organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of N′′-(2-eth­­oxy-2-oxoeth­yl)-N,N,N′,N′-tetra­methyl-N′′-[3-(1,3,3-tri­methyl­ureido)prop­yl]guanidinium tetra­phenyl­borate

aFakultät Chemie/Organische Chemie, Hochschule Aalen, Beethovenstrasse 1, D-73430 Aalen, Germany
*Correspondence e-mail: willi.kantlehner@hs-aalen.de

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 22 November 2015; accepted 1 December 2015; online 9 December 2015)

In the title salt, C16H34N5O3+·C24H20B, the C—N bond lengths in the cation are 1.3368 (16), 1.3375 (18) and 1.3594 (17) Å, indicating partial double-bond character. The central C atom is bonded to the three N atoms in a nearly ideal trigonal–planar geometry and the positive charge is delocal­ized in the CN3 plane. In the crystal, weak C—H⋯O contacts are observed between neighbouring guanidinium ions and between guanidinium ions and tetra­phenyl­borate anions. In addition, C—H⋯π inter­actions involving guanidinium H atoms and aromatic rings of the anion are present. The phenyl rings form aromatic pockets, in which the cations are embedded. This leads to the formation of a two-dimensional supramolecular pattern along the ab plane.

1. Related literature

For the crystal structure of N,N,N′,N′-tetra­methyl­urea, see: Frampton & Parkes (1996[Frampton, C. S. & Parkes, K. E. B. (1996). Acta Cryst. C52, 3246-3248.]). For the crystal structure of N,N,N′,N′-tetra­methyl­chloro­formamidinium chloride, see: Tiritiris & Kantlehner (2008a[Tiritiris, I. & Kantlehner, W. (2008a). Z. Kristallogr. 223, 345-346.]). For the crystal structures of alkali metal tetra­phenyl­borates, see: Behrens et al. (2012[Behrens, U., Hoffmann, F. & Olbrich, F. (2012). Organometallics, 31, 905-913.]). For the crystal structure of 2-di­methyl­amino-1-(2-eth­oxy-2-oxoeth­yl)-3-methyl-3,4,5,6-tetra­hydro­pyrimidin-1-ium tetra­phenyl­borate, see: Tiritiris & Kantlehner (2012a[Tiritiris, I. & Kantlehner, W. (2012a). Acta Cryst. E68, o2002.]). For the crystal structure of N,N,N′,N′,N′′-penta­methyl-N′′-[3-(1,3,3-tri­methyl­ureido)prop­yl]guanidinium tetra­phenyl­borate, see: Tiritiris & Kantlehner (2012b[Tiritiris, I. & Kantlehner, W. (2012b). Acta Cryst. E68, o2223.]). For the synthesis of N′′-[3-(1,3,3-tri­methyl­ureido)prop­yl]-N,N,N′,N′-tetra­methyl­guanidine, see: Tiritiris & Kantlehner (2013[Tiritiris, I. & Kantlehner, W. (2013). Adv. Chem. Lett. 1, 300-307.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C16H34N5O3+·C24H20B

  • Mr = 663.69

  • Monoclinic, P 21 /c

  • a = 9.6650 (3) Å

  • b = 33.8756 (9) Å

  • c = 11.1543 (5) Å

  • β = 93.759 (1)°

  • V = 3644.2 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.45 × 0.30 × 0.15 mm

2.2. Data collection

  • Bruker–Nonius KappaCCD diffractometer

  • 16724 measured reflections

  • 8666 independent reflections

  • 6067 reflections with I > 2σ(I)

  • Rint = 0.048

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.122

  • S = 1.06

  • 8666 reflections

  • 450 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C29–C34 and C35–C40 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11B⋯O1i 0.98 2.73 3.687 (2) 165
C25—H25A⋯O2ii 0.95 2.72 3.617 (2) 158
C27—H27A⋯O2iii 0.95 2.71 3.392 (2) 129
C12—H12CCg1 0.98 2.64 3.541 (2) 152
C13—H13ACg1 0.99 2.91 3.432 (2) 114
C5—H5ACg2 0.98 2.89 3.868 (2) 174
C16—H16BCg2 0.98 2.66 3.542 (2) 151
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) x, y, z-1; (iii) -x+1, -y, -z+1.

Data collection: COLLECT (Hooft, 2004[Hooft, R. W. W. (2004). COLLECT. Bruker-Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL2014.

