (17)0.063 (14)0.006 (12)0.007 (12)0.019 (11)
C30.058 (13)0.11 (3)0.055 (12)0.000 (17)0.001 (10)0.007 (17)
C40.072 (16)0.09 (2)0.057 (14)0.006 (15)0.002 (12)0.017 (14)
C50.077 (16)0.072 (16)0.056 (13)0.003 (12)0.012 (12)0.011 (12)
C60.053 (12)0.077 (16)0.045 (11)0.002 (11)0.004 (9)0.004 (11)
C70.024 (9)0.11 (2)0.078 (15)0.002 (11)0.013 (9)0.008 (14)
N80.067 (11)0.058 (11)0.045 (9)0.002 (9)0.004 (8)0.003 (8)
C90.084 (17)0.074 (16)0.041 (11)0.008 (13)0.002 (11)0.000 (10)
C100.062 (15)0.16 (3)0.058 (14)0.008 (18)0.005 (12)0.029 (18)
C110.068 (16)0.15 (3)0.060 (15)0.032 (18)0.014 (12)0.035 (17)
C120.22 (5)0.056 (17)0.11 (2)0.01 (3)0.04 (3)0.01 (2)
C130.12 (3)0.14 (3)0.053 (15)0.04 (2)0.015 (15)0.003 (17)
C140.082 (18)0.12 (2)0.070 (16)0.017 (18)0.004 (14)0.022 (17)
C150.076 (16)0.083 (17)0.057 (14)0.003 (13)0.002 (12)0.001 (12)
C160.16 (4)0.47 (11)0.07 (2)0.18 (6)0.04 (2)0.01 (4)
C170.11 (2)0.12 (3)0.067 (17)0.01 (2)0.008 (17)0.000 (17)
C180.13 (3)0.07 (2)0.09 (2)0.01 (2)0.010 (18)0.031 (18)
Hg20.0749 (6)0.0716 (6)0.0676 (5)0.0033 (5)0.0073 (4)0.0009 (5)
Cl30.134 (7)0.085 (5)0.112 (6)0.006 (5)0.060 (5)0.002 (5)
Cl40.083 (5)0.141 (8)0.146 (8)0.036 (5)0.005 (5)0.068 (6)
N210.064 (10)0.066 (11)0.043 (8)0.007 (12)0.006 (7)0.003 (10)
C220.087 (19)0.09 (2)0.064 (16)0.010 (14)0.013 (14)0.006 (13)
C230.068 (14)0.10 (2)0.057 (13)0.006 (18)0.002 (11)0.007 (17)
C240.067 (16)0.10 (2)0.066 (15)0.007 (15)0.013 (12)0.022 (16)
C250.072 (16)0.086 (18)0.059 (14)0.011 (13)0.010 (12)0.018 (13)
C260.059 (12)0.058 (13)0.047 (11)0.005 (10)0.001 (9)0.001 (10)
C270.030 (10)0.078 (15)0.074 (14)0.003 (10)0.003 (9)0.013 (12)
N280.046 (9)0.006 (6)0.088 (12)0.001 (5)0.001 (8)0.000 (6)
C290.052 (12)0.054 (12)0.060 (13)0.005 (9)0.005 (10)0.004 (10)
C300.057 (12)0.054 (12)0.057 (12)0.002 (10)0.008 (9)0.003 (10)
C310.050 (11)0.056 (12)0.051 (11)0.002 (9)0.012 (9)0.001 (10)
C320.058 (12)0.073 (15)0.062 (13)0.006 (12)0.004 (10)0.004 (12)
C330.046 (11)0.073 (15)0.057 (12)0.006 (10)0.013 (9)0.009 (11)
C340.065 (14)0.073 (16)0.056 (13)0.010 (12)0.022 (11)0.005 (11)
C350.051 (11)0.068 (14)0.047 (11)0.008 (10)0.006 (9)0.004 (9)
C360.048 (11)0.069 (14)0.080 (15)0.005 (10)0.014 (11)0.007 (11)
C370.066 (15)0.10 (2)0.052 (13)0.017 (14)0.003 (11)0.002 (12)
C380.071 (14)0.064 (15)0.069 (14)0.001 (13)0.006 (11)0.009 (13)
Geometric parameters (Å, º) top
Hg1—Cl22.337 (7)Hg2—N282.332 (13)
Hg1—Cl12.395 (7)Hg2—Cl42.350 (9)
Hg1—N82.402 (19)Hg2—N212.37 (2)
Hg1—N12.41 (2)Hg2—Cl32.403 (8)
N1—C61.30 (4)N21—C221.34 (3)
N1—C21.34 (3)N21—C261.34 (4)
C2—C31.41 (4)C22—C231.37 (4)
C2—H2B0.9300C22—H22A0.9300
C3—C41.31 (5)C23—C241.35 (5)
C3—H3B0.9300C23—H23A0.9300
C4—C51.38 (4)C24—C251.38 (4)
C4—H4B0.9300C24—H24A0.9300
C5—C61.39 (3)C25—C261.34 (3)
C5—H5B0.9300C25—H25A0.9300
C6—C71.54 (3)C26—C271.45 (3)
C7—N81.29 (3)C27—N281.27 (3)
C7—H7A0.9300C27—H27A0.9300
N8—C91.49 (3)N28—C291.51 (3)
C9—C101.49 (4)C29—C341.55 (3)
C9—C141.53 (4)C29—C301.55 (3)
C9—H9B0.9800C29—H29A0.9800
C10—C161.48 (6)C30—C361.49 (3)
C10—C111.50 (4)C30—C311.52 (3)
C10—H10A0.9800C30—H30A0.9800
C11—C151.51 (4)C31—C351.52 (3)
C11—C121.54 (5)C31—C321.52 (3)
C11—H11A0.9800C31—H31A0.9800
C12—C131.53 (6)C32—C331.51 (3)
C12—H12B0.9700C32—H32A0.9700
C12—H12C0.9700C32—H32B0.9700
C13—C151.48 (4)C33—C341.49 (3)
C13—C141.49 (4)C33—C351.53 (3)
C13—H13A0.9800C33—H33A0.9800
C14—H14B0.9700C34—H34A0.9700
C14—H14C0.9700C34—H34B0.9700
C15—C181.53 (4)C35—C371.52 (3)
C15—C171.53 (4)C35—C381.52 (4)
C16—H16A0.9600C36—H36A0.9600
C16—H16B0.9600C36—H36B0.9600
C16—H16C0.9600C36—H36C0.9600
C17—H17A0.9600C37—H37A0.9600
C17—H17B0.9600C37—H37B0.9600
C17—H17C0.9600C37—H37C0.9600
C18—H18A0.9600C38—H38A0.9600
C18—H18B0.9600C38—H38B0.9600
C18—H18C0.9600C38—H38C0.9600
Cl2—Hg1—Cl1138.3 (3)N28—Hg2—Cl4107.3 (5)
Cl2—Hg1—N8107.8 (5)N28—Hg2—N2170.3 (7)
Cl1—Hg1—N899.8 (5)Cl4—Hg2—N21129.9 (5)
Cl2—Hg1—N1122.8 (5)N28—Hg2—Cl3107.5 (5)
Cl1—Hg1—N195.7 (5)Cl4—Hg2—Cl3132.1 (4)
N8—Hg1—N169.3 (7)N21—Hg2—Cl392.5 (5)
C6—N1—C2121 (2)C22—N21—C26118 (2)
C6—N1—Hg1115.4 (14)C22—N21—Hg2127 (2)
C2—N1—Hg1123 (2)C26—N21—Hg2115.1 (13)
N1—C2—C3119 (3)N21—C22—C23124 (4)
N1—C2—H2B120.4N21—C22—H22A118.1
C3—C2—H2B120.4C23—C22—H22A118.1
C4—C3—C2120 (3)C24—C23—C22117 (3)
C4—C3—H3B120.1C24—C23—H23A121.7
C2—C3—H3B120.1C22—C23—H23A121.7
C3—C4—C5121 (3)C23—C24—C25121 (3)
C3—C4—H4B119.6C23—C24—H24A119.7
C5—C4—H4B119.6C25—C24—H24A119.7
C4—C5—C6117 (3)C26—C25—C24119 (3)
C4—C5—H5B121.3C26—C25—H25A120.4
C6—C5—H5B121.3C24—C25—H25A120.4
N1—C6—C5122 (2)N21—C26—C25122 (2)
N1—C6—C7120 (2)N21—C26—C27117 (2)
C5—C6—C7118 (2)C25—C26—C27121 (2)
N8—C7—C6115 (3)N28—C27—C26121 (2)
N8—C7—H7A122.7N28—C27—H27A119.5
C6—C7—H7A122.7C26—C27—H27A119.5
C7—N8—C9115 (2)C27—N28—C29115.6 (17)
C7—N8—Hg1118.6 (17)C27—N28—Hg2116.8 (14)
C9—N8—Hg1125.7 (15)C29—N28—Hg2126.8 (12)
C10—C9—N8112 (2)N28—C29—C34108.6 (18)
C10—C9—C14116 (2)N28—C29—C30109.0 (17)
N8—C9—C14108 (2)C34—C29—C30113.8 (18)
C10—C9—H9B106.8N28—C29—H29A108.4
N8—C9—H9B106.8C34—C29—H29A108.4
C14—C9—H9B106.8C30—C29—H29A108.4
C16—C10—C9112 (4)C36—C30—C31111.6 (18)
C16—C10—C11112 (3)C36—C30—C29112.1 (19)
C9—C10—C11111 (2)C31—C30—C29111.0 (18)
C16—C10—H10A107.1C36—C30—H30A107.3
C9—C10—H10A107.1C31—C30—H30A107.3
C11—C10—H10A107.1C29—C30—H30A107.3
C10—C11—C15117 (3)C35—C31—C3285.5 (17)
C10—C11—C12106 (3)C35—C31—C30116.7 (18)
C15—C11—C1285 (3)C32—C31—C30106.9 (17)
C10—C11—H11A114.6C35—C31—H31A114.7
C15—C11—H11A114.6C32—C31—H31A114.7
C12—C11—H11A114.6C30—C31—H31A114.7
C13—C12—C1185 (2)C33—C32—C3187.6 (19)
C13—C12—H12B114.5C33—C32—H32A114.0
C11—C12—H12B114.5C31—C32—H32A114.0
C13—C12—H12C114.5C33—C32—H32B114.0
C11—C12—H12C114.5C31—C32—H32B114.0
H12B—C12—H12C111.6H32A—C32—H32B111.2
C15—C13—C14116 (3)C34—C33—C32107.4 (19)
C15—C13—C1287 (3)C34—C33—C35114.1 (19)
C14—C13—C12106 (3)C32—C33—C3585.3 (17)
C15—C13—H13A114.8C34—C33—H33A115.4
C14—C13—H13A114.8C32—C33—H33A115.4
C12—C13—H13A114.8C35—C33—H33A115.4
C13—C14—C9111 (2)C33—C34—C29114.0 (18)
C13—C14—H14B109.3C33—C34—H34A108.7
C9—C14—H14B109.3C29—C34—H34A108.7
C13—C14—H14C109.3C33—C34—H34B108.7
C9—C14—H14C109.3C29—C34—H34B108.7
H14B—C14—H14C108.0H34A—C34—H34B107.6
C13—C15—C1188 (3)C31—C35—C37112.6 (19)
C13—C15—C18118 (3)C31—C35—C38120 (2)
C11—C15—C18120 (3)C37—C35—C38106 (2)
C13—C15—C17115 (3)C31—C35—C3387.0 (17)
C11—C15—C17112 (2)C37—C35—C33114.2 (19)
C18—C15—C17104 (2)C38—C35—C33116 (2)
C10—C16—H16A109.5C30—C36—H36A109.5
C10—C16—H16B109.5C30—C36—H36B109.5
H16A—C16—H16B109.5H36A—C36—H36B109.5
C10—C16—H16C109.5C30—C36—H36C109.5
H16A—C16—H16C109.5H36A—C36—H36C109.5
H16B—C16—H16C109.5H36B—C36—H36C109.5
C15—C17—H17A109.5C35—C37—H37A109.5
C15—C17—H17B109.5C35—C37—H37B109.5
H17A—C17—H17B109.5H37A—C37—H37B109.5
C15—C17—H17C109.5C35—C37—H37C109.5
H17A—C17—H17C109.5H37A—C37—H37C109.5
H17B—C17—H17C109.5H37B—C37—H37C109.5
C15—C18—H18A109.5C35—C38—H38A109.5
C15—C18—H18B109.5C35—C38—H38B109.5
H18A—C18—H18B109.5H38A—C38—H38B109.5
C15—C18—H18C109.5C35—C38—H38C109.5
H18A—C18—H18C109.5H38A—C38—H38C109.5
H18B—C18—H18C109.5H38B—C38—H38C109.5
C6—N1—C2—C35 (4)C26—N21—C22—C231 (4)
Hg1—N1—C2—C3173.3 (18)Hg2—N21—C22—C23171.8 (19)
N1—C2—C3—C43 (4)N21—C22—C23—C244 (4)
C2—C3—C4—C52 (4)C22—C23—C24—C253 (4)
C3—C4—C5—C63 (4)C23—C24—C25—C260 (4)
C2—N1—C6—C56 (3)C22—N21—C26—C252 (3)
Hg1—N1—C6—C5175.4 (17)Hg2—N21—C26—C25176.0 (18)
C2—N1—C6—C7174 (2)C22—N21—C26—C27174 (2)
Hg1—N1—C6—C74 (3)Hg2—N21—C26—C270 (3)
C4—C5—C6—N15 (4)C24—C25—C26—N213 (4)
C4—C5—C6—C7175 (2)C24—C25—C26—C27173 (2)
N1—C6—C7—N814 (3)N21—C26—C27—N284 (3)
C5—C6—C7—N8166 (2)C25—C26—C27—N28180 (2)
C6—C7—N8—C9171.4 (18)C26—C27—N28—C29176 (2)
C6—C7—N8—Hg116 (2)C26—C27—N28—Hg26 (3)
C7—N8—C9—C10120 (3)C27—N28—C29—C34128 (2)
Hg1—N8—C9—C1052 (3)Hg2—N28—C29—C3463 (2)
C7—N8—C9—C14111 (3)C27—N28—C29—C30107 (2)
Hg1—N8—C9—C1477 (3)Hg2—N28—C29—C3062 (2)
N8—C9—C10—C1691 (3)N28—C29—C30—C3697 (2)
C14—C9—C10—C16145 (3)C34—C29—C30—C36141 (2)
N8—C9—C10—C11143 (3)N28—C29—C30—C31137.3 (18)
C14—C9—C10—C1119 (4)C34—C29—C30—C3116 (3)
C16—C10—C11—C1592 (4)C36—C30—C31—C3589 (2)
C9—C10—C11—C1534 (5)C29—C30—C31—C3537 (3)
C16—C10—C11—C12175 (4)C36—C30—C31—C32177 (2)
C9—C10—C11—C1259 (4)C29—C30—C31—C3257 (2)
C10—C11—C12—C1389 (3)C35—C31—C32—C3328.5 (16)
C15—C11—C12—C1328 (2)C30—C31—C32—C3388.1 (19)
C11—C12—C13—C1529 (2)C31—C32—C33—C3486 (2)
C11—C12—C13—C1487 (3)C31—C32—C33—C3528.2 (15)
C15—C13—C14—C937 (4)C32—C33—C34—C2954 (3)
C12—C13—C14—C957 (4)C35—C33—C34—C2939 (3)
C10—C9—C14—C1318 (4)N28—C29—C34—C33136 (2)
N8—C9—C14—C13145 (3)C30—C29—C34—C3315 (3)
C14—C13—C15—C1177 (3)C32—C31—C35—C3787 (2)
C12—C13—C15—C1129 (2)C30—C31—C35—C37166 (2)
C14—C13—C15—C1846 (4)C32—C31—C35—C38147 (2)
C12—C13—C15—C18153 (3)C30—C31—C35—C3840 (3)
C14—C13—C15—C17170 (3)C32—C31—C35—C3328.1 (16)
C12—C13—C15—C1783 (3)C30—C31—C35—C3379 (2)
C10—C11—C15—C1377 (3)C34—C33—C35—C3179 (2)
C12—C11—C15—C1329 (2)C32—C33—C35—C3128.3 (15)
C10—C11—C15—C1844 (4)C34—C33—C35—C37168 (2)
C12—C11—C15—C18150 (3)C32—C33—C35—C3785 (2)
C10—C11—C15—C17167 (3)C34—C33—C35—C3844 (3)
C12—C11—C15—C1787 (3)C32—C33—C35—C38151 (2)
Comparison of key conformation parameters (°) for compounds (I), (II) and (III). top
Compound/MoleculeδPy—PhaBite anglebCl—Hg—Cl
(I)/Hg171.1 (6)69.7 (5)122.39 (19)
(I)/Hg278.0 (5)70.4 (5)117.1 (2)
(I)/Hg382.3 (4)71.3 (5)116.0 (2)
(I)/Hg486.3 (6)69.9 (5)126.78 (17)
(II)/Hg178.5 (7)71.3 (7)129.6 (2)
(II)/Hg278.2 (7)70.1 (7)121.7 (3)
(III)/Hg1-69.3 (7)138.3 (3)
(III)/Hg2-70.3 (7)132.1 (4)
Notes: (a) dihedral angle between aromatic rings in the ligand L; (b) N—Hg—N angle.
Inhibitory zones in biological tests for (I)–(III) top
ComplexC. albicansP. aeruginosaE. coliS. aureus
(I)28 mm22 mm20 mm26 mm
(II)19 mm15 mm9 mm23 mm
(III)23 mm11 mm11 mm21 mm
Control (CH2Cl2)0000
AntibioticFluconazolAmikacinCefepimeChloramphenicol
30 mm21 mm16 mm29 mm

Acknowledgements

The authors thank Dr Ángel Mendoza and Javier Ríos-Merino (ICUAP, Puebla) for sharing X-ray data collected for (II)[link] using a CCD detector. Support from VIEP-UAP (GUPJ-NAT10-G) is acknowledged.

References

First citationAdams, M. J., Hodgkin, D. C. & Raeburn, U. A. (1970). J. Chem. Soc. A, pp. 2632–2635.  CSD CrossRef Web of Science Google Scholar
First citationAgilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.  Google Scholar
First citationBell, N. A., Chudley, N. A., March, L. A. & Nowell, I. W. (1988). Inorg. Chim. Acta, 141, 155–156.  CSD CrossRef CAS Web of Science Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationCarmona, D., Vega, C., Lahoz, F. J., Elipe, S., Oro, L. A., Lamata, M. P., Viguri, F., García-Correas, R., Cativiela, C. & López-Ram de Víu, M. P. (1999). Organometallics, 18, 3364–3371.  Web of Science CSD CrossRef CAS Google Scholar
First citationFait, J. (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFan, R., Yang, Y., Yin, Y., Hasi, W. & Mu, Y. (2009). Inorg. Chem. 48, 6034–6043.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationHowson, S. E., Allan, L. E. N., Chmel, N. P., Clarkson, G. J., Deeth, R. J., Faulkner, A. D., Simpson, D. H. & Scott, P. (2011). Dalton Trans. 40, 10416–10433.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKim, Y.-I. & Kang, S. K. (2010). Acta Cryst. E66, m1251.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMin, K. S., Park, A. H., Shin, J. W., Rowthu, S. R., Kim, S. K. & Ryoo, J. J. (2010). Dalton Trans. 39, 8741–8747.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMishnev, A., Iovel, I., Popelis, J., Vosekalna, I. & Lukevics, E. (2000). J. Organomet. Chem. 608, 1–5.  Web of Science CSD CrossRef CAS Google Scholar
First citationMoreno-Alcántar, G., Arroyo, M., Bautista, J. L., Bernès, S., Esturau-Escofet, N. & Torrens, H. (2013). J. Fluor. Chem. 156, 61–65.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShettihalli, A. K. & Gummadi, S. N. (2013). Chem. Res. Toxicol. 26, 918–925.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWalker, N. & Stuart, D. (1983). Acta Cryst. A39, 158–166.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWang, L.-Y., Zhang, C.-X., Liao, D.-Z., Jiang, Z.-H. & Yan, S.-P. (2005). J. Coord. Chem. 58, 969–973.  Web of Science CSD CrossRef CAS Google Scholar
First citationWilliams, N. J., Hancock, R. D., Riebenspies, J. H., Fernandes, M. & de Sousa, A. S. (2009). Inorg. Chem. 48, 11724–11733.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhou, Y., Zhu, C.-Y., Gao, X.-S., You, X.-Y. & Yao, C. (2010). Org. Lett. 12, 2566–2569.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds