organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 1-hy­dr­oxy-2,2,6,6-tetra­methyl­piperidin-1-ium tri­fluoro­methane­sulfonate

aLeibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
*Correspondence e-mail: torsten.beweries@catalysis.de

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 26 October 2015; accepted 4 November 2015; online 7 November 2015)

In the cation of the title salt, C9H20NO+·CF3O3S, the six-membered heterocyclic ring displays a chair conformation. In the crystal, centrosymmetric pairs of cations and anions are linked by N—H⋯O and O—H⋯O hydrogen bonds to form rings with a R44(14) graph-set motif.

1. Related literature

For mol­ecular structures and discussions of related compounds, see: Jaitner & Wurst (1997[Jaitner, P. & Wurst, K. (1997). Inorg. Chim. Acta, 255, 95-98.]); Spirk et al. (2010[Spirk, S., Belaj, F., Madl, T. & Pietschnig, R. (2010). Eur. J. Inorg. Chem. pp. 289-297.]); Ananchenko et al. (2006[Ananchenko, G. S., Pojarova, M., Udachin, K. A., Leek, D. M., Coleman, A. W. & Ripmeester, J. A. (2006). Chem. Commun. pp. 386-388.]); Percino et al. (2016[Percino, M. J., Cerón, M., Soriano-Moro, G., Pacheco, J. A., Castro, M. E., Chapela, V. M., Bonilla-Cruz, J. & Saldivar-Guerra, E. (2016). J. Mol. Struct. 1103, 254-264.]). For the mol­ecular structure of the neutral TEMPO-H compound, see: Mader et al. (2007[Mader, E. A., Davidson, E. R. & Mayer, J. M. (2007). J. Am. Chem. Soc. 129, 5153-5166.]); Giffin et al. (2011[Giffin, N. A., Makramalla, M., Hendsbee, A. D., Robertson, K. N., Sherren, C., Pye, C. C., Masuda, J. D. & Clyburne, J. A. C. (2011). Org. Biomol. Chem. 9, 3672-3680.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C9H20NO+·CF3O3S

  • Mr = 307.33

  • Triclinic, [P \overline 1]

  • a = 8.2824 (2) Å

  • b = 8.7656 (2) Å

  • c = 10.5703 (3) Å

  • α = 79.5417 (7)°

  • β = 76.5159 (7)°

  • γ = 75.5022 (6)°

  • V = 716.28 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 150 K

  • 0.55 × 0.38 × 0.34 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.83, Tmax = 0.86

  • 22933 measured reflections

  • 3452 independent reflections

  • 3039 reflections with I > 2σ(I)

  • Rint = 0.020

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.094

  • S = 1.05

  • 3452 reflections

  • 184 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O4 0.84 (2) 1.78 (2) 2.6163 (14) 177 (2)
N1—H1B⋯O3i 0.875 (16) 1.991 (16) 2.8385 (14) 163.0 (14)
Symmetry code: (i) -x+1, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2014[Bruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2013[Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL2014.

Supporting information


Synthesis and crystallization top

An equimolar mixture of the titanocene(IV) triflate complex [(SiMe2C5Me4)2Ti(H2O)(OH)(OTf)] (Godemann & Beweries, unpublished results) and 2,2,6,6-tetra­methyl-1-hy­droxy­piperidine (TEMPO-H) in toluene was cooled to -78°C. After two weeks, the formation of colourless crystals of the title compound could be observed on slow evaporation of the solvent. Alternatively, layering a toluene solution of the same titanocene compound and TEMPO-H with n-hexane also resulted in the formation of colourless crystals of the title compound.

Refinement top

The H1A and H1B atoms were found from a difference Fourier map and refined freely. All other H atoms were placed in idealized positions with d(C—H) = 0.99 Å (CH2), 0.98 Å (CH3) and refined using a riding model with Uiso(H) fixed at 1.2 Ueq(C) for CH2 and 1.5 Ueq(C) for CH3. A rotating model was used for the methyl groups.

Related literature top

For molecular structures and discussions of related compounds, see: Jaitner & Wurst (1997); Spirk et al. (2010); Ananchenko et al. (2006); Percino et al. (2016). For the molecular structure of the neutral TEMPO-H compound, see: Mader et al. (2007); Giffin et al. (2011).

Structure description top

For molecular structures and discussions of related compounds, see: Jaitner & Wurst (1997); Spirk et al. (2010); Ananchenko et al. (2006); Percino et al. (2016). For the molecular structure of the neutral TEMPO-H compound, see: Mader et al. (2007); Giffin et al. (2011).

Synthesis and crystallization top

An equimolar mixture of the titanocene(IV) triflate complex [(SiMe2C5Me4)2Ti(H2O)(OH)(OTf)] (Godemann & Beweries, unpublished results) and 2,2,6,6-tetra­methyl-1-hy­droxy­piperidine (TEMPO-H) in toluene was cooled to -78°C. After two weeks, the formation of colourless crystals of the title compound could be observed on slow evaporation of the solvent. Alternatively, layering a toluene solution of the same titanocene compound and TEMPO-H with n-hexane also resulted in the formation of colourless crystals of the title compound.

Refinement details top

The H1A and H1B atoms were found from a difference Fourier map and refined freely. All other H atoms were placed in idealized positions with d(C—H) = 0.99 Å (CH2), 0.98 Å (CH3) and refined using a riding model with Uiso(H) fixed at 1.2 Ueq(C) for CH2 and 1.5 Ueq(C) for CH3. A rotating model was used for the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The hydrogen-bonding network (dashed lines) linking centrosymmetric pairs of cations and anions in the title compound. C-bound hydrogen atoms are omitted for clarity. Displacement ellipsoids are drawn at the 30% probability level.
1-Hydroxy-2,2,6,6-tetramethylpiperidin-1-ium trifluoromethanesulfonate top
Crystal data top
C9H20NO+·CF3O3SZ = 2
Mr = 307.33F(000) = 324
Triclinic, P1Dx = 1.425 Mg m3
a = 8.2824 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.7656 (2) ÅCell parameters from 9968 reflections
c = 10.5703 (3) Åθ = 2.6–28.9°
α = 79.5417 (7)°µ = 0.27 mm1
β = 76.5159 (7)°T = 150 K
γ = 75.5022 (6)°Prism, colourless
V = 716.28 (3) Å30.55 × 0.38 × 0.34 mm
Data collection top
Bruker APEXII CCD
diffractometer
3452 independent reflections
Radiation source: fine-focus sealed tube3039 reflections with I > 2σ(I)
Detector resolution: 8.3333 pixels mm-1Rint = 0.020
φ and ω scansθmax = 28.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 1010
Tmin = 0.83, Tmax = 0.86k = 1111
22933 measured reflectionsl = 1313
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0476P)2 + 0.2597P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3452 reflectionsΔρmax = 0.32 e Å3
184 parametersΔρmin = 0.28 e Å3
Crystal data top
C9H20NO+·CF3O3Sγ = 75.5022 (6)°
Mr = 307.33V = 716.28 (3) Å3
Triclinic, P1Z = 2
a = 8.2824 (2) ÅMo Kα radiation
b = 8.7656 (2) ŵ = 0.27 mm1
c = 10.5703 (3) ÅT = 150 K
α = 79.5417 (7)°0.55 × 0.38 × 0.34 mm