Supporting information


Comment top

By reaction of N,N,N',N'-tetramethylchloroformamidinium chloride (Tiritiris & Kantlehner, 2008a) with N-methyl-propane-1,3-diamine, a mixture consisting of two guanidinium chlorides and one bisguanidinium dichloride have been obtained. After treating the salt mixture with an aqueous sodium hydroxide solution, the guanidine-urea derivative N''-[3-(1,3,3-trimethylureido)propyl]- N,N,N',N'-tetramethylguanidine emerges as byproduct, due to partial hydrolysis of the bisguanidinium dichloride (Tiritiris & Kantlehner, 2013). As usual in guanidines, also in ureidoalkyl-guanidines electrophiles can attack on the imine nitrogen atom because it is the most basic site, giving substituted ureidoalkyl-guanidinium salts. The here presented title salt is the second one in our serie, which has been structurally characterized after anion exchange with sodium tetraphenylborate. The crystal structure analysis reveals, that the bond lengths and angles in the cation are in very good agreement with the data obtained from the structure analysis of N,N,N',N',N''-pentamethyl- N''-[3-(1,3,3-trimethylureido)propyl]guanidinium tetraphenylborate (Tiritiris & Kantlehner, 2012b) Prominent bond parameters in the guanidinium ion are: C1–N1 = 1.3375 (18) Å, C1–N2 = 1.3368 (16) Å and C1–N3 = 1.3594 (17) Å, indicating partial double-bond character. The N–C1–N angles are: 120.32 (12)° (N1–C1–N2), 120.64 (12)° (N2–C1–N3) and 119.04 (11)° (N1–C1–N3), which indicates a nearly ideal trigonal-planar surrounding of the carbon centre by the nitrogen atoms. The positive charge is completely delocalized on the CN3 plane (Fig. 1). Bond lengths in the ureido group are: C10–O1 = 1.2328 (17) Å, C10–N4 = 1.3777 (18) Å and C10–N5 = 1.3835 (17) Å. They agree very well with the data from the crystal structure analysis of solid N,N,N',N'-tetramethylurea (Frampton & Parkes, 1996). Finally, the bond lengths in the 2-ethoxy-2-oxoethyl group are comparable with the data from the structure analysis of 2-dimethylamino-1-(2-ethoxy-2-oxoethyl)-3-methyl-3,4,5,6-tetrahydropyrimidin- 1-ium tetraphenylborate (Tiritiris & Kantlehner, 2012a). The bond lengths and angles in the tetraphenylborate ions are in good agreement with the data from the crystal structure analysis of the alkali metal tetraphenylborates (Behrens et al., 2012). C–H···O contacts between neighbouring guanidinium ions and between guanidinium ions and tetraphenylborate ions have been determined [d(H···O) = 2.71–2.73 Å (Tab. 1)] (Fig. 2). C–H···π interactions between the guanidinium hydrogen atoms of –N(CH3)2, –CH2 and –CH3 groups and the phenyl carbon atoms (centroids: Cg1 = C29–C34 and Cg2 = C35–C40) of the tetraphenylborate ion are also present (Fig. 3), ranging from 2.64 to 2.91 Å (Tab. 1). The phenyl rings form aromatic pockets, in which the guanidinium ions are embedded.

Related literature top

For the crystal structure of N,N,N',N'-tetramethylurea, see: Frampton & Parkes (1996). For the crystal structure of N,N,N',N'-tetramethylchloroformamidinium chloride, see: Tiritiris & Kantlehner (2008a). For the crystal structures of alkali metal tetraphenylborates, see: Behrens et al. (2012). For the crystal structure of 2-dimethylamino-1-(2-ethoxy-2-oxoethyl)-3-methyl-3,4,5,6-tetrahydropyrimidin-1-ium tetraphenylborate, see: Tiritiris & Kantlehner (2012a). For the crystal structure of N,N,N',N',N''-pentamethyl-N''-[3-(1,3,3-trimethylureido)propyl]guanidinium tetraphenylborate, see: Tiritiris & Kantlehner (2012b). For the synthesis of N''-[3-(1,3,3-trimethylureido)propyl]-N,N,N',N'-tetramethylguanidine, see: Tiritiris & Kantlehner (2013).

Experimental top

The title compound was obtained by reaction of N''-[3-(1,3,3-trimethylureido)propyl]-N,N,N',N'-tetramethylguanidine (Tiritiris & Kantlehner, 2013) with bromoacetic acid ethyl ester in acetonitrile at room temperature. After evaporation of the solvent the crude N,N,N',N'-tetramethyl-N''-(2-ethoxy-2-oxoethyl)-N''-[3-(1,3,3-trimethylureido)propyl]guanidinium bromide (I) was washed with diethylether and dried in vacuo. 1.48 g (3.5 mmol) of (I) was dissolved in 20 ml acetonitrile and 1.2 g (3.5 mmol) of sodium tetraphenylborate in 20 ml acetonitrile was added. After stirring for one hour at room temperature, the precipitated sodium bromide was filtered off. The title compound crystallized from a saturated acetonitrile solution after several months at 273 K, forming colorless single crystals. Yield: 1.97 g (86%).

Refinement top

The hydrogen atoms of the methyl groups were allowed to rotate with a fixed angle around the C–N and C–C bonds to best fit the experimental electron density, with Uiso(H) set to 1.5 Ueq(C) and d(C—H) = 0.98 Å. The remaining H atoms were placed in calculated positions with d(C—H) = 0.99 Å (H atoms in CH2 groups) and (C—H) = 0.95 Å (H atoms in aromatic rings). They were refined using a riding model, with Uiso(H) set to 1.2Ueq(C).

Structure description top

By reaction of N,N,N',N'-tetramethylchloroformamidinium chloride (Tiritiris & Kantlehner, 2008a) with N-methyl-propane-1,3-diamine, a mixture consisting of two guanidinium chlorides and one bisguanidinium dichloride have been obtained. After treating the salt mixture with an aqueous sodium hydroxide solution, the guanidine-urea derivative N''-[3-(1,3,3-trimethylureido)propyl]- N,N,N',N'-tetramethylguanidine emerges as byproduct, due to partial hydrolysis of the bisguanidinium dichloride (Tiritiris & Kantlehner, 2013). As usual in guanidines, also in ureidoalkyl-guanidines electrophiles can attack on the imine nitrogen atom because it is the most basic site, giving substituted ureidoalkyl-guanidinium salts. The here presented title salt is the second one in our serie, which has been structurally characterized after anion exchange with sodium tetraphenylborate. The crystal structure analysis reveals, that the bond lengths and angles in the cation are in very good agreement with the data obtained from the structure analysis of N,N,N',N',N''-pentamethyl- N''-[3-(1,3,3-trimethylureido)propyl]guanidinium tetraphenylborate (Tiritiris & Kantlehner, 2012b) Prominent bond parameters in the guanidinium ion are: C1–N1 = 1.3375 (18) Å, C1–N2 = 1.3368 (16) Å and C1–N3 = 1.3594 (17) Å, indicating partial double-bond character. The N–C1–N angles are: 120.32 (12)° (N1–C1–N2), 120.64 (12)° (N2–C1–N3) and 119.04 (11)° (N1–C1–N3), which indicates a nearly ideal trigonal-planar surrounding of the carbon centre by the nitrogen atoms. The positive charge is completely delocalized on the CN3 plane (Fig. 1). Bond lengths in the ureido group are: C10–O1 = 1.2328 (17) Å, C10–N4 = 1.3777 (18) Å and C10–N5 = 1.3835 (17) Å. They agree very well with the data from the crystal structure analysis of solid N,N,N',N'-tetramethylurea (Frampton & Parkes, 1996). Finally, the bond lengths in the 2-ethoxy-2-oxoethyl group are comparable with the data from the structure analysis of 2-dimethylamino-1-(2-ethoxy-2-oxoethyl)-3-methyl-3,4,5,6-tetrahydropyrimidin- 1-ium tetraphenylborate (Tiritiris & Kantlehner, 2012a). The bond lengths and angles in the tetraphenylborate ions are in good agreement with the data from the crystal structure analysis of the alkali metal tetraphenylborates (Behrens et al., 2012). C–H···O contacts between neighbouring guanidinium ions and between guanidinium ions and tetraphenylborate ions have been determined [d(H···O) = 2.71–2.73 Å (Tab. 1)] (Fig. 2). C–H···π interactions between the guanidinium hydrogen atoms of –N(CH3)2, –CH2 and –CH3 groups and the phenyl carbon atoms (centroids: Cg1 = C29–C34 and Cg2 = C35–C40) of the tetraphenylborate ion are also present (Fig. 3), ranging from 2.64 to 2.91 Å (Tab. 1). The phenyl rings form aromatic pockets, in which the guanidinium ions are embedded.

For the crystal structure of N,N,N',N'-tetramethylurea, see: Frampton & Parkes (1996). For the crystal structure of N,N,N',N'-tetramethylchloroformamidinium chloride, see: Tiritiris & Kantlehner (2008a). For the crystal structures of alkali metal tetraphenylborates, see: Behrens et al. (2012). For the crystal structure of 2-dimethylamino-1-(2-ethoxy-2-oxoethyl)-3-methyl-3,4,5,6-tetrahydropyrimidin-1-ium tetraphenylborate, see: Tiritiris & Kantlehner (2012a). For the crystal structure of N,N,N',N',N''-pentamethyl-N''-[3-(1,3,3-trimethylureido)propyl]guanidinium tetraphenylborate, see: Tiritiris & Kantlehner (2012b). For the synthesis of N''-[3-(1,3,3-trimethylureido)propyl]-N,N,N',N'-tetramethylguanidine, see: Tiritiris & Kantlehner (2013).

Computing details top

Data collection: COLLECT (Hooft, 2004); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with displacement ellipsoids at the 50% probability level. All hydrogen atoms were omitted for the sake of clarity.
[Figure 2] Fig. 2. C—H···O contacts (black dashed lines) between the hydrogen atoms of tetraphenylborate ions and the oxygen atom of the cations and between the hydrogen atoms and oxygen atoms of adjacent guanidinium ions.
[Figure 3] Fig. 3. C—H···π interactions (brown dashed lines) between the hydrogen atoms of the guanidinium ion and the phenyl carbon atoms (centroids) of the tetraphenylborate ion.
N''-(2-Ethoxy-2-oxoethyl)-N,N,N',N'-tetramethyl-N''-[3-(1,3,3-trimethylureido)propyl]guanidinium tetraphenylborate top
Crystal data top
C16H34N5O3+·C24H20BF(000) = 1432
Mr = 663.69Dx = 1.210 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.6650 (3) ÅCell parameters from 8389 reflections
b = 33.8756 (9) Åθ = 0.4–27.9°
c = 11.1543 (5) ŵ = 0.08 mm1
β = 93.759 (1)°T = 100 K
V = 3644.2 (2) Å3Block, colorless
Z = 40.45 × 0.30 × 0.15 mm
Data collection top
Bruker–Nonius KappaCCD
diffractometer
6067 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.048
Graphite monochromatorθmax = 28.0°, θmin = 1.2°
φ scans, and ω scansh = 1212
16724 measured reflectionsk = 4444
8666 independent reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0606P)2]
where P = (Fo2 + 2Fc2)/3
8666 reflections(Δ/σ)max < 0.001
450 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C16H34N5O3+·C24H20BV = 3644.2 (2) Å3
Mr = 663.69Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.6650 (3) ŵ = 0.08 mm1
b = 33.8756 (9) ÅT = 100 K
c = 11.1543 (5) Å0.45 × 0.30 × 0.15 mm
β = 93.759 (1)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
6067 reflections with I > 2σ(I)
16724 measured reflectionsRint = 0.048
8666 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 1.06Δρmax = 0.27 e Å3
8666 reflectionsΔρmin = 0.31 e Å3
450 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.84093 (14)0.12384 (4)0.92515 (11)0.0141 (3)
N10.73352 (12)0.14132 (4)0.97324 (9)0.0165 (3)
N20.83213 (12)0.11315 (4)0.80954 (10)0.0171 (3)
N30.95854 (12)0.11695 (3)0.99567 (9)0.0142 (2)
C20.74939 (16)0.17100 (4)1.06782 (12)0.0204 (3)
H2A0.84780.17761.08250.031*
H2B0.71360.16061.14170.031*
H2C0.69750.19481.04280.031*
C30.59041 (15)0.13337 (5)0.92991 (13)0.0260 (4)
H3A0.58740.10970.87930.039*
H3B0.55390.15590.88280.039*
H3C0.53380.12910.99850.039*
C40.89927 (16)0.07750 (5)0.76717 (12)0.0225 (3)
H4A0.97470.08500.71710.034*
H4B0.83110.06150.71970.034*
H4C0.93690.06210.83630.034*
C50.75132 (16)0.13535 (5)0.71706 (12)0.0226 (3)
H5A0.66740.12050.69180.034*
H5B0.80700.13940.64780.034*
H5C0.72540.16100.74950.034*
C61.09650 (14)0.11774 (4)0.94674 (12)0.0176 (3)
H6A1.08700.12710.86250.021*
H6B1.13430.09060.94650.021*
C71.19781 (15)0.14434 (4)1.01854 (13)0.0204 (3)
H7A1.28970.14220.98480.024*
H7B1.20760.13461.10240.024*
C81.15600 (16)0.18780 (4)1.01999 (12)0.0197 (3)
H8A1.06120.18991.04800.024*
H8B1.21960.20211.07810.024*
N41.15908 (12)0.20672 (4)0.90229 (10)0.0188 (3)
C91.28789 (15)0.22640 (5)0.87719 (14)0.0235 (3)
H9A1.27050.24490.81040.035*
H9B1.35620.20670.85560.035*
H9C1.32370.24090.94870.035*
C101.03676 (15)0.21111 (4)0.83296 (12)0.0165 (3)
O10.92302 (10)0.20626 (3)0.87473 (8)0.0210 (2)
N51.04850 (13)0.22196 (4)0.71448 (10)0.0191 (3)
C110.91878 (16)0.23147 (5)0.64557 (12)0.0234 (3)
H11A0.87220.20700.61900.035*
H11B0.93880.24740.57540.035*
H11C0.85840.24640.69620.035*
C121.14626 (19)0.20145 (5)0.64173 (14)0.0308 (4)
H12A1.22160.19030.69430.046*
H12B1.18460.22010.58560.046*
H12C1.09810.18020.59650.046*
C130.94899 (15)0.10156 (4)1.11681 (11)0.0172 (3)
H13A0.89530.12031.16370.021*
H13B1.04340.09961.15660.021*
C140.88068 (15)0.06163 (4)1.11757 (12)0.0174 (3)
O20.83182 (13)0.04434 (4)1.03091 (9)0.0350 (3)
O30.87943 (11)0.04887 (3)1.23022 (8)0.0219 (2)
C150.81131 (17)0.01131 (5)1.25050 (13)0.0265 (4)
H15A0.85220.00981.20280.032*
H15B0.71110.01311.22660.032*
C160.8328 (2)0.00251 (5)1.38170 (14)0.0387 (5)
H16A0.93220.00041.40340.058*
H16B0.78470.02201.39980.058*
H16C0.79570.02421.42790.058*
B10.34042 (17)0.11535 (5)0.39939 (13)0.0143 (3)
C170.43843 (14)0.15505 (4)0.39351 (11)0.0157 (3)
C180.49782 (15)0.17349 (4)0.49770 (12)0.0186 (3)
H18A0.48440.16180.57340.022*
C190.57527 (15)0.20806 (5)0.49502 (14)0.0223 (3)
H19A0.61320.21930.56800.027*
C200.59757 (16)0.22626 (5)0.38682 (14)0.0243 (3)
H20A0.65230.24950.38450.029*
C210.53821 (16)0.20976 (5)0.28209 (13)0.0228 (3)
H21A0.55000.22220.20710.027*
C220.46146 (15)0.17509 (4)0.28616 (12)0.0186 (3)
H22A0.42260.16440.21270.022*
C230.35548 (15)0.08579 (4)0.28264 (11)0.0151 (3)
C240.47268 (15)0.08387 (4)0.21527 (12)0.0195 (3)
H24A0.54940.10050.23700.023*
C250.48122 (17)0.05850 (5)0.11770 (12)0.0224 (3)
H25A0.56260.05830.07440.027*
C260.37252 (17)0.03359 (5)0.08325 (12)0.0224 (3)
H26A0.37710.01700.01500.027*
C270.25708 (16)0.03331 (5)0.15005 (12)0.0218 (3)
H27A0.18250.01580.12930.026*
C280.25009 (15)0.05867 (4)0.24773 (12)0.0178 (3)
H28A0.17030.05760.29300.021*
C290.17692 (14)0.12955 (4)0.39947 (11)0.0139 (3)
C300.12827 (14)0.16549 (4)0.34958 (11)0.0156 (3)
H30A0.19300.18280.31630.019*
C310.00979 (15)0.17687 (4)0.34667 (11)0.0188 (3)
H31A0.03700.20170.31300.023*
C320.10837 (15)0.15240 (5)0.39235 (11)0.0192 (3)
H32A0.20290.16020.39060.023*
C330.06588 (15)0.11628 (4)0.44077 (11)0.0180 (3)
H33A0.13190.09880.47120.022*
C340.07363 (15)0.10570 (4)0.44472 (11)0.0161 (3)
H34A0.10020.08110.47980.019*
C350.38760 (14)0.09029 (4)0.52189 (11)0.0154 (3)
C360.33605 (15)0.09853 (4)0.63423 (12)0.0176 (3)
H36A0.26840.11870.63920.021*
C370.38038 (15)0.07824 (5)0.73862 (12)0.0199 (3)
H37A0.34220.08460.81250.024*
C380.47946 (16)0.04899 (4)0.73512 (12)0.0204 (3)
H38A0.51050.03530.80630.025*
C390.53299 (15)0.03985 (4)0.62634 (12)0.0208 (3)
H39A0.60100.01970.62240.025*
C400.48709 (15)0.06020 (4)0.52267 (12)0.0185 (3)
H40A0.52510.05330.44900.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0152 (7)0.0160 (7)0.0112 (6)0.0023 (5)0.0011 (5)0.0007 (5)
N10.0116 (6)0.0249 (7)0.0130 (6)0.0006 (5)0.0010 (5)0.0007 (5)
N20.0192 (7)0.0210 (7)0.0110 (6)0.0005 (5)0.0000 (5)0.0001 (5)
N30.0124 (6)0.0192 (6)0.0111 (6)0.0008 (5)0.0020 (4)0.0011 (4)
C20.0204 (8)0.0243 (8)0.0171 (7)0.0017 (6)0.0058 (6)0.0038 (6)
C30.0131 (8)0.0386 (10)0.0260 (8)0.0003 (7)0.0003 (6)0.0040 (7)
C40.0281 (9)0.0243 (8)0.0150 (7)0.0015 (7)0.0009 (6)0.0047 (6)
C50.0285 (9)0.0260 (8)0.0127 (7)0.0000 (7)0.0032 (6)0.0018 (6)
C60.0125 (7)0.0210 (8)0.0198 (7)0.0020 (6)0.0040 (6)0.0015 (6)
C70.0134 (8)0.0265 (8)0.0209 (7)0.0005 (6)0.0006 (6)0.0057 (6)
C80.0190 (8)0.0260 (8)0.0134 (7)0.0039 (6)0.0040 (6)0.0007 (6)
N40.0162 (7)0.0230 (7)0.0173 (6)0.0040 (5)0.0010 (5)0.0039 (5)
C90.0178 (8)0.0252 (8)0.0277 (8)0.0043 (6)0.0032 (6)0.0016 (6)
C100.0219 (8)0.0147 (7)0.0131 (7)0.0011 (6)0.0012 (6)0.0008 (5)
O10.0163 (6)0.0304 (6)0.0163 (5)0.0042 (4)0.0017 (4)0.0025 (4)
N50.0219 (7)0.0228 (7)0.0129 (6)0.0011 (5)0.0030 (5)0.0006 (5)
C110.0311 (9)0.0231 (8)0.0155 (7)0.0018 (7)0.0031 (6)0.0019 (6)
C120.0411 (11)0.0304 (9)0.0223 (8)0.0055 (8)0.0122 (7)0.0011 (7)
C130.0179 (8)0.0211 (8)0.0123 (7)0.0019 (6)0.0019 (5)0.0019 (6)
C140.0151 (7)0.0224 (8)0.0148 (7)0.0004 (6)0.0011 (5)0.0002 (6)
O20.0549 (8)0.0339 (7)0.0159 (6)0.0208 (6)0.0000 (5)0.0034 (5)
O30.0272 (6)0.0231 (6)0.0151 (5)0.0091 (5)0.0020 (4)0.0049 (4)
C150.0315 (10)0.0240 (8)0.0233 (8)0.0118 (7)0.0035 (7)0.0055 (7)
C160.0487 (12)0.0364 (11)0.0288 (9)0.0199 (9)0.0134 (8)0.0144 (8)
B10.0144 (8)0.0170 (8)0.0113 (7)0.0017 (6)0.0002 (6)0.0007 (6)
C170.0120 (7)0.0178 (7)0.0173 (7)0.0045 (6)0.0008 (5)0.0002 (6)
C180.0147 (8)0.0220 (8)0.0189 (7)0.0032 (6)0.0008 (6)0.0006 (6)
C190.0155 (8)0.0230 (8)0.0281 (8)0.0027 (6)0.0016 (6)0.0080 (6)
C200.0160 (8)0.0179 (8)0.0398 (9)0.0005 (6)0.0071 (7)0.0037 (7)
C210.0223 (9)0.0221 (8)0.0253 (8)0.0028 (6)0.0114 (6)0.0017 (6)
C220.0169 (8)0.0221 (8)0.0168 (7)0.0022 (6)0.0024 (6)0.0011 (6)
C230.0178 (8)0.0166 (7)0.0106 (6)0.0044 (6)0.0012 (5)0.0026 (5)
C240.0193 (8)0.0216 (8)0.0179 (7)0.0008 (6)0.0028 (6)0.0015 (6)
C250.0271 (9)0.0234 (8)0.0173 (7)0.0079 (7)0.0072 (6)0.0015 (6)
C260.0330 (9)0.0219 (8)0.0118 (7)0.0108 (7)0.0018 (6)0.0025 (6)
C270.0246 (9)0.0209 (8)0.0191 (7)0.0021 (6)0.0055 (6)0.0028 (6)
C280.0182 (8)0.0208 (8)0.0143 (7)0.0039 (6)0.0000 (6)0.0001 (6)
C290.0167 (7)0.0182 (7)0.0065 (6)0.0012 (6)0.0001 (5)0.0043 (5)
C300.0177 (8)0.0203 (7)0.0085 (6)0.0002 (6)0.0005 (5)0.0001 (5)
C310.0220 (8)0.0221 (8)0.0117 (7)0.0058 (6)0.0030 (6)0.0011 (6)
C320.0165 (8)0.0281 (8)0.0125 (7)0.0056 (6)0.0011 (6)0.0056 (6)
C330.0180 (8)0.0260 (8)0.0103 (6)0.0019 (6)0.0027 (5)0.0021 (6)
C340.0189 (8)0.0191 (7)0.0103 (6)0.0019 (6)0.0003 (5)0.0002 (5)
C350.0154 (7)0.0171 (7)0.0133 (7)0.0023 (6)0.0023 (5)0.0008 (5)
C360.0170 (8)0.0196 (8)0.0158 (7)0.0005 (6)0.0019 (6)0.0008 (6)
C370.0207 (8)0.0272 (8)0.0116 (7)0.0045 (6)0.0001 (6)0.0002 (6)
C380.0222 (8)0.0226 (8)0.0157 (7)0.0031 (6)0.0052 (6)0.0048 (6)
C390.0207 (8)0.0182 (8)0.0225 (8)0.0021 (6)0.0050 (6)0.0005 (6)
C400.0196 (8)0.0207 (8)0.0150 (7)0.0018 (6)0.0004 (6)0.0014 (6)
Geometric parameters (Å, º) top
C1—N21.3368 (16)C15—H15B0.9900
C1—N11.3375 (18)C16—H16A0.9800
C1—N31.3594 (17)C16—H16B0.9800
N1—C21.4583 (17)C16—H16C0.9800
N1—C31.4599 (18)B1—C351.647 (2)
N2—C51.4608 (18)B1—C171.649 (2)
N2—C41.4639 (18)B1—C291.652 (2)
N3—C131.4568 (16)B1—C231.657 (2)
N3—C61.4737 (17)C17—C221.4069 (19)
C2—H2A0.9800C17—C181.4081 (19)
C2—H2B0.9800C18—C191.391 (2)
C2—H2C0.9800C18—H18A0.9500
C3—H3A0.9800C19—C201.385 (2)
C3—H3B0.9800C19—H19A0.9500
C3—H3C0.9800C20—C211.385 (2)
C4—H4A0.9800C20—H20A0.9500
C4—H4B0.9800C21—C221.391 (2)
C4—H4C0.9800C21—H21A0.9500
C5—H5A0.9800C22—H22A0.9500
C5—H5B0.9800C23—C241.401 (2)
C5—H5C0.9800C23—C281.408 (2)
C6—C71.520 (2)C24—C251.393 (2)
C6—H6A0.9900C24—H24A0.9500
C6—H6B0.9900C25—C261.382 (2)
C7—C81.527 (2)C25—H25A0.9500
C7—H7A0.9900C26—C271.382 (2)
C7—H7B0.9900C26—H26A0.9500
C8—N41.4630 (17)C27—C281.3925 (19)
C8—H8A0.9900C27—H27A0.9500
C8—H8B0.9900C28—H28A0.9500
N4—C101.3777 (18)C29—C341.404 (2)
N4—C91.4554 (18)C29—C301.4066 (19)
C9—H9A0.9800C30—C311.387 (2)
C9—H9B0.9800C30—H30A0.9500
C9—H9C0.9800C31—C321.385 (2)
C10—O11.2328 (17)C31—H31A0.9500
C10—N51.3835 (17)C32—C331.389 (2)
N5—C121.4610 (19)C32—H32A0.9500
N5—C111.4630 (18)C33—C341.393 (2)
C11—H11A0.9800C33—H33A0.9500
C11—H11B0.9800C34—H34A0.9500
C11—H11C0.9800C35—C401.401 (2)
C12—H12A0.9800C35—C361.4064 (19)
C12—H12B0.9800C36—C371.3952 (19)
C12—H12C0.9800C36—H36A0.9500
C13—C141.505 (2)C37—C381.380 (2)
C13—H13A0.9900C37—H37A0.9500
C13—H13B0.9900C38—C391.385 (2)
C14—O21.2004 (16)C38—H38A0.9500
C14—O31.3296 (16)C39—C401.3936 (19)
O3—C151.4570 (17)C39—H39A0.9500
C15—C161.495 (2)C40—H40A0.9500
C15—H15A0.9900
N2—C1—N1120.32 (12)O3—C15—C16106.90 (12)
N2—C1—N3120.64 (12)O3—C15—H15A110.3
N1—C1—N3119.04 (11)C16—C15—H15A110.3
C1—N1—C2123.21 (12)O3—C15—H15B110.3
C1—N1—C3121.94 (12)C16—C15—H15B110.3
C2—N1—C3114.78 (12)H15A—C15—H15B108.6
C1—N2—C5122.62 (12)C15—C16—H16A109.5
C1—N2—C4122.24 (12)C15—C16—H16B109.5
C5—N2—C4115.11 (11)H16A—C16—H16B109.5
C1—N3—C13119.79 (11)C15—C16—H16C109.5
C1—N3—C6121.67 (11)H16A—C16—H16C109.5
C13—N3—C6117.64 (11)H16B—C16—H16C109.5
N1—C2—H2A109.5C35—B1—C17108.95 (11)
N1—C2—H2B109.5C35—B1—C29111.24 (11)
H2A—C2—H2B109.5C17—B1—C29108.33 (11)
N1—C2—H2C109.5C35—B1—C23107.87 (11)
H2A—C2—H2C109.5C17—B1—C23112.42 (11)
H2B—C2—H2C109.5C29—B1—C23108.05 (11)
N1—C3—H3A109.5C22—C17—C18114.18 (13)
N1—C3—H3B109.5C22—C17—B1123.43 (12)
H3A—C3—H3B109.5C18—C17—B1122.23 (12)
N1—C3—H3C109.5C19—C18—C17123.13 (13)
H3A—C3—H3C109.5C19—C18—H18A118.4
H3B—C3—H3C109.5C17—C18—H18A118.4
N2—C4—H4A109.5C20—C19—C18120.55 (13)
N2—C4—H4B109.5C20—C19—H19A119.7
H4A—C4—H4B109.5C18—C19—H19A119.7
N2—C4—H4C109.5C19—C20—C21118.42 (14)
H4A—C4—H4C109.5C19—C20—H20A120.8
H4B—C4—H4C109.5C21—C20—H20A120.8
N2—C5—H5A109.5C20—C21—C22120.35 (14)
N2—C5—H5B109.5C20—C21—H21A119.8
H5A—C5—H5B109.5C22—C21—H21A119.8
N2—C5—H5C109.5C21—C22—C17123.34 (13)
H5A—C5—H5C109.5C21—C22—H22A118.3
H5B—C5—H5C109.5C17—C22—H22A118.3
N3—C6—C7112.52 (11)C24—C23—C28114.65 (12)
N3—C6—H6A109.1C24—C23—B1124.43 (12)
C7—C6—H6A109.1C28—C23—B1120.84 (12)
N3—C6—H6B109.1C25—C24—C23122.61 (14)
C7—C6—H6B109.1C25—C24—H24A118.7
H6A—C6—H6B107.8C23—C24—H24A118.7
C6—C7—C8114.54 (12)C26—C25—C24120.71 (14)
C6—C7—H7A108.6C26—C25—H25A119.6
C8—C7—H7A108.6C24—C25—H25A119.6
C6—C7—H7B108.6C27—C26—C25118.69 (13)
C8—C7—H7B108.6C27—C26—H26A120.7
H7A—C7—H7B107.6C25—C26—H26A120.7
N4—C8—C7113.07 (12)C26—C27—C28120.00 (14)
N4—C8—H8A109.0C26—C27—H27A120.0
C7—C8—H8A109.0C28—C27—H27A120.0
N4—C8—H8B109.0C27—C28—C23123.21 (14)
C7—C8—H8B109.0C27—C28—H28A118.4
H8A—C8—H8B107.8C23—C28—H28A118.4
C10—N4—C9123.77 (12)C34—C29—C30114.41 (13)
C10—N4—C8118.94 (12)C34—C29—B1122.37 (12)
C9—N4—C8116.18 (11)C30—C29—B1123.15 (12)
N4—C9—H9A109.5C31—C30—C29123.08 (13)
N4—C9—H9B109.5C31—C30—H30A118.5
H9A—C9—H9B109.5C29—C30—H30A118.5
N4—C9—H9C109.5C32—C31—C30120.59 (14)
H9A—C9—H9C109.5C32—C31—H31A119.7
H9B—C9—H9C109.5C30—C31—H31A119.7
O1—C10—N4121.81 (12)C31—C32—C33118.52 (14)
O1—C10—N5121.83 (13)C31—C32—H32A120.7
N4—C10—N5116.34 (13)C33—C32—H32A120.7
C10—N5—C12120.06 (12)C32—C33—C34119.99 (14)
C10—N5—C11116.06 (12)C32—C33—H33A120.0
C12—N5—C11112.09 (12)C34—C33—H33A120.0
N5—C11—H11A109.5C33—C34—C29123.39 (13)
N5—C11—H11B109.5C33—C34—H34A118.3
H11A—C11—H11B109.5C29—C34—H34A118.3
N5—C11—H11C109.5C40—C35—C36114.96 (12)
H11A—C11—H11C109.5C40—C35—B1122.18 (12)
H11B—C11—H11C109.5C36—C35—B1122.81 (12)
N5—C12—H12A109.5C37—C36—C35122.58 (13)
N5—C12—H12B109.5C37—C36—H36A118.7
H12A—C12—H12B109.5C35—C36—H36A118.7
N5—C12—H12C109.5C38—C37—C36120.38 (13)
H12A—C12—H12C109.5C38—C37—H37A119.8
H12B—C12—H12C109.5C36—C37—H37A119.8
N3—C13—C14112.41 (11)C37—C38—C39119.02 (13)
N3—C13—H13A109.1C37—C38—H38A120.5
C14—C13—H13A109.1C39—C38—H38A120.5
N3—C13—H13B109.1C38—C39—C40119.96 (14)
C14—C13—H13B109.1C38—C39—H39A120.0
H13A—C13—H13B107.9C40—C39—H39A120.0
O2—C14—O3125.09 (14)C39—C40—C35123.10 (13)
O2—C14—C13125.70 (13)C39—C40—H40A118.5
O3—C14—C13109.19 (11)C35—C40—H40A118.5
C14—O3—C15117.58 (11)
N2—C1—N1—C2146.94 (13)C18—C17—C22—C211.1 (2)
N3—C1—N1—C233.4 (2)B1—C17—C22—C21176.50 (13)
N2—C1—N1—C329.8 (2)C35—B1—C23—C2494.23 (15)
N3—C1—N1—C3149.78 (13)C17—B1—C23—C2425.92 (18)
N1—C1—N2—C533.0 (2)C29—B1—C23—C24145.41 (13)
N3—C1—N2—C5147.38 (14)C35—B1—C23—C2882.39 (15)
N1—C1—N2—C4144.91 (14)C17—B1—C23—C28157.47 (12)
N3—C1—N2—C434.7 (2)C29—B1—C23—C2837.98 (16)
N2—C1—N3—C13136.39 (13)C28—C23—C24—C253.1 (2)
N1—C1—N3—C1343.24 (19)B1—C23—C24—C25179.88 (13)
N2—C1—N3—C632.45 (19)C23—C24—C25—C260.4 (2)
N1—C1—N3—C6147.92 (13)C24—C25—C26—C272.3 (2)
C1—N3—C6—C7128.32 (14)C25—C26—C27—C281.9 (2)
C13—N3—C6—C762.61 (16)C26—C27—C28—C231.0 (2)
N3—C6—C7—C862.20 (16)C24—C23—C28—C273.4 (2)
C6—C7—C8—N467.10 (16)B1—C23—C28—C27179.65 (12)
C7—C8—N4—C1099.05 (15)C35—B1—C29—C3437.55 (17)
C7—C8—N4—C992.53 (15)C17—B1—C29—C34157.27 (12)
C9—N4—C10—O1154.18 (14)C23—B1—C29—C3480.68 (15)
C8—N4—C10—O113.3 (2)C35—B1—C29—C30145.51 (12)
C9—N4—C10—N524.7 (2)C17—B1—C29—C3025.78 (16)
C8—N4—C10—N5167.82 (13)C23—B1—C29—C3096.26 (14)
O1—C10—N5—C12133.66 (16)C34—C29—C30—C310.94 (18)
N4—C10—N5—C1247.47 (19)B1—C29—C30—C31178.11 (12)
O1—C10—N5—C116.4 (2)C29—C30—C31—C321.0 (2)
N4—C10—N5—C11172.48 (12)C30—C31—C32—C330.12 (19)
C1—N3—C13—C1461.55 (17)C31—C32—C33—C341.23 (19)
C6—N3—C13—C14107.74 (14)C32—C33—C34—C291.3 (2)
N3—C13—C14—O23.7 (2)C30—C29—C34—C330.22 (18)
N3—C13—C14—O3178.03 (12)B1—C29—C34—C33176.97 (12)
O2—C14—O3—C151.2 (2)C17—B1—C35—C4091.78 (15)
C13—C14—O3—C15177.14 (12)C29—B1—C35—C40148.86 (13)
C14—O3—C15—C16176.18 (14)C23—B1—C35—C4030.52 (18)
C35—B1—C17—C22156.72 (13)C17—B1—C35—C3685.35 (16)
C29—B1—C17—C2282.12 (15)C29—B1—C35—C3634.01 (18)
C23—B1—C17—C2237.21 (18)C23—B1—C35—C36152.35 (13)
C35—B1—C17—C1828.25 (17)C40—C35—C36—C370.1 (2)
C29—B1—C17—C1892.91 (15)B1—C35—C36—C37177.43 (13)
C23—B1—C17—C18147.76 (13)C35—C36—C37—C380.6 (2)
C22—C17—C18—C191.4 (2)C36—C37—C38—C390.7 (2)
B1—C17—C18—C19176.82 (13)C37—C38—C39—C400.3 (2)
C17—C18—C19—C200.1 (2)C38—C39—C40—C350.2 (2)
C18—C19—C20—C211.5 (2)C36—C35—C40—C390.3 (2)
C19—C20—C21—C221.8 (2)B1—C35—C40—C39177.04 (13)
C20—C21—C22—C170.4 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C29–C34 and C35–C40 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C11—H11B···O1i0.982.733.687 (2)165
C25—H25A···O2ii0.952.723.617 (2)158
C27—H27A···O2iii0.952.713.392 (2)129
C12—H12C···Cg10.982.643.541 (2)152
C13—H13A···Cg10.992.913.432 (2)114
C5—H5A···Cg20.982.893.868 (2)174
C16—H16B···Cg20.982.663.542 (2)151
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y, z1; (iii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C29–C34 and C35–C40 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C11—H11B···O1i0.982.733.687 (2)165
C25—H25A···O2ii0.952.723.617 (2)158
C27—H27A···O2iii0.952.713.392 (2)129
C12—H12C···Cg10.982.643.541 (2)152
C13—H13A···Cg10.992.913.432 (2)114
C5—H5A···Cg20.982.893.868 (2)174
C16—H16B···Cg20.982.663.542 (2)151
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y, z1; (iii) x+1, y, z+1.
 

Acknowledgements

The authors thank Dr F. Lissner (Institut für Anorganische Chemie, Universität Stuttgart) for measuring the diffraction data.

References

First citationBehrens, U., Hoffmann, F. & Olbrich, F. (2012). Organometallics, 31, 905–913.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFrampton, C. S. & Parkes, K. E. B. (1996). Acta Cryst. C52, 3246–3248.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHooft, R. W. W. (2004). COLLECT. Bruker–Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTiritiris, I. & Kantlehner, W. (2008a). Z. Kristallogr. 223, 345–346.  CAS Google Scholar
First citationTiritiris, I. & Kantlehner, W. (2012a). Acta Cryst. E68, o2002.  CSD CrossRef IUCr Journals Google Scholar
First citationTiritiris, I. & Kantlehner, W. (2012b). Acta Cryst. E68, o2223.  CSD CrossRef IUCr Journals Google Scholar
First citationTiritiris, I. & Kantlehner, W. (2013). Adv. Chem. Lett. 1, 300–307.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds