organic compounds
N′′-(2-ethoxy-2-oxoethyl)-N,N,N′,N′-tetramethyl-N′′-[3-(1,3,3-trimethylureido)propyl]guanidinium tetraphenylborate
ofaFakultät Chemie/Organische Chemie, Hochschule Aalen, Beethovenstrasse 1, D-73430 Aalen, Germany
*Correspondence e-mail: willi.kantlehner@hs-aalen.de
In the title salt, C16H34N5O3+·C24H20B−, the C—N bond lengths in the cation are 1.3368 (16), 1.3375 (18) and 1.3594 (17) Å, indicating partial double-bond character. The central C atom is bonded to the three N atoms in a nearly ideal trigonal–planar geometry and the positive charge is delocalized in the CN3 plane. In the crystal, weak C—H⋯O contacts are observed between neighbouring guanidinium ions and between guanidinium ions and tetraphenylborate anions. In addition, C—H⋯π interactions involving guanidinium H atoms and aromatic rings of the anion are present. The phenyl rings form aromatic pockets, in which the cations are embedded. This leads to the formation of a two-dimensional supramolecular pattern along the ab plane.
Keywords: crystal structure; ureidoalkylguanidinium; tetraphenylborate; salt; C—H⋯O contacts; C—H⋯π interactions.
CCDC reference: 1439925
1. Related literature
For the N,N,N′,N′-tetramethylurea, see: Frampton & Parkes (1996). For the of N,N,N′,N′-tetramethylchloroformamidinium chloride, see: Tiritiris & Kantlehner (2008a). For the crystal structures of alkali metal tetraphenylborates, see: Behrens et al. (2012). For the of 2-dimethylamino-1-(2-ethoxy-2-oxoethyl)-3-methyl-3,4,5,6-tetrahydropyrimidin-1-ium tetraphenylborate, see: Tiritiris & Kantlehner (2012a). For the of N,N,N′,N′,N′′-pentamethyl-N′′-[3-(1,3,3-trimethylureido)propyl]guanidinium tetraphenylborate, see: Tiritiris & Kantlehner (2012b). For the synthesis of N′′-[3-(1,3,3-trimethylureido)propyl]-N,N,N′,N′-tetramethylguanidine, see: Tiritiris & Kantlehner (2013).
of2. Experimental
2.1. Crystal data
|
2.2. Data collection
|
2.3. Refinement
|
Data collection: COLLECT (Hooft, 2004); cell DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL2014.
Supporting information
CCDC reference: 1439925
https://doi.org/10.1107/S2056989015023142/rz5179sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989015023142/rz5179Isup2.hkl
The title compound was obtained by reaction of N''-[3-(1,3,3-trimethylureido)propyl]-N,N,N',N'-tetramethylguanidine (Tiritiris & Kantlehner, 2013) with bromoacetic acid ethyl ester in acetonitrile at room temperature. After evaporation of the solvent the crude N,N,N',N'-tetramethyl-N''-(2-ethoxy-2-oxoethyl)-N''-[3-(1,3,3-trimethylureido)propyl]guanidinium bromide (I) was washed with diethylether and dried in vacuo. 1.48 g (3.5 mmol) of (I) was dissolved in 20 ml acetonitrile and 1.2 g (3.5 mmol) of sodium tetraphenylborate in 20 ml acetonitrile was added. After stirring for one hour at room temperature, the precipitated sodium bromide was filtered off. The title compound crystallized from a saturated acetonitrile solution after several months at 273 K, forming colorless single crystals. Yield: 1.97 g (86%).
The hydrogen atoms of the methyl groups were allowed to rotate with a fixed angle around the C–N and C–C bonds to best fit the experimental electron density, with Uiso(H) set to 1.5 Ueq(C) and d(C—H) = 0.98 Å. The remaining H atoms were placed in calculated positions with d(C—H) = 0.99 Å (H atoms in CH2 groups) and (C—H) = 0.95 Å (H atoms in aromatic rings). They were refined using a riding model, with Uiso(H) set to 1.2Ueq(C).
By reaction of N,N,N',N'-tetramethylchloroformamidinium chloride (Tiritiris & Kantlehner, 2008a) with N-methyl-propane-1,3-diamine, a mixture consisting of two guanidinium chlorides and one bisguanidinium dichloride have been obtained. After treating the salt mixture with an aqueous sodium hydroxide solution, the guanidine-urea derivative N''-[3-(1,3,3-trimethylureido)propyl]- N,N,N',N'-tetramethylguanidine emerges as byproduct, due to partial hydrolysis of the bisguanidinium dichloride (Tiritiris & Kantlehner, 2013). As usual in guanidines, also in ureidoalkyl-guanidines electrophiles can attack on the imine nitrogen atom because it is the most basic site, giving substituted ureidoalkyl-guanidinium salts. The here presented title salt is the second one in our serie, which has been structurally characterized after π interactions between the guanidinium hydrogen atoms of –N(CH3)2, –CH2 and –CH3 groups and the phenyl carbon atoms (centroids: Cg1 = C29–C34 and Cg2 = C35–C40) of the tetraphenylborate ion are also present (Fig. 3), ranging from 2.64 to 2.91 Å (Tab. 1). The phenyl rings form aromatic pockets, in which the guanidinium ions are embedded.
with sodium tetraphenylborate. The analysis reveals, that the bond lengths and angles in the cation are in very good agreement with the data obtained from the structure analysis of N,N,N',N',N''-pentamethyl- N''-[3-(1,3,3-trimethylureido)propyl]guanidinium tetraphenylborate (Tiritiris & Kantlehner, 2012b) Prominent bond parameters in the guanidinium ion are: C1–N1 = 1.3375 (18) Å, C1–N2 = 1.3368 (16) Å and C1–N3 = 1.3594 (17) Å, indicating partial double-bond character. The N–C1–N angles are: 120.32 (12)° (N1–C1–N2), 120.64 (12)° (N2–C1–N3) and 119.04 (11)° (N1–C1–N3), which indicates a nearly ideal trigonal-planar surrounding of the carbon centre by the nitrogen atoms. The positive charge is completely delocalized on the CN3 plane (Fig. 1). Bond lengths in the ureido group are: C10–O1 = 1.2328 (17) Å, C10–N4 = 1.3777 (18) Å and C10–N5 = 1.3835 (17) Å. They agree very well with the data from the analysis of solid N,N,N',N'-tetramethylurea (Frampton & Parkes, 1996). Finally, the bond lengths in the 2-ethoxy-2-oxoethyl group are comparable with the data from the structure analysis of 2-dimethylamino-1-(2-ethoxy-2-oxoethyl)-3-methyl-3,4,5,6-tetrahydropyrimidin- 1-ium tetraphenylborate (Tiritiris & Kantlehner, 2012a). The bond lengths and angles in the tetraphenylborate ions are in good agreement with the data from the analysis of the alkali metal tetraphenylborates (Behrens et al., 2012). C–H···O contacts between neighbouring guanidinium ions and between guanidinium ions and tetraphenylborate ions have been determined [d(H···O) = 2.71–2.73 Å (Tab. 1)] (Fig. 2). C–H···For the
of N,N,N',N'-tetramethylurea, see: Frampton & Parkes (1996). For the of N,N,N',N'-tetramethylchloroformamidinium chloride, see: Tiritiris & Kantlehner (2008a). For the crystal structures of alkali metal tetraphenylborates, see: Behrens et al. (2012). For the of 2-dimethylamino-1-(2-ethoxy-2-oxoethyl)-3-methyl-3,4,5,6-tetrahydropyrimidin-1-ium tetraphenylborate, see: Tiritiris & Kantlehner (2012a). For the of N,N,N',N',N''-pentamethyl-N''-[3-(1,3,3-trimethylureido)propyl]guanidinium tetraphenylborate, see: Tiritiris & Kantlehner (2012b). For the synthesis of N''-[3-(1,3,3-trimethylureido)propyl]-N,N,N',N'-tetramethylguanidine, see: Tiritiris & Kantlehner (2013).Data collection: COLLECT (Hooft, 2004); cell
DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).Fig. 1. The structure of the title compound with displacement ellipsoids at the 50% probability level. All hydrogen atoms were omitted for the sake of clarity. | |
Fig. 2. C—H···O contacts (black dashed lines) between the hydrogen atoms of tetraphenylborate ions and the oxygen atom of the cations and between the hydrogen atoms and oxygen atoms of adjacent guanidinium ions. | |
Fig. 3. C—H···π interactions (brown dashed lines) between the hydrogen atoms of the guanidinium ion and the phenyl carbon atoms (centroids) of the tetraphenylborate ion. |
C16H34N5O3+·C24H20B− | F(000) = 1432 |
Mr = 663.69 | Dx = 1.210 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 9.6650 (3) Å | Cell parameters from 8389 reflections |
b = 33.8756 (9) Å | θ = 0.4–27.9° |
c = 11.1543 (5) Å | µ = 0.08 mm−1 |
β = 93.759 (1)° | T = 100 K |
V = 3644.2 (2) Å3 | Block, colorless |
Z = 4 | 0.45 × 0.30 × 0.15 mm |
Bruker–Nonius KappaCCD diffractometer | 6067 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.048 |
Graphite monochromator | θmax = 28.0°, θmin = 1.2° |
φ scans, and ω scans | h = −12→12 |
16724 measured reflections | k = −44→44 |
8666 independent reflections | l = −14→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.048 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.122 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0606P)2] where P = (Fo2 + 2Fc2)/3 |
8666 reflections | (Δ/σ)max < 0.001 |
450 parameters | Δρmax = 0.27 e Å−3 |
0 restraints | Δρmin = −0.31 e Å−3 |
C16H34N5O3+·C24H20B− | V = 3644.2 (2) Å3 |
Mr = 663.69 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 9.6650 (3) Å | µ = 0.08 mm−1 |
b = 33.8756 (9) Å | T = 100 K |
c = 11.1543 (5) Å | 0.45 × 0.30 × 0.15 mm |
β = 93.759 (1)° |
Bruker–Nonius KappaCCD diffractometer | 6067 reflections with I > 2σ(I) |
16724 measured reflections | Rint = 0.048 |
8666 independent reflections |
R[F2 > 2σ(F2)] = 0.048 | 0 restraints |
wR(F2) = 0.122 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.27 e Å−3 |
8666 reflections | Δρmin = −0.31 e Å−3 |
450 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.84093 (14) | 0.12384 (4) | 0.92515 (11) | 0.0141 (3) | |
N1 | 0.73352 (12) | 0.14132 (4) | 0.97324 (9) | 0.0165 (3) | |
N2 | 0.83213 (12) | 0.11315 (4) | 0.80954 (10) | 0.0171 (3) | |
N3 | 0.95854 (12) | 0.11695 (3) | 0.99567 (9) | 0.0142 (2) | |
C2 | 0.74939 (16) | 0.17100 (4) | 1.06782 (12) | 0.0204 (3) | |
H2A | 0.8478 | 0.1776 | 1.0825 | 0.031* | |
H2B | 0.7136 | 0.1606 | 1.1417 | 0.031* | |
H2C | 0.6975 | 0.1948 | 1.0428 | 0.031* | |
C3 | 0.59041 (15) | 0.13337 (5) | 0.92991 (13) | 0.0260 (4) | |
H3A | 0.5874 | 0.1097 | 0.8793 | 0.039* | |
H3B | 0.5539 | 0.1559 | 0.8828 | 0.039* | |
H3C | 0.5338 | 0.1291 | 0.9985 | 0.039* | |
C4 | 0.89927 (16) | 0.07750 (5) | 0.76717 (12) | 0.0225 (3) | |
H4A | 0.9747 | 0.0850 | 0.7171 | 0.034* | |
H4B | 0.8311 | 0.0615 | 0.7197 | 0.034* | |
H4C | 0.9369 | 0.0621 | 0.8363 | 0.034* | |
C5 | 0.75132 (16) | 0.13535 (5) | 0.71706 (12) | 0.0226 (3) | |
H5A | 0.6674 | 0.1205 | 0.6918 | 0.034* | |
H5B | 0.8070 | 0.1394 | 0.6478 | 0.034* | |
H5C | 0.7254 | 0.1610 | 0.7495 | 0.034* | |
C6 | 1.09650 (14) | 0.11774 (4) | 0.94674 (12) | 0.0176 (3) | |
H6A | 1.0870 | 0.1271 | 0.8625 | 0.021* | |
H6B | 1.1343 | 0.0906 | 0.9465 | 0.021* | |
C7 | 1.19781 (15) | 0.14434 (4) | 1.01854 (13) | 0.0204 (3) | |
H7A | 1.2897 | 0.1422 | 0.9848 | 0.024* | |
H7B | 1.2076 | 0.1346 | 1.1024 | 0.024* | |
C8 | 1.15600 (16) | 0.18780 (4) | 1.01999 (12) | 0.0197 (3) | |
H8A | 1.0612 | 0.1899 | 1.0480 | 0.024* | |
H8B | 1.2196 | 0.2021 | 1.0781 | 0.024* | |
N4 | 1.15908 (12) | 0.20672 (4) | 0.90229 (10) | 0.0188 (3) | |
C9 | 1.28789 (15) | 0.22640 (5) | 0.87719 (14) | 0.0235 (3) | |
H9A | 1.2705 | 0.2449 | 0.8104 | 0.035* | |
H9B | 1.3562 | 0.2067 | 0.8556 | 0.035* | |
H9C | 1.3237 | 0.2409 | 0.9487 | 0.035* | |
C10 | 1.03676 (15) | 0.21111 (4) | 0.83296 (12) | 0.0165 (3) | |
O1 | 0.92302 (10) | 0.20626 (3) | 0.87473 (8) | 0.0210 (2) | |
N5 | 1.04850 (13) | 0.22196 (4) | 0.71448 (10) | 0.0191 (3) | |
C11 | 0.91878 (16) | 0.23147 (5) | 0.64557 (12) | 0.0234 (3) | |
H11A | 0.8722 | 0.2070 | 0.6190 | 0.035* | |
H11B | 0.9388 | 0.2474 | 0.5754 | 0.035* | |
H11C | 0.8584 | 0.2464 | 0.6962 | 0.035* | |
C12 | 1.14626 (19) | 0.20145 (5) | 0.64173 (14) | 0.0308 (4) | |
H12A | 1.2216 | 0.1903 | 0.6943 | 0.046* | |
H12B | 1.1846 | 0.2201 | 0.5856 | 0.046* | |
H12C | 1.0981 | 0.1802 | 0.5965 | 0.046* | |
C13 | 0.94899 (15) | 0.10156 (4) | 1.11681 (11) | 0.0172 (3) | |
H13A | 0.8953 | 0.1203 | 1.1637 | 0.021* | |
H13B | 1.0434 | 0.0996 | 1.1566 | 0.021* | |
C14 | 0.88068 (15) | 0.06163 (4) | 1.11757 (12) | 0.0174 (3) | |
O2 | 0.83182 (13) | 0.04434 (4) | 1.03091 (9) | 0.0350 (3) | |
O3 | 0.87943 (11) | 0.04887 (3) | 1.23022 (8) | 0.0219 (2) | |
C15 | 0.81131 (17) | 0.01131 (5) | 1.25050 (13) | 0.0265 (4) | |
H15A | 0.8522 | −0.0098 | 1.2028 | 0.032* | |
H15B | 0.7111 | 0.0131 | 1.2266 | 0.032* | |
C16 | 0.8328 (2) | 0.00251 (5) | 1.38170 (14) | 0.0387 (5) | |
H16A | 0.9322 | −0.0004 | 1.4034 | 0.058* | |
H16B | 0.7847 | −0.0220 | 1.3998 | 0.058* | |
H16C | 0.7957 | 0.0242 | 1.4279 | 0.058* | |
B1 | 0.34042 (17) | 0.11535 (5) | 0.39939 (13) | 0.0143 (3) | |
C17 | 0.43843 (14) | 0.15505 (4) | 0.39351 (11) | 0.0157 (3) | |
C18 | 0.49782 (15) | 0.17349 (4) | 0.49770 (12) | 0.0186 (3) | |
H18A | 0.4844 | 0.1618 | 0.5734 | 0.022* | |
C19 | 0.57527 (15) | 0.20806 (5) | 0.49502 (14) | 0.0223 (3) | |
H19A | 0.6132 | 0.2193 | 0.5680 | 0.027* | |
C20 | 0.59757 (16) | 0.22626 (5) | 0.38682 (14) | 0.0243 (3) | |
H20A | 0.6523 | 0.2495 | 0.3845 | 0.029* | |
C21 | 0.53821 (16) | 0.20976 (5) | 0.28209 (13) | 0.0228 (3) | |
H21A | 0.5500 | 0.2222 | 0.2071 | 0.027* | |
C22 | 0.46146 (15) | 0.17509 (4) | 0.28616 (12) | 0.0186 (3) | |
H22A | 0.4226 | 0.1644 | 0.2127 | 0.022* | |
C23 | 0.35548 (15) | 0.08579 (4) | 0.28264 (11) | 0.0151 (3) | |
C24 | 0.47268 (15) | 0.08387 (4) | 0.21527 (12) | 0.0195 (3) | |
H24A | 0.5494 | 0.1005 | 0.2370 | 0.023* | |
C25 | 0.48122 (17) | 0.05850 (5) | 0.11770 (12) | 0.0224 (3) | |
H25A | 0.5626 | 0.0583 | 0.0744 | 0.027* | |
C26 | 0.37252 (17) | 0.03359 (5) | 0.08325 (12) | 0.0224 (3) | |
H26A | 0.3771 | 0.0170 | 0.0150 | 0.027* | |
C27 | 0.25708 (16) | 0.03331 (5) | 0.15005 (12) | 0.0218 (3) | |
H27A | 0.1825 | 0.0158 | 0.1293 | 0.026* | |
C28 | 0.25009 (15) | 0.05867 (4) | 0.24773 (12) | 0.0178 (3) | |
H28A | 0.1703 | 0.0576 | 0.2930 | 0.021* | |
C29 | 0.17692 (14) | 0.12955 (4) | 0.39947 (11) | 0.0139 (3) | |
C30 | 0.12827 (14) | 0.16549 (4) | 0.34958 (11) | 0.0156 (3) | |
H30A | 0.1930 | 0.1828 | 0.3163 | 0.019* | |
C31 | −0.00979 (15) | 0.17687 (4) | 0.34667 (11) | 0.0188 (3) | |
H31A | −0.0370 | 0.2017 | 0.3130 | 0.023* | |
C32 | −0.10837 (15) | 0.15240 (5) | 0.39235 (11) | 0.0192 (3) | |
H32A | −0.2029 | 0.1602 | 0.3906 | 0.023* | |
C33 | −0.06588 (15) | 0.11628 (4) | 0.44077 (11) | 0.0180 (3) | |
H33A | −0.1319 | 0.0988 | 0.4712 | 0.022* | |
C34 | 0.07363 (15) | 0.10570 (4) | 0.44472 (11) | 0.0161 (3) | |
H34A | 0.1002 | 0.0811 | 0.4798 | 0.019* | |
C35 | 0.38760 (14) | 0.09029 (4) | 0.52189 (11) | 0.0154 (3) | |
C36 | 0.33605 (15) | 0.09853 (4) | 0.63423 (12) | 0.0176 (3) | |
H36A | 0.2684 | 0.1187 | 0.6392 | 0.021* | |
C37 | 0.38038 (15) | 0.07824 (5) | 0.73862 (12) | 0.0199 (3) | |
H37A | 0.3422 | 0.0846 | 0.8125 | 0.024* | |
C38 | 0.47946 (16) | 0.04899 (4) | 0.73512 (12) | 0.0204 (3) | |
H38A | 0.5105 | 0.0353 | 0.8063 | 0.025* | |
C39 | 0.53299 (15) | 0.03985 (4) | 0.62634 (12) | 0.0208 (3) | |
H39A | 0.6010 | 0.0197 | 0.6224 | 0.025* | |
C40 | 0.48709 (15) | 0.06020 (4) | 0.52267 (12) | 0.0185 (3) | |
H40A | 0.5251 | 0.0533 | 0.4490 | 0.022* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0152 (7) | 0.0160 (7) | 0.0112 (6) | −0.0023 (5) | 0.0011 (5) | 0.0007 (5) |
N1 | 0.0116 (6) | 0.0249 (7) | 0.0130 (6) | −0.0006 (5) | 0.0010 (5) | −0.0007 (5) |
N2 | 0.0192 (7) | 0.0210 (7) | 0.0110 (6) | −0.0005 (5) | 0.0000 (5) | −0.0001 (5) |
N3 | 0.0124 (6) | 0.0192 (6) | 0.0111 (6) | −0.0008 (5) | 0.0020 (4) | 0.0011 (4) |
C2 | 0.0204 (8) | 0.0243 (8) | 0.0171 (7) | 0.0017 (6) | 0.0058 (6) | −0.0038 (6) |
C3 | 0.0131 (8) | 0.0386 (10) | 0.0260 (8) | −0.0003 (7) | 0.0003 (6) | 0.0040 (7) |
C4 | 0.0281 (9) | 0.0243 (8) | 0.0150 (7) | 0.0015 (7) | 0.0009 (6) | −0.0047 (6) |
C5 | 0.0285 (9) | 0.0260 (8) | 0.0127 (7) | 0.0000 (7) | −0.0032 (6) | 0.0018 (6) |
C6 | 0.0125 (7) | 0.0210 (8) | 0.0198 (7) | 0.0020 (6) | 0.0040 (6) | 0.0015 (6) |
C7 | 0.0134 (8) | 0.0265 (8) | 0.0209 (7) | −0.0005 (6) | −0.0006 (6) | 0.0057 (6) |
C8 | 0.0190 (8) | 0.0260 (8) | 0.0134 (7) | −0.0039 (6) | −0.0040 (6) | 0.0007 (6) |
N4 | 0.0162 (7) | 0.0230 (7) | 0.0173 (6) | −0.0040 (5) | 0.0010 (5) | 0.0039 (5) |
C9 | 0.0178 (8) | 0.0252 (8) | 0.0277 (8) | −0.0043 (6) | 0.0032 (6) | 0.0016 (6) |
C10 | 0.0219 (8) | 0.0147 (7) | 0.0131 (7) | −0.0011 (6) | 0.0012 (6) | −0.0008 (5) |
O1 | 0.0163 (6) | 0.0304 (6) | 0.0163 (5) | −0.0042 (4) | 0.0017 (4) | 0.0025 (4) |
N5 | 0.0219 (7) | 0.0228 (7) | 0.0129 (6) | 0.0011 (5) | 0.0030 (5) | 0.0006 (5) |
C11 | 0.0311 (9) | 0.0231 (8) | 0.0155 (7) | −0.0018 (7) | −0.0031 (6) | 0.0019 (6) |
C12 | 0.0411 (11) | 0.0304 (9) | 0.0223 (8) | 0.0055 (8) | 0.0122 (7) | −0.0011 (7) |
C13 | 0.0179 (8) | 0.0211 (8) | 0.0123 (7) | −0.0019 (6) | −0.0019 (5) | 0.0019 (6) |
C14 | 0.0151 (7) | 0.0224 (8) | 0.0148 (7) | 0.0004 (6) | 0.0011 (5) | 0.0002 (6) |
O2 | 0.0549 (8) | 0.0339 (7) | 0.0159 (6) | −0.0208 (6) | 0.0000 (5) | −0.0034 (5) |
O3 | 0.0272 (6) | 0.0231 (6) | 0.0151 (5) | −0.0091 (5) | −0.0020 (4) | 0.0049 (4) |
C15 | 0.0315 (10) | 0.0240 (8) | 0.0233 (8) | −0.0118 (7) | −0.0035 (7) | 0.0055 (7) |
C16 | 0.0487 (12) | 0.0364 (11) | 0.0288 (9) | −0.0199 (9) | −0.0134 (8) | 0.0144 (8) |
B1 | 0.0144 (8) | 0.0170 (8) | 0.0113 (7) | 0.0017 (6) | −0.0002 (6) | −0.0007 (6) |
C17 | 0.0120 (7) | 0.0178 (7) | 0.0173 (7) | 0.0045 (6) | 0.0008 (5) | −0.0002 (6) |
C18 | 0.0147 (8) | 0.0220 (8) | 0.0189 (7) | 0.0032 (6) | −0.0008 (6) | −0.0006 (6) |
C19 | 0.0155 (8) | 0.0230 (8) | 0.0281 (8) | 0.0027 (6) | −0.0016 (6) | −0.0080 (6) |
C20 | 0.0160 (8) | 0.0179 (8) | 0.0398 (9) | −0.0005 (6) | 0.0071 (7) | −0.0037 (7) |
C21 | 0.0223 (9) | 0.0221 (8) | 0.0253 (8) | 0.0028 (6) | 0.0114 (6) | 0.0017 (6) |
C22 | 0.0169 (8) | 0.0221 (8) | 0.0168 (7) | 0.0022 (6) | 0.0024 (6) | −0.0011 (6) |
C23 | 0.0178 (8) | 0.0166 (7) | 0.0106 (6) | 0.0044 (6) | −0.0012 (5) | 0.0026 (5) |
C24 | 0.0193 (8) | 0.0216 (8) | 0.0179 (7) | 0.0008 (6) | 0.0028 (6) | 0.0015 (6) |
C25 | 0.0271 (9) | 0.0234 (8) | 0.0173 (7) | 0.0079 (7) | 0.0072 (6) | 0.0015 (6) |
C26 | 0.0330 (9) | 0.0219 (8) | 0.0118 (7) | 0.0108 (7) | −0.0018 (6) | −0.0025 (6) |
C27 | 0.0246 (9) | 0.0209 (8) | 0.0191 (7) | 0.0021 (6) | −0.0055 (6) | −0.0028 (6) |
C28 | 0.0182 (8) | 0.0208 (8) | 0.0143 (7) | 0.0039 (6) | 0.0000 (6) | 0.0001 (6) |
C29 | 0.0167 (7) | 0.0182 (7) | 0.0065 (6) | 0.0012 (6) | −0.0001 (5) | −0.0043 (5) |
C30 | 0.0177 (8) | 0.0203 (7) | 0.0085 (6) | −0.0002 (6) | −0.0005 (5) | −0.0001 (5) |
C31 | 0.0220 (8) | 0.0221 (8) | 0.0117 (7) | 0.0058 (6) | −0.0030 (6) | −0.0011 (6) |
C32 | 0.0165 (8) | 0.0281 (8) | 0.0125 (7) | 0.0056 (6) | −0.0011 (6) | −0.0056 (6) |
C33 | 0.0180 (8) | 0.0260 (8) | 0.0103 (6) | −0.0019 (6) | 0.0027 (5) | −0.0021 (6) |
C34 | 0.0189 (8) | 0.0191 (7) | 0.0103 (6) | 0.0019 (6) | 0.0003 (5) | −0.0002 (5) |
C35 | 0.0154 (7) | 0.0171 (7) | 0.0133 (7) | −0.0023 (6) | −0.0023 (5) | −0.0008 (5) |
C36 | 0.0170 (8) | 0.0196 (8) | 0.0158 (7) | 0.0005 (6) | −0.0019 (6) | −0.0008 (6) |
C37 | 0.0207 (8) | 0.0272 (8) | 0.0116 (7) | −0.0045 (6) | −0.0001 (6) | −0.0002 (6) |
C38 | 0.0222 (8) | 0.0226 (8) | 0.0157 (7) | −0.0031 (6) | −0.0052 (6) | 0.0048 (6) |
C39 | 0.0207 (8) | 0.0182 (8) | 0.0225 (8) | 0.0021 (6) | −0.0050 (6) | 0.0005 (6) |
C40 | 0.0196 (8) | 0.0207 (8) | 0.0150 (7) | 0.0018 (6) | −0.0004 (6) | −0.0014 (6) |
C1—N2 | 1.3368 (16) | C15—H15B | 0.9900 |
C1—N1 | 1.3375 (18) | C16—H16A | 0.9800 |
C1—N3 | 1.3594 (17) | C16—H16B | 0.9800 |
N1—C2 | 1.4583 (17) | C16—H16C | 0.9800 |
N1—C3 | 1.4599 (18) | B1—C35 | 1.647 (2) |
N2—C5 | 1.4608 (18) | B1—C17 | 1.649 (2) |
N2—C4 | 1.4639 (18) | B1—C29 | 1.652 (2) |
N3—C13 | 1.4568 (16) | B1—C23 | 1.657 (2) |
N3—C6 | 1.4737 (17) | C17—C22 | 1.4069 (19) |
C2—H2A | 0.9800 | C17—C18 | 1.4081 (19) |
C2—H2B | 0.9800 | C18—C19 | 1.391 (2) |
C2—H2C | 0.9800 | C18—H18A | 0.9500 |
C3—H3A | 0.9800 | C19—C20 | 1.385 (2) |
C3—H3B | 0.9800 | C19—H19A | 0.9500 |
C3—H3C | 0.9800 | C20—C21 | 1.385 (2) |
C4—H4A | 0.9800 | C20—H20A | 0.9500 |
C4—H4B | 0.9800 | C21—C22 | 1.391 (2) |
C4—H4C | 0.9800 | C21—H21A | 0.9500 |
C5—H5A | 0.9800 | C22—H22A | 0.9500 |
C5—H5B | 0.9800 | C23—C24 | 1.401 (2) |
C5—H5C | 0.9800 | C23—C28 | 1.408 (2) |
C6—C7 | 1.520 (2) | C24—C25 | 1.393 (2) |
C6—H6A | 0.9900 | C24—H24A | 0.9500 |
C6—H6B | 0.9900 | C25—C26 | 1.382 (2) |
C7—C8 | 1.527 (2) | C25—H25A | 0.9500 |
C7—H7A | 0.9900 | C26—C27 | 1.382 (2) |
C7—H7B | 0.9900 | C26—H26A | 0.9500 |
C8—N4 | 1.4630 (17) | C27—C28 | 1.3925 (19) |
C8—H8A | 0.9900 | C27—H27A | 0.9500 |
C8—H8B | 0.9900 | C28—H28A | 0.9500 |
N4—C10 | 1.3777 (18) | C29—C34 | 1.404 (2) |
N4—C9 | 1.4554 (18) | C29—C30 | 1.4066 (19) |
C9—H9A | 0.9800 | C30—C31 | 1.387 (2) |
C9—H9B | 0.9800 | C30—H30A | 0.9500 |
C9—H9C | 0.9800 | C31—C32 | 1.385 (2) |
C10—O1 | 1.2328 (17) | C31—H31A | 0.9500 |
C10—N5 | 1.3835 (17) | C32—C33 | 1.389 (2) |
N5—C12 | 1.4610 (19) | C32—H32A | 0.9500 |
N5—C11 | 1.4630 (18) | C33—C34 | 1.393 (2) |
C11—H11A | 0.9800 | C33—H33A | 0.9500 |
C11—H11B | 0.9800 | C34—H34A | 0.9500 |
C11—H11C | 0.9800 | C35—C40 | 1.401 (2) |
C12—H12A | 0.9800 | C35—C36 | 1.4064 (19) |
C12—H12B | 0.9800 | C36—C37 | 1.3952 (19) |
C12—H12C | 0.9800 | C36—H36A | 0.9500 |
C13—C14 | 1.505 (2) | C37—C38 | 1.380 (2) |
C13—H13A | 0.9900 | C37—H37A | 0.9500 |
C13—H13B | 0.9900 | C38—C39 | 1.385 (2) |
C14—O2 | 1.2004 (16) | C38—H38A | 0.9500 |
C14—O3 | 1.3296 (16) | C39—C40 | 1.3936 (19) |
O3—C15 | 1.4570 (17) | C39—H39A | 0.9500 |
C15—C16 | 1.495 (2) | C40—H40A | 0.9500 |
C15—H15A | 0.9900 | ||
N2—C1—N1 | 120.32 (12) | O3—C15—C16 | 106.90 (12) |
N2—C1—N3 | 120.64 (12) | O3—C15—H15A | 110.3 |
N1—C1—N3 | 119.04 (11) | C16—C15—H15A | 110.3 |
C1—N1—C2 | 123.21 (12) | O3—C15—H15B | 110.3 |
C1—N1—C3 | 121.94 (12) | C16—C15—H15B | 110.3 |
C2—N1—C3 | 114.78 (12) | H15A—C15—H15B | 108.6 |
C1—N2—C5 | 122.62 (12) | C15—C16—H16A | 109.5 |
C1—N2—C4 | 122.24 (12) | C15—C16—H16B | 109.5 |
C5—N2—C4 | 115.11 (11) | H16A—C16—H16B | 109.5 |
C1—N3—C13 | 119.79 (11) | C15—C16—H16C | 109.5 |
C1—N3—C6 | 121.67 (11) | H16A—C16—H16C | 109.5 |
C13—N3—C6 | 117.64 (11) | H16B—C16—H16C | 109.5 |
N1—C2—H2A | 109.5 | C35—B1—C17 | 108.95 (11) |
N1—C2—H2B | 109.5 | C35—B1—C29 | 111.24 (11) |
H2A—C2—H2B | 109.5 | C17—B1—C29 | 108.33 (11) |
N1—C2—H2C | 109.5 | C35—B1—C23 | 107.87 (11) |
H2A—C2—H2C | 109.5 | C17—B1—C23 | 112.42 (11) |
H2B—C2—H2C | 109.5 | C29—B1—C23 | 108.05 (11) |
N1—C3—H3A | 109.5 | C22—C17—C18 | 114.18 (13) |
N1—C3—H3B | 109.5 | C22—C17—B1 | 123.43 (12) |
H3A—C3—H3B | 109.5 | C18—C17—B1 | 122.23 (12) |
N1—C3—H3C | 109.5 | C19—C18—C17 | 123.13 (13) |
H3A—C3—H3C | 109.5 | C19—C18—H18A | 118.4 |
H3B—C3—H3C | 109.5 | C17—C18—H18A | 118.4 |
N2—C4—H4A | 109.5 | C20—C19—C18 | 120.55 (13) |
N2—C4—H4B | 109.5 | C20—C19—H19A | 119.7 |
H4A—C4—H4B | 109.5 | C18—C19—H19A | 119.7 |
N2—C4—H4C | 109.5 | C19—C20—C21 | 118.42 (14) |
H4A—C4—H4C | 109.5 | C19—C20—H20A | 120.8 |
H4B—C4—H4C | 109.5 | C21—C20—H20A | 120.8 |
N2—C5—H5A | 109.5 | C20—C21—C22 | 120.35 (14) |
N2—C5—H5B | 109.5 | C20—C21—H21A | 119.8 |
H5A—C5—H5B | 109.5 | C22—C21—H21A | 119.8 |
N2—C5—H5C | 109.5 | C21—C22—C17 | 123.34 (13) |
H5A—C5—H5C | 109.5 | C21—C22—H22A | 118.3 |
H5B—C5—H5C | 109.5 | C17—C22—H22A | 118.3 |
N3—C6—C7 | 112.52 (11) | C24—C23—C28 | 114.65 (12) |
N3—C6—H6A | 109.1 | C24—C23—B1 | 124.43 (12) |
C7—C6—H6A | 109.1 | C28—C23—B1 | 120.84 (12) |
N3—C6—H6B | 109.1 | C25—C24—C23 | 122.61 (14) |
C7—C6—H6B | 109.1 | C25—C24—H24A | 118.7 |
H6A—C6—H6B | 107.8 | C23—C24—H24A | 118.7 |
C6—C7—C8 | 114.54 (12) | C26—C25—C24 | 120.71 (14) |
C6—C7—H7A | 108.6 | C26—C25—H25A | 119.6 |
C8—C7—H7A | 108.6 | C24—C25—H25A | 119.6 |
C6—C7—H7B | 108.6 | C27—C26—C25 | 118.69 (13) |
C8—C7—H7B | 108.6 | C27—C26—H26A | 120.7 |
H7A—C7—H7B | 107.6 | C25—C26—H26A | 120.7 |
N4—C8—C7 | 113.07 (12) | C26—C27—C28 | 120.00 (14) |
N4—C8—H8A | 109.0 | C26—C27—H27A | 120.0 |
C7—C8—H8A | 109.0 | C28—C27—H27A | 120.0 |
N4—C8—H8B | 109.0 | C27—C28—C23 | 123.21 (14) |
C7—C8—H8B | 109.0 | C27—C28—H28A | 118.4 |
H8A—C8—H8B | 107.8 | C23—C28—H28A | 118.4 |
C10—N4—C9 | 123.77 (12) | C34—C29—C30 | 114.41 (13) |
C10—N4—C8 | 118.94 (12) | C34—C29—B1 | 122.37 (12) |
C9—N4—C8 | 116.18 (11) | C30—C29—B1 | 123.15 (12) |
N4—C9—H9A | 109.5 | C31—C30—C29 | 123.08 (13) |
N4—C9—H9B | 109.5 | C31—C30—H30A | 118.5 |
H9A—C9—H9B | 109.5 | C29—C30—H30A | 118.5 |
N4—C9—H9C | 109.5 | C32—C31—C30 | 120.59 (14) |
H9A—C9—H9C | 109.5 | C32—C31—H31A | 119.7 |
H9B—C9—H9C | 109.5 | C30—C31—H31A | 119.7 |
O1—C10—N4 | 121.81 (12) | C31—C32—C33 | 118.52 (14) |
O1—C10—N5 | 121.83 (13) | C31—C32—H32A | 120.7 |
N4—C10—N5 | 116.34 (13) | C33—C32—H32A | 120.7 |
C10—N5—C12 | 120.06 (12) | C32—C33—C34 | 119.99 (14) |
C10—N5—C11 | 116.06 (12) | C32—C33—H33A | 120.0 |
C12—N5—C11 | 112.09 (12) | C34—C33—H33A | 120.0 |
N5—C11—H11A | 109.5 | C33—C34—C29 | 123.39 (13) |
N5—C11—H11B | 109.5 | C33—C34—H34A | 118.3 |
H11A—C11—H11B | 109.5 | C29—C34—H34A | 118.3 |
N5—C11—H11C | 109.5 | C40—C35—C36 | 114.96 (12) |
H11A—C11—H11C | 109.5 | C40—C35—B1 | 122.18 (12) |
H11B—C11—H11C | 109.5 | C36—C35—B1 | 122.81 (12) |
N5—C12—H12A | 109.5 | C37—C36—C35 | 122.58 (13) |
N5—C12—H12B | 109.5 | C37—C36—H36A | 118.7 |
H12A—C12—H12B | 109.5 | C35—C36—H36A | 118.7 |
N5—C12—H12C | 109.5 | C38—C37—C36 | 120.38 (13) |
H12A—C12—H12C | 109.5 | C38—C37—H37A | 119.8 |
H12B—C12—H12C | 109.5 | C36—C37—H37A | 119.8 |
N3—C13—C14 | 112.41 (11) | C37—C38—C39 | 119.02 (13) |
N3—C13—H13A | 109.1 | C37—C38—H38A | 120.5 |
C14—C13—H13A | 109.1 | C39—C38—H38A | 120.5 |
N3—C13—H13B | 109.1 | C38—C39—C40 | 119.96 (14) |
C14—C13—H13B | 109.1 | C38—C39—H39A | 120.0 |
H13A—C13—H13B | 107.9 | C40—C39—H39A | 120.0 |
O2—C14—O3 | 125.09 (14) | C39—C40—C35 | 123.10 (13) |
O2—C14—C13 | 125.70 (13) | C39—C40—H40A | 118.5 |
O3—C14—C13 | 109.19 (11) | C35—C40—H40A | 118.5 |
C14—O3—C15 | 117.58 (11) | ||
N2—C1—N1—C2 | −146.94 (13) | C18—C17—C22—C21 | 1.1 (2) |
N3—C1—N1—C2 | 33.4 (2) | B1—C17—C22—C21 | 176.50 (13) |
N2—C1—N1—C3 | 29.8 (2) | C35—B1—C23—C24 | −94.23 (15) |
N3—C1—N1—C3 | −149.78 (13) | C17—B1—C23—C24 | 25.92 (18) |
N1—C1—N2—C5 | 33.0 (2) | C29—B1—C23—C24 | 145.41 (13) |
N3—C1—N2—C5 | −147.38 (14) | C35—B1—C23—C28 | 82.39 (15) |
N1—C1—N2—C4 | −144.91 (14) | C17—B1—C23—C28 | −157.47 (12) |
N3—C1—N2—C4 | 34.7 (2) | C29—B1—C23—C28 | −37.98 (16) |
N2—C1—N3—C13 | −136.39 (13) | C28—C23—C24—C25 | 3.1 (2) |
N1—C1—N3—C13 | 43.24 (19) | B1—C23—C24—C25 | 179.88 (13) |
N2—C1—N3—C6 | 32.45 (19) | C23—C24—C25—C26 | −0.4 (2) |
N1—C1—N3—C6 | −147.92 (13) | C24—C25—C26—C27 | −2.3 (2) |
C1—N3—C6—C7 | 128.32 (14) | C25—C26—C27—C28 | 1.9 (2) |
C13—N3—C6—C7 | −62.61 (16) | C26—C27—C28—C23 | 1.0 (2) |
N3—C6—C7—C8 | −62.20 (16) | C24—C23—C28—C27 | −3.4 (2) |
C6—C7—C8—N4 | −67.10 (16) | B1—C23—C28—C27 | 179.65 (12) |
C7—C8—N4—C10 | 99.05 (15) | C35—B1—C29—C34 | −37.55 (17) |
C7—C8—N4—C9 | −92.53 (15) | C17—B1—C29—C34 | −157.27 (12) |
C9—N4—C10—O1 | −154.18 (14) | C23—B1—C29—C34 | 80.68 (15) |
C8—N4—C10—O1 | 13.3 (2) | C35—B1—C29—C30 | 145.51 (12) |
C9—N4—C10—N5 | 24.7 (2) | C17—B1—C29—C30 | 25.78 (16) |
C8—N4—C10—N5 | −167.82 (13) | C23—B1—C29—C30 | −96.26 (14) |
O1—C10—N5—C12 | −133.66 (16) | C34—C29—C30—C31 | 0.94 (18) |
N4—C10—N5—C12 | 47.47 (19) | B1—C29—C30—C31 | 178.11 (12) |
O1—C10—N5—C11 | 6.4 (2) | C29—C30—C31—C32 | −1.0 (2) |
N4—C10—N5—C11 | −172.48 (12) | C30—C31—C32—C33 | −0.12 (19) |
C1—N3—C13—C14 | 61.55 (17) | C31—C32—C33—C34 | 1.23 (19) |
C6—N3—C13—C14 | −107.74 (14) | C32—C33—C34—C29 | −1.3 (2) |
N3—C13—C14—O2 | −3.7 (2) | C30—C29—C34—C33 | 0.22 (18) |
N3—C13—C14—O3 | 178.03 (12) | B1—C29—C34—C33 | −176.97 (12) |
O2—C14—O3—C15 | −1.2 (2) | C17—B1—C35—C40 | −91.78 (15) |
C13—C14—O3—C15 | 177.14 (12) | C29—B1—C35—C40 | 148.86 (13) |
C14—O3—C15—C16 | 176.18 (14) | C23—B1—C35—C40 | 30.52 (18) |
C35—B1—C17—C22 | 156.72 (13) | C17—B1—C35—C36 | 85.35 (16) |
C29—B1—C17—C22 | −82.12 (15) | C29—B1—C35—C36 | −34.01 (18) |
C23—B1—C17—C22 | 37.21 (18) | C23—B1—C35—C36 | −152.35 (13) |
C35—B1—C17—C18 | −28.25 (17) | C40—C35—C36—C37 | −0.1 (2) |
C29—B1—C17—C18 | 92.91 (15) | B1—C35—C36—C37 | −177.43 (13) |
C23—B1—C17—C18 | −147.76 (13) | C35—C36—C37—C38 | 0.6 (2) |
C22—C17—C18—C19 | −1.4 (2) | C36—C37—C38—C39 | −0.7 (2) |
B1—C17—C18—C19 | −176.82 (13) | C37—C38—C39—C40 | 0.3 (2) |
C17—C18—C19—C20 | 0.1 (2) | C38—C39—C40—C35 | 0.2 (2) |
C18—C19—C20—C21 | 1.5 (2) | C36—C35—C40—C39 | −0.3 (2) |
C19—C20—C21—C22 | −1.8 (2) | B1—C35—C40—C39 | 177.04 (13) |
C20—C21—C22—C17 | 0.4 (2) |
Cg1 and Cg2 are the centroids of the C29–C34 and C35–C40 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C11—H11B···O1i | 0.98 | 2.73 | 3.687 (2) | 165 |
C25—H25A···O2ii | 0.95 | 2.72 | 3.617 (2) | 158 |
C27—H27A···O2iii | 0.95 | 2.71 | 3.392 (2) | 129 |
C12—H12C···Cg1 | 0.98 | 2.64 | 3.541 (2) | 152 |
C13—H13A···Cg1 | 0.99 | 2.91 | 3.432 (2) | 114 |
C5—H5A···Cg2 | 0.98 | 2.89 | 3.868 (2) | 174 |
C16—H16B···Cg2 | 0.98 | 2.66 | 3.542 (2) | 151 |
Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) x, y, z−1; (iii) −x+1, −y, −z+1. |
Cg1 and Cg2 are the centroids of the C29–C34 and C35–C40 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C11—H11B···O1i | 0.98 | 2.73 | 3.687 (2) | 165 |
C25—H25A···O2ii | 0.95 | 2.72 | 3.617 (2) | 158 |
C27—H27A···O2iii | 0.95 | 2.71 | 3.392 (2) | 129 |
C12—H12C···Cg1 | 0.98 | 2.64 | 3.541 (2) | 152 |
C13—H13A···Cg1 | 0.99 | 2.91 | 3.432 (2) | 114 |
C5—H5A···Cg2 | 0.98 | 2.89 | 3.868 (2) | 174 |
C16—H16B···Cg2 | 0.98 | 2.66 | 3.542 (2) | 151 |
Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) x, y, z−1; (iii) −x+1, −y, −z+1. |
Acknowledgements
The authors thank Dr F. Lissner (Institut für Anorganische Chemie, Universität Stuttgart) for measuring the diffraction data.
References
Behrens, U., Hoffmann, F. & Olbrich, F. (2012). Organometallics, 31, 905–913. Web of Science CSD CrossRef CAS Google Scholar
Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Frampton, C. S. & Parkes, K. E. B. (1996). Acta Cryst. C52, 3246–3248. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Hooft, R. W. W. (2004). COLLECT. Bruker–Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Tiritiris, I. & Kantlehner, W. (2008a). Z. Kristallogr. 223, 345–346. CAS Google Scholar
Tiritiris, I. & Kantlehner, W. (2012a). Acta Cryst. E68, o2002. CSD CrossRef IUCr Journals Google Scholar
Tiritiris, I. & Kantlehner, W. (2012b). Acta Cryst. E68, o2223. CSD CrossRef IUCr Journals Google Scholar
Tiritiris, I. & Kantlehner, W. (2013). Adv. Chem. Lett. 1, 300–307. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
By reaction of N,N,N',N'-tetramethylchloroformamidinium chloride (Tiritiris & Kantlehner, 2008a) with N-methyl-propane-1,3-diamine, a mixture consisting of two guanidinium chlorides and one bisguanidinium dichloride have been obtained. After treating the salt mixture with an aqueous sodium hydroxide solution, the guanidine-urea derivative N''-[3-(1,3,3-trimethylureido)propyl]- N,N,N',N'-tetramethylguanidine emerges as byproduct, due to partial hydrolysis of the bisguanidinium dichloride (Tiritiris & Kantlehner, 2013). As usual in guanidines, also in ureidoalkyl-guanidines electrophiles can attack on the imine nitrogen atom because it is the most basic site, giving substituted ureidoalkyl-guanidinium salts. The here presented title salt is the second one in our serie, which has been structurally characterized after anion exchange with sodium tetraphenylborate. The crystal structure analysis reveals, that the bond lengths and angles in the cation are in very good agreement with the data obtained from the structure analysis of N,N,N',N',N''-pentamethyl- N''-[3-(1,3,3-trimethylureido)propyl]guanidinium tetraphenylborate (Tiritiris & Kantlehner, 2012b) Prominent bond parameters in the guanidinium ion are: C1–N1 = 1.3375 (18) Å, C1–N2 = 1.3368 (16) Å and C1–N3 = 1.3594 (17) Å, indicating partial double-bond character. The N–C1–N angles are: 120.32 (12)° (N1–C1–N2), 120.64 (12)° (N2–C1–N3) and 119.04 (11)° (N1–C1–N3), which indicates a nearly ideal trigonal-planar surrounding of the carbon centre by the nitrogen atoms. The positive charge is completely delocalized on the CN3 plane (Fig. 1). Bond lengths in the ureido group are: C10–O1 = 1.2328 (17) Å, C10–N4 = 1.3777 (18) Å and C10–N5 = 1.3835 (17) Å. They agree very well with the data from the crystal structure analysis of solid N,N,N',N'-tetramethylurea (Frampton & Parkes, 1996). Finally, the bond lengths in the 2-ethoxy-2-oxoethyl group are comparable with the data from the structure analysis of 2-dimethylamino-1-(2-ethoxy-2-oxoethyl)-3-methyl-3,4,5,6-tetrahydropyrimidin- 1-ium tetraphenylborate (Tiritiris & Kantlehner, 2012a). The bond lengths and angles in the tetraphenylborate ions are in good agreement with the data from the crystal structure analysis of the alkali metal tetraphenylborates (Behrens et al., 2012). C–H···O contacts between neighbouring guanidinium ions and between guanidinium ions and tetraphenylborate ions have been determined [d(H···O) = 2.71–2.73 Å (Tab. 1)] (Fig. 2). C–H···π interactions between the guanidinium hydrogen atoms of –N(CH3)2, –CH2 and –CH3 groups and the phenyl carbon atoms (centroids: Cg1 = C29–C34 and Cg2 = C35–C40) of the tetraphenylborate ion are also present (Fig. 3), ranging from 2.64 to 2.91 Å (Tab. 1). The phenyl rings form aromatic pockets, in which the guanidinium ions are embedded.