β = 76.5159 (7)°
Data collection top
Bruker APEXII CCD
diffractometer
3452 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
3039 reflections with I > 2σ(I)
Tmin = 0.83, Tmax = 0.86Rint = 0.020
22933 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.32 e Å3
3452 reflectionsΔρmin = 0.28 e Å3
184 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.96872 (15)0.80108 (15)0.28534 (12)0.0251 (3)
C20.96590 (19)0.86192 (17)0.14106 (13)0.0371 (3)
H2A0.86400.94870.13520.045*
H2B1.06730.90720.10190.045*
C30.9637 (2)0.7356 (2)0.06137 (14)0.0503 (5)
H3A1.06910.65170.06110.060*
H3B0.95950.78340.03050.060*
C40.8101 (2)0.66311 (19)0.11958 (15)0.0456 (4)
H4A0.81000.58200.06550.055*
H4B0.70570.74720.11510.055*
C50.80421 (17)0.58576 (15)0.26184 (13)0.0287 (3)
C61.13968 (18)0.69450 (19)0.30494 (17)0.0396 (3)
H6A1.22340.76000.29370.059*
H6B1.17820.61940.24020.059*
H6C1.12730.63560.39360.059*
C70.92379 (19)0.93950 (17)0.36579 (16)0.0360 (3)
H7A0.93280.89830.45710.054*
H7B0.80720.99850.36250.054*
H7C1.00261.01050.32940.054*
C80.6305 (2)0.5497 (2)0.3250 (2)0.0511 (5)
H8A0.60180.48270.27240.077*
H8B0.54460.64940.32930.077*
H8C0.63340.49380.41380.077*
C90.94213 (19)0.43502 (16)0.27559 (15)0.0343 (3)
H9A0.95600.40850.36710.051*
H9B1.04980.45230.21920.051*
H9C0.90930.34730.24930.051*
C100.48030 (17)0.77783 (16)0.86989 (13)0.0301 (3)
F10.32733 (11)0.76163 (11)0.86237 (9)0.0403 (2)
F20.57731 (13)0.63247 (11)0.88758 (10)0.0488 (3)
F30.46049 (15)0.84651 (13)0.97606 (9)0.0522 (3)
N10.82282 (12)0.71302 (11)0.33670 (9)0.0180 (2)
O10.82554 (13)0.64554 (11)0.46877 (8)0.0285 (2)
O20.74038 (13)0.88719 (14)0.74267 (14)0.0495 (3)
O30.45998 (13)1.04716 (11)0.72367 (10)0.0352 (2)
O40.56749 (14)0.80767 (14)0.61969 (10)0.0425 (3)
S10.57433 (4)0.89340 (4)0.72262 (3)0.02752 (10)
H1A0.745 (3)0.700 (2)0.516 (2)0.050 (5)*
H1B0.730 (2)0.7873 (18)0.3356 (15)0.025 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0187 (6)0.0249 (6)0.0285 (6)0.0058 (4)0.0015 (5)0.0019 (5)
C20.0327 (7)0.0331 (7)0.0270 (6)0.0054 (6)0.0074 (5)0.0086 (5)
C30.0644 (11)0.0464 (9)0.0167 (6)0.0215 (8)0.0011 (6)0.0030 (6)
C40.0617 (10)0.0393 (8)0.0359 (8)0.0188 (7)0.0286 (7)0.0221 (6)
C50.0290 (6)0.0228 (6)0.0368 (7)0.0021 (5)0.0114 (5)0.0145 (5)
C60.0203 (6)0.0402 (8)0.0531 (9)0.0038 (6)0.0086 (6)0.0050 (7)
C70.0354 (7)0.0303 (7)0.0484 (8)0.0133 (6)0.0121 (6)0.0068 (6)
C80.0323 (8)0.0330 (8)0.0957 (15)0.0088 (6)0.0148 (8)0.0230 (8)
C90.0393 (8)0.0223 (6)0.0381 (7)0.0055 (5)0.0090 (6)0.0112 (5)
C100.0286 (7)0.0293 (6)0.0315 (7)0.0007 (5)0.0078 (5)0.0068 (5)
F10.0280 (4)0.0431 (5)0.0489 (5)0.0120 (4)0.0008 (4)0.0084 (4)
F20.0473 (6)0.0309 (5)0.0588 (6)0.0034 (4)0.0127 (4)0.0043 (4)
F30.0693 (7)0.0580 (6)0.0319 (5)0.0098 (5)0.0128 (4)0.0148 (4)
N10.0177 (5)0.0180 (4)0.0160 (4)0.0009 (4)0.0013 (3)0.0031 (3)
O10.0368 (5)0.0252 (4)0.0151 (4)0.0002 (4)0.0018 (4)0.0004 (3)
O20.0206 (5)0.0412 (6)0.0850 (9)0.0062 (4)0.0104 (5)0.0052 (6)
O30.0290 (5)0.0264 (5)0.0432 (6)0.0058 (4)0.0055 (4)0.0057 (4)
O40.0435 (6)0.0459 (6)0.0332 (5)0.0042 (5)0.0055 (4)0.0172 (5)
S10.01852 (16)0.02389 (17)0.03577 (18)0.00056 (11)0.00008 (12)0.00683 (12)
Geometric parameters (Å, º) top
C1—C61.5247 (18)C7—H7A0.9800
C1—C21.5251 (18)C7—H7B0.9800
C1—C71.5279 (19)C7—H7C0.9800
C1—N11.5362 (15)C8—H8A0.9800
C2—C31.514 (2)C8—H8B0.9800
C2—H2A0.9900C8—H8C0.9800
C2—H2B0.9900C9—H9A0.9800
C3—C41.516 (3)C9—H9B0.9800
C3—H3A0.9900C9—H9C0.9800
C3—H3B0.9900C10—F31.3262 (16)
C4—C51.528 (2)C10—F11.3314 (16)
C4—H4A0.9900C10—F21.3323 (16)
C4—H4B0.9900C10—S11.8202 (15)
C5—C81.522 (2)N1—O11.4168 (12)
C5—C91.5244 (17)N1—H1B0.875 (16)
C5—N11.5354 (15)O1—H1A0.84 (2)
C6—H6A0.9800O2—S11.4260 (11)
C6—H6B0.9800O3—S11.4406 (9)
C6—H6C0.9800O4—S11.4486 (11)
C6—C1—C2112.20 (11)C1—C7—H7B109.5
C6—C1—C7110.16 (12)H7A—C7—H7B109.5
C2—C1—C7110.70 (11)C1—C7—H7C109.5
C6—C1—N1111.77 (10)H7A—C7—H7C109.5
C2—C1—N1106.75 (11)H7B—C7—H7C109.5
C7—C1—N1104.98 (10)C5—C8—H8A109.5
C3—C2—C1113.88 (12)C5—C8—H8B109.5
C3—C2—H2A108.8H8A—C8—H8B109.5
C1—C2—H2A108.8C5—C8—H8C109.5
C3—C2—H2B108.8H8A—C8—H8C109.5
C1—C2—H2B108.8H8B—C8—H8C109.5
H2A—C2—H2B107.7C5—C9—H9A109.5
C2—C3—C4109.99 (11)C5—C9—H9B109.5
C2—C3—H3A109.7H9A—C9—H9B109.5
C4—C3—H3A109.7C5—C9—H9C109.5
C2—C3—H3B109.7H9A—C9—H9C109.5
C4—C3—H3B109.7H9B—C9—H9C109.5
H3A—C3—H3B108.2F3—C10—F1107.06 (11)
C3—C4—C5113.93 (13)F3—C10—F2108.19 (12)
C3—C4—H4A108.8F1—C10—F2107.48 (11)
C5—C4—H4A108.8F3—C10—S1111.63 (10)
C3—C4—H4B108.8F1—C10—S1111.42 (9)
C5—C4—H4B108.8F2—C10—S1110.87 (10)
H4A—C4—H4B107.7O1—N1—C5108.32 (9)
C8—C5—C9109.71 (12)O1—N1—C1109.24 (9)
C8—C5—C4111.57 (14)C5—N1—C1120.28 (9)
C9—C5—C4112.76 (11)O1—N1—H1B108.1 (10)
C8—C5—N1105.18 (11)C5—N1—H1B105.5 (10)
C9—C5—N1111.54 (10)C1—N1—H1B104.8 (10)
C4—C5—N1105.78 (11)N1—O1—H1A107.7 (13)
C1—C6—H6A109.5O2—S1—O3115.62 (7)
C1—C6—H6B109.5O2—S1—O4115.69 (7)
H6A—C6—H6B109.5O3—S1—O4113.73 (7)
C1—C6—H6C109.5O2—S1—C10103.77 (7)
H6A—C6—H6C109.5O3—S1—C10103.23 (6)
H6B—C6—H6C109.5O4—S1—C10102.32 (7)
C1—C7—H7A109.5
C6—C1—C2—C371.46 (16)C2—C1—N1—O1176.56 (9)
C7—C1—C2—C3165.02 (13)C7—C1—N1—O165.88 (12)
N1—C1—C2—C351.30 (15)C6—C1—N1—C572.58 (14)
C1—C2—C3—C458.13 (16)C2—C1—N1—C550.45 (13)
C2—C3—C4—C559.31 (16)C7—C1—N1—C5168.01 (10)
C3—C4—C5—C8166.79 (12)F3—C10—S1—O265.11 (11)
C3—C4—C5—C969.21 (15)F1—C10—S1—O2175.25 (9)
C3—C4—C5—N152.95 (14)F2—C10—S1—O255.59 (12)
C8—C5—N1—O164.27 (13)F3—C10—S1—O355.88 (11)
C9—C5—N1—O154.59 (13)F1—C10—S1—O363.76 (10)
C4—C5—N1—O1177.53 (10)F2—C10—S1—O3176.58 (10)
C8—C5—N1—C1169.19 (12)F3—C10—S1—O4174.21 (10)
C9—C5—N1—C171.95 (14)F1—C10—S1—O454.57 (11)
C4—C5—N1—C150.99 (14)F2—C10—S1—O465.09 (11)
C6—C1—N1—O153.53 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O40.84 (2)1.78 (2)2.6163 (14)177 (2)
N1—H1B···O3i0.875 (16)1.991 (16)2.8385 (14)163.0 (14)
Symmetry code: (i) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O40.84 (2)1.78 (2)2.6163 (14)177 (2)
N1—H1B···O3i0.875 (16)1.991 (16)2.8385 (14)163.0 (14)
Symmetry code: (i) x+1, y+2, z+1.
 

Acknowledgements

Financial support by the BMBF (project `Light2Hydrogen') is gratefully acknowledged.

References

First citationAnanchenko, G. S., Pojarova, M., Udachin, K. A., Leek, D. M., Coleman, A. W. & Ripmeester, J. A. (2006). Chem. Commun. pp. 386–388.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGiffin, N. A., Makramalla, M., Hendsbee, A. D., Robertson, K. N., Sherren, C., Pye, C. C., Masuda, J. D. & Clyburne, J. A. C. (2011). Org. Biomol. Chem. 9, 3672–3680.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationJaitner, P. & Wurst, K. (1997). Inorg. Chim. Acta, 255, 95–98.  CSD CrossRef CAS Web of Science Google Scholar
First citationMader, E. A., Davidson, E. R. & Mayer, J. M. (2007). J. Am. Chem. Soc. 129, 5153–5166.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPercino, M. J., Cerón, M., Soriano-Moro, G., Pacheco, J. A., Castro, M. E., Chapela, V. M., Bonilla-Cruz, J. & Saldivar-Guerra, E. (2016). J. Mol. Struct. 1103, 254–264.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpirk, S., Belaj, F., Madl, T. & Pietschnig, R. (2010). Eur. J. Inorg. Chem. pp. 289–297.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds