organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of N′′-benzyl-N′′-[3-(benzyl­di­methyl­aza­nium­yl)prop­yl]-N,N,N′,N′-tetra­methyl­guanidinium bis­­(tetra­phenyl­borate)

aFakultät Chemie/Organische Chemie, Hochschule Aalen, Beethovenstrasse 1, D-73430 Aalen, Germany
*Correspondence e-mail: willi.kantlehner@hs-aalen.de

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 15 December 2015; accepted 22 December 2015; online 31 December 2015)

In the crystal structure of the title salt, C24H38N42+·2C24H20B, the C—N bond lengths in the central CN3 unit of the guanidinium ion are 1.3364 (13), 1.3407 (13) and 1.3539 (13) Å, indicating partial double-bond character. The central C atom is bonded to the three N atoms in a nearly ideal trigonal–planar geometry and the positive charge is delocalized in the CN3 plane. The bonds between the N atoms and the terminal methyl groups of the guanidinium moiety and the four C—N bonds to the central N atom of the (benzyl­dimethyl­aza­nium­yl)propyl group have single-bond character. In the crystal, C—H⋯π inter­actions between the guanidin­ium H atoms and the phenyl C atoms of the tetra­phenyl­borate ions are present, leading to the formation of a two-dimensional supra­molecular pattern parallel to the ac plane.

1. Related literature

For the crystal structures of alkali metal tetra­phenyl­borates, see: Behrens et al. (2012a[Behrens, U., Hoffmann, F. & Olbrich, F. (2012a). Organometallics, 31, 905-913.]). For the synthesis of N′′-[3-(di­methyl­amino)­prop­yl]-N,N,N′,N′-tetra­methyl­guanidine, see: Tiritiris & Kantlehner (2012b[Tiritiris, I. & Kantlehner, W. (2012b). Z. Naturforsch. Teil B, 67, 685-698.]). For the crystal structure of N,N,N′,N′,N′′-penta­methyl-N′′-[3-(tri­methyl­aza­nium­yl)propyl]guanidinium bis­(tetra­phenyl­borate), see: Tiritiris (2013a[Tiritiris, I. (2013a). Acta Cryst. E69, o292.]). For the crystal structure of N-[3-(benzyl­dimethyl­aza­niumyl)prop­yl]-N′,N′,N′′,N′′-tetra­methyl­guanidinium bis­(tetraphenyl­borate), see: Tiritiris (2013b[Tiritiris, I. (2013b). Acta Cryst. E69, o899.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C24H38N42+·2C24H20B

  • Mr = 1021.00

  • Monoclinic, P 21 /c

  • a = 20.3677 (9) Å

  • b = 12.1101 (5) Å

  • c = 25.5580 (12) Å

  • β = 112.507 (2)°

  • V = 5823.9 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 100 K

  • 0.38 × 0.25 × 0.12 mm

2.2. Data collection

  • Bruker Kappa APEXII DUO diffractometer

  • 70711 measured reflections

  • 17795 independent reflections

  • 13809 reflections with I > 2σ(I)

  • Rint = 0.032

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.117

  • S = 1.03

  • 17795 reflections

  • 709 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the centroids of the C31–C36, C43–C48 and C61–C66 aromatic rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2BCg1i 0.98 2.76 3.441 127
C15—H15ACg1ii 0.99 2.94 3.538 120
C17—H17ACg2ii 0.98 2.76 3.716 166
C4—H4ACg3iii 0.98 2.88 3.840 169
C20—H20⋯Cg3iv 0.95 2.91 3.719 144
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) -x, -y+1, -z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL2014.

Supporting information


Comment top

The synthesis of N''-[3-(dimethylamino)propyl]-N,N,N',N'-tetramethylguanidine is well known in the literature (Tiritiris & Kantlehner, 2012b). Electrophiles can attack at both, on the imine nitrogen of the guanidine function, as well as on the nitrogen atom of the (dimethylamino)propyl group. By alkylation with two equivalents of dimethyl sulfate, a permethylated waxy guanidinium methyl sulfate salt was obtained. After anion exchange with sodium tetraphenylborate, crystalline N,N,N',N',N''-pentamethyl-N''-[3-(trimethylazaniumyl)propyl]guanidinium bis(tetraphenylborate) emerged, which has been structurally characterized (Tiritiris, 2013a). By alkylation with benzyl bromide and subsequent anion exchange, the here presented title salt is the second one in our serie, whose crystal structure has been determined. Prominent bond parameters in the guanidinium ion are: C1–N1 = 1.3407 (13) Å, C1–N2 = 1.3364 (13) Å and C1–N3 = 1.3539 (13) Å, indicating partial double-bond character. The N–C1–N angles are: 121.16 (9)° (N1–C1–N2), 119.26 (9)° (N2–C1–N3) and 119.57 (9)° (N1–C1–N3), which indicates a nearly ideal trigonal-planar surrounding of the carbon centre by the nitrogen atoms. The positive charge is completely delocalized on the CN3 plane (Fig. 1). The bonds between the N atoms and the terminal C-methyl groups of the guanidinium moiety all have values close to a typical single bond [1.4639 (13)–1.4673 (14) Å]. The C–N bond lengths in the terminal benzyldimethylammonium group are slightly elongated [1.4994 (13)–1.5293 (13) Å]. The bond lengths and angles in the tetraphenylborate ions are in good agreement with the data from the crystal structure analysis of the alkali metal tetraphenylborates (Behrens et al., 2012a). C–H···π interactions between the hydrogen atoms of –N(CH3)2, –CH2 and benzyl groups of the guanidinium ion and the phenyl carbon atoms (centroids: Cg1 = C31–C36, Cg2 = C43–C48 and Cg3 = C61–C66) of the tetraphenylborate ions are present, ranging from 2.76 (2) to 2.94 (2) Å (Fig. 2; Table 1). This leads to the formation of a two- dimensional supramolecular pattern along the ac plane. Such type of C–H···π interactions have been also observed in N-[3-(benzyldimethylazaniumyl)propyl]- N',N',N'',N''-tetramethylguanidinium bis(tetraphenylborate) (Tiritiris, 2013b).

Related literature top

For the crystal structures of alkali metal tetraphenylborates, see: Behrens et al. (2012a). For the synthesis of N''-[3-(dimethylamino)propyl]-N,N,N',N'-tetramethylguanidine, see: Tiritiris & Kantlehner (2012b). For the crystal structure of N,N,N',N',N''-pentamethyl-N''-[3-(trimethylazaniumyl)propyl]guanidinium bis(tetraphenylborate), see: Tiritiris (2013a). For the crystal structure of N-[3-(benzyldimethylazaniumyl)propyl]-N',N',N'',N''-tetramethylguanidinium bis(tetraphenylborate), see: Tiritiris (2013b).

Experimental top

The title compound was obtained by reaction of N''-[3-(dimethylamino)propyl]-N,N,N',N'-tetramethylguanidine (Tiritiris & Kantlehner, 2012b) with two equivalents benzyl bromide in acetonitrile. After evaporation of the solvent the crude N''-benzyl-N''-[3-(benzyldimethylazaniumyl)propyl]-N,N,N',N'-tetramethylguanidinium dibromide (I) was washed with diethylether and dried in vacuo. 1.52 g (2.8 mmol) of (I) was dissolved in 20 ml acetonitrile and 1.92 g (5.6 mmol) of sodium tetraphenylborate in 20 ml acetonitrile was added. After stirring for one hour at room temperature, the precipitated sodium bromide was filtered off. The title compound crystallized from a saturated acetonitrile solution after several weeks at 273 K, forming colorless single crystals. Yield: 2.20 g (77%).

Refinement top

The hydrogen atoms of the methyl groups were allowed to rotate with a fixed angle around the C–N bond to best fit the experimental electron density, with Uiso(H) set to 1.5Ueq(C) and d(C—H) = 0.98 Å. The remaining H atoms were placed in calculated positions with d(C—H) = 0.99 Å (H atoms in CH2 groups) and (C—H) = 0.95 Å (H atoms in aromatic rings). They were refined using a riding model, with Uiso(H) set to 1.2 Ueq(C).

Structure description top

The synthesis of N''-[3-(dimethylamino)propyl]-N,N,N',N'-tetramethylguanidine is well known in the literature (Tiritiris & Kantlehner, 2012b). Electrophiles can attack at both, on the imine nitrogen of the guanidine function, as well as on the nitrogen atom of the (dimethylamino)propyl group. By alkylation with two equivalents of dimethyl sulfate, a permethylated waxy guanidinium methyl sulfate salt was obtained. After anion exchange with sodium tetraphenylborate, crystalline N,N,N',N',N''-pentamethyl-N''-[3-(trimethylazaniumyl)propyl]guanidinium bis(tetraphenylborate) emerged, which has been structurally characterized (Tiritiris, 2013a). By alkylation with benzyl bromide and subsequent anion exchange, the here presented title salt is the second one in our serie, whose crystal structure has been determined. Prominent bond parameters in the guanidinium ion are: C1–N1 = 1.3407 (13) Å, C1–N2 = 1.3364 (13) Å and C1–N3 = 1.3539 (13) Å, indicating partial double-bond character. The N–C1–N angles are: 121.16 (9)° (N1–C1–N2), 119.26 (9)° (N2–C1–N3) and 119.57 (9)° (N1–C1–N3), which indicates a nearly ideal trigonal-planar surrounding of the carbon centre by the nitrogen atoms. The positive charge is completely delocalized on the CN3 plane (Fig. 1). The bonds between the N atoms and the terminal C-methyl groups of the guanidinium moiety all have values close to a typical single bond [1.4639 (13)–1.4673 (14) Å]. The C–N bond lengths in the terminal benzyldimethylammonium group are slightly elongated [1.4994 (13)–1.5293 (13) Å]. The bond lengths and angles in the tetraphenylborate ions are in good agreement with the data from the crystal structure analysis of the alkali metal tetraphenylborates (Behrens et al., 2012a). C–H···π interactions between the hydrogen atoms of –N(CH3)2, –CH2 and benzyl groups of the guanidinium ion and the phenyl carbon atoms (centroids: Cg1 = C31–C36, Cg2 = C43–C48 and Cg3 = C61–C66) of the tetraphenylborate ions are present, ranging from 2.76 (2) to 2.94 (2) Å (Fig. 2; Table 1). This leads to the formation of a two- dimensional supramolecular pattern along the ac plane. Such type of C–H···π interactions have been also observed in N-[3-(benzyldimethylazaniumyl)propyl]- N',N',N'',N''-tetramethylguanidinium bis(tetraphenylborate) (Tiritiris, 2013b).

For the crystal structures of alkali metal tetraphenylborates, see: Behrens et al. (2012a). For the synthesis of N''-[3-(dimethylamino)propyl]-N,N,N',N'-tetramethylguanidine, see: Tiritiris & Kantlehner (2012b). For the crystal structure of N,N,N',N',N''-pentamethyl-N''-[3-(trimethylazaniumyl)propyl]guanidinium bis(tetraphenylborate), see: Tiritiris (2013a). For the crystal structure of N-[3-(benzyldimethylazaniumyl)propyl]-N',N',N'',N''-tetramethylguanidinium bis(tetraphenylborate), see: Tiritiris (2013b).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are omitted for clarity.
[Figure 2] Fig. 2. C—H···π interactions (brown dashed lines) between the hydrogen atoms of the guanidinium ion and the phenyl rings (centroids) of the tetraphenylborate ions in the crystal structure of the title compound (view perpendicular to the ac plane). Hydrogen atoms not involved in hydrogen bonding are omitted.
N''-Benzyl-N''-[3-(benzyldimethylazaniumyl)propyl]-N,N,N',N'-tetramethylguanidinium bis(tetraphenylborate) top
Crystal data top
C24H38N42+·2C24H20BF(000) = 2192
Mr = 1021.00Dx = 1.164 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 20.3677 (9) ÅCell parameters from 70711 reflections
b = 12.1101 (5) Åθ = 1.7–30.7°
c = 25.5580 (12) ŵ = 0.07 mm1
β = 112.507 (2)°T = 100 K
V = 5823.9 (5) Å3Block, colorless
Z = 40.38 × 0.25 × 0.12 mm
Data collection top
Bruker Kappa APEXII DUO
diffractometer
13809 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.032
Triumph monochromatorθmax = 30.7°, θmin = 1.7°
φ scans, and ω scansh = 2928
70711 measured reflectionsk = 1715
17795 independent reflectionsl = 3636
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0586P)2 + 1.3509P]
where P = (Fo2 + 2Fc2)/3
17795 reflections(Δ/σ)max < 0.001
709 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C24H38N42+·2C24H20BV = 5823.9 (5) Å3
Mr = 1021.00Z = 4
Monoclinic, P21/cMo Kα radiation
a = 20.3677 (9) ŵ = 0.07 mm1
b = 12.1101 (5) ÅT = 100 K
c = 25.5580 (12) Å0.38 × 0.25 × 0.12 mm
β = 112.507 (2)°
Data collection top
Bruker Kappa APEXII DUO
diffractometer
13809 reflections with I > 2σ(I)
70711 measured reflectionsRint = 0.032
17795 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.03Δρmax = 0.38 e Å3
17795 reflectionsΔρmin = 0.31 e Å3
709 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The crystal was refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.42988 (5)0.26256 (7)0.07644 (4)0.01750 (16)
N20.35454 (5)0.13022 (7)0.08976 (4)0.01989 (17)
N30.30742 (4)0.29028 (7)0.03943 (3)0.01659 (16)
N40.17834 (4)0.31337 (7)0.17076 (3)0.01554 (16)
C10.36450 (5)0.22714 (8)0.06888 (4)0.01603 (18)
C20.44809 (6)0.38008 (9)0.08200 (4)0.0197 (2)
H2A0.45470.40540.04790.030*
H2B0.49220.39130.11520.030*
H2C0.40960.42220.08670.030*
C30.48710 (6)0.18814 (10)0.07763 (5)0.0245 (2)
H3A0.52280.18350.11630.037*
H3B0.50930.21660.05240.037*
H3C0.46750.11450.06490.037*
C40.29137 (6)0.06255 (9)0.06026 (5)0.0242 (2)
H4A0.25970.06510.08100.036*
H4B0.30580.01400.05820.036*
H4C0.26640.09130.02190.036*
C50.40727 (6)0.08275 (10)0.14151 (5)0.0279 (2)
H5A0.43380.02450.13150.042*
H5B0.38310.05140.16470.042*
H5C0.44020.14060.16300.042*
C60.24849 (5)0.30775 (9)0.05902 (4)0.01947 (19)
H6A0.26000.27190.09630.023*
H6B0.20440.27400.03180.023*
C70.23730 (5)0.43013 (9)0.06391 (4)0.0193 (2)
C80.17815 (6)0.48332 (10)0.02458 (5)0.0230 (2)
H80.14300.44160.00410.028*
C90.17034 (6)0.59713 (10)0.02714 (5)0.0276 (2)
H90.13030.63290.00010.033*
C100.22059 (7)0.65826 (10)0.06926 (5)0.0290 (2)
H100.21520.73600.07070.035*
C110.27903 (6)0.60616 (10)0.10949 (5)0.0269 (2)
H110.31330.64800.13870.032*
C120.28713 (6)0.49265 (10)0.10673 (5)0.0224 (2)
H120.32700.45720.13430.027*
C130.30239 (5)0.34444 (8)0.01334 (4)0.01673 (18)
H13A0.34560.32790.02090.020*
H13B0.29960.42540.00930.020*
C140.23657 (5)0.30416 (9)0.06305 (4)0.01831 (19)
H14A0.23180.22320.06070.022*
H14B0.19340.33930.06160.022*
C150.24436 (5)0.33405 (8)0.11817 (4)0.01549 (17)
H15A0.25710.41320.11700.019*
H15B0.28410.29080.12100.019*
C160.14732 (6)0.20164 (8)0.16939 (4)0.0202 (2)
H16A0.10870.18690.20590.030*
H16B0.12870.19970.13930.030*
H16C0.18430.14530.16210.030*
C170.20009 (6)0.31652 (9)0.22064 (4)0.0203 (2)
H17A0.23400.25690.21720.031*
H17B0.22240.38780.22160.031*
H17C0.15810.30690.25560.031*
C180.12001 (5)0.39863 (8)0.17835 (4)0.01773 (19)
H18A0.07980.38360.21460.021*
H18B0.10240.38880.14750.021*
C190.14251 (5)0.51683 (8)0.17835 (4)0.01772 (19)
C200.14317 (6)0.56721 (9)0.22727 (5)0.0229 (2)
H200.13030.52630.26150.027*
C210.16279 (7)0.67763 (10)0.22577 (5)0.0292 (3)
H210.16420.71160.25880.035*
C220.18025 (7)0.73815 (9)0.17629 (6)0.0282 (2)
H220.19360.81350.17560.034*
C230.17838 (6)0.68936 (9)0.12783 (5)0.0247 (2)
H230.18970.73130.09410.030*
C240.15983 (6)0.57893 (9)0.12892 (5)0.0203 (2)
H240.15890.54520.09560.024*
B10.46620 (6)0.23547 (9)0.36054 (4)0.01377 (19)
C250.53180 (5)0.27524 (8)0.41906 (4)0.01506 (17)
C260.53687 (5)0.37636 (8)0.44722 (4)0.01841 (19)
H260.49940.42840.43210.022*
C270.59477 (6)0.40360 (9)0.49663 (5)0.0222 (2)
H270.59560.47250.51470.027*
C280.65101 (6)0.33058 (9)0.51945 (4)0.0217 (2)
H280.69020.34840.55320.026*
C290.64893 (6)0.23066 (9)0.49194 (4)0.0208 (2)
H290.68740.18030.50650.025*
C300.59059 (5)0.20459 (8)0.44326 (4)0.01846 (19)
H300.59030.13570.42540.022*
C310.43022 (5)0.12063 (8)0.37144 (4)0.01409 (17)
C320.43723 (5)0.08192 (8)0.42503 (4)0.01565 (18)
H320.46640.12200.45760.019*
C330.40298 (5)0.01320 (8)0.43244 (4)0.01751 (18)
H330.40940.03660.46960.021*
C340.35964 (5)0.07381 (8)0.38589 (5)0.01895 (19)
H340.33680.13910.39080.023*
C350.35032 (5)0.03701 (9)0.33182 (5)0.01950 (19)
H350.32040.07670.29940.023*
C360.38493 (5)0.05798 (8)0.32539 (4)0.01735 (18)
H360.37760.08170.28810.021*
C370.50326 (5)0.21940 (8)0.31399 (4)0.01491 (17)
C380.52380 (5)0.11719 (9)0.29919 (4)0.01828 (19)
H380.51070.05160.31310.022*
C390.56287 (6)0.10823 (10)0.26469 (5)0.0229 (2)
H390.57590.03740.25590.027*
C400.58261 (6)0.20214 (10)0.24331 (5)0.0250 (2)
H400.60960.19630.22020.030*
C410.56232 (6)0.30497 (10)0.25618 (5)0.0240 (2)
H410.57480.37010.24140.029*
C420.52364 (6)0.31235 (9)0.29076 (4)0.01938 (19)
H420.51040.38350.29900.023*
C430.40014 (5)0.32412 (8)0.33856 (4)0.01539 (17)
C440.36416 (5)0.35274 (9)0.28117 (4)0.01945 (19)
H440.37970.32100.25390.023*
C450.30691 (6)0.42552 (10)0.26273 (5)0.0246 (2)
H450.28390.44160.22350.030*
C460.28330 (6)0.47461 (9)0.30136 (5)0.0266 (2)
H460.24530.52630.28910.032*
C470.31613 (6)0.44687 (9)0.35821 (5)0.0249 (2)
H470.30030.47930.38520.030*
C480.37217 (5)0.37170 (9)0.37589 (4)0.01895 (19)
H480.39240.35170.41480.023*
B20.05215 (6)0.70020 (10)0.40237 (5)0.0163 (2)
C490.04678 (5)0.73498 (8)0.46616 (4)0.01608 (18)
C500.01343 (5)0.83323 (9)0.49223 (4)0.01913 (19)
H500.00020.88500.47040.023*
C510.00054 (6)0.85813 (9)0.54879 (4)0.0213 (2)
H510.02400.92500.56490.026*
C520.01996 (6)0.78472 (9)0.58155 (4)0.0218 (2)
H520.01020.80050.62020.026*
C530.05484 (6)0.68795 (9)0.55698 (4)0.0221 (2)
H530.06990.63780.57870.026*
C540.06784 (5)0.66418 (9)0.50041 (4)0.01887 (19)
H540.09180.59760.48450.023*
C550.02320 (5)0.64157 (8)0.40784 (4)0.01560 (18)
C560.08370 (5)0.63716 (8)0.45817 (4)0.01707 (18)
H560.08130.66770.49160.020*
C570.14745 (5)0.58952 (8)0.46106 (5)0.0200 (2)
H570.18720.58810.49610.024*
C580.15304 (6)0.54410 (8)0.41296 (5)0.0205 (2)
H580.19650.51230.41470.025*
C590.09406 (6)0.54589 (8)0.36225 (5)0.01945 (19)
H590.09700.51520.32900.023*
C600.03075 (6)0.59263 (8)0.36028 (4)0.01809 (19)
H600.00920.59160.32540.022*
C610.11684 (5)0.60929 (10)0.37559 (4)0.0204 (2)
C620.10414 (6)0.49566 (10)0.38699 (5)0.0259 (2)
H620.05710.47230.40900.031*
C630.15750 (7)0.41580 (12)0.36737 (6)0.0349 (3)
H630.14630.34020.37640.042*
C640.22645 (8)0.44651 (14)0.33485 (5)0.0412 (4)
H640.26300.39270.32090.049*
C650.24121 (7)0.55746 (15)0.32296 (5)0.0392 (4)
H650.28840.57980.30060.047*
C660.18766 (6)0.63718 (12)0.34342 (4)0.0269 (2)
H660.19970.71270.33520.032*
C670.06546 (5)0.81251 (9)0.36295 (4)0.01731 (18)
C680.02646 (5)0.84143 (9)0.32986 (4)0.01829 (19)
H680.00940.79240.32870.022*
C690.03839 (6)0.93941 (9)0.29857 (4)0.0212 (2)
H690.01100.95520.27660.025*
C700.08985 (6)1.01377 (9)0.29939 (5)0.0233 (2)
H700.09811.08040.27820.028*
C710.12914 (6)0.98859 (10)0.33193 (5)0.0245 (2)
H710.16441.03850.33320.029*
C720.11691 (6)0.89051 (10)0.36257 (4)0.0223 (2)
H720.14470.87540.38430.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0161 (4)0.0165 (4)0.0189 (4)0.0008 (3)0.0056 (3)0.0011 (3)
N20.0218 (4)0.0184 (4)0.0173 (4)0.0029 (3)0.0050 (3)0.0030 (3)
N30.0154 (4)0.0199 (4)0.0148 (4)0.0009 (3)0.0061 (3)0.0032 (3)
N40.0169 (4)0.0160 (4)0.0138 (4)0.0020 (3)0.0060 (3)0.0003 (3)
C10.0180 (4)0.0167 (4)0.0126 (4)0.0019 (3)0.0049 (4)0.0008 (3)
C20.0184 (5)0.0185 (5)0.0214 (5)0.0051 (4)0.0066 (4)0.0034 (4)
C30.0203 (5)0.0247 (5)0.0288 (6)0.0040 (4)0.0097 (4)0.0006 (4)
C40.0295 (6)0.0205 (5)0.0232 (5)0.0092 (4)0.0107 (4)0.0013 (4)
C50.0279 (6)0.0298 (6)0.0239 (5)0.0051 (5)0.0076 (5)0.0119 (5)
C60.0165 (4)0.0249 (5)0.0188 (5)0.0019 (4)0.0087 (4)0.0035 (4)
C70.0167 (5)0.0263 (5)0.0176 (5)0.0004 (4)0.0094 (4)0.0027 (4)
C80.0161 (5)0.0329 (6)0.0207 (5)0.0015 (4)0.0079 (4)0.0023 (4)
C90.0226 (5)0.0357 (6)0.0262 (6)0.0107 (5)0.0113 (5)0.0064 (5)
C100.0318 (6)0.0278 (6)0.0327 (6)0.0071 (5)0.0181 (5)0.0014 (5)
C110.0259 (6)0.0305 (6)0.0261 (6)0.0003 (5)0.0118 (5)0.0052 (5)
C120.0182 (5)0.0310 (6)0.0182 (5)0.0027 (4)0.0073 (4)0.0005 (4)
C130.0170 (4)0.0199 (5)0.0135 (4)0.0023 (4)0.0061 (4)0.0031 (3)
C140.0178 (5)0.0227 (5)0.0140 (4)0.0037 (4)0.0057 (4)0.0030 (4)
C150.0148 (4)0.0175 (4)0.0139 (4)0.0010 (3)0.0051 (3)0.0011 (3)
C160.0235 (5)0.0165 (5)0.0200 (5)0.0059 (4)0.0075 (4)0.0007 (4)
C170.0251 (5)0.0235 (5)0.0153 (4)0.0014 (4)0.0110 (4)0.0003 (4)
C180.0151 (4)0.0195 (5)0.0177 (5)0.0002 (4)0.0053 (4)0.0014 (4)
C190.0149 (4)0.0183 (5)0.0196 (5)0.0020 (3)0.0062 (4)0.0020 (4)
C200.0276 (5)0.0214 (5)0.0207 (5)0.0042 (4)0.0106 (4)0.0033 (4)
C210.0397 (7)0.0219 (5)0.0330 (6)0.0057 (5)0.0217 (5)0.0086 (5)
C220.0317 (6)0.0162 (5)0.0411 (7)0.0023 (4)0.0189 (5)0.0021 (5)
C230.0240 (5)0.0206 (5)0.0292 (6)0.0029 (4)0.0098 (5)0.0037 (4)
C240.0195 (5)0.0211 (5)0.0206 (5)0.0035 (4)0.0080 (4)0.0016 (4)
B10.0150 (5)0.0129 (4)0.0134 (5)0.0005 (4)0.0055 (4)0.0003 (4)
C250.0168 (4)0.0152 (4)0.0141 (4)0.0012 (3)0.0070 (4)0.0013 (3)
C260.0185 (5)0.0161 (4)0.0199 (5)0.0003 (4)0.0066 (4)0.0008 (4)
C270.0236 (5)0.0189 (5)0.0223 (5)0.0036 (4)0.0068 (4)0.0054 (4)
C280.0188 (5)0.0246 (5)0.0178 (5)0.0052 (4)0.0027 (4)0.0016 (4)
C290.0169 (5)0.0218 (5)0.0206 (5)0.0008 (4)0.0039 (4)0.0025 (4)
C300.0186 (5)0.0172 (4)0.0185 (5)0.0005 (4)0.0059 (4)0.0010 (4)
C310.0133 (4)0.0136 (4)0.0156 (4)0.0026 (3)0.0058 (3)0.0005 (3)
C320.0158 (4)0.0158 (4)0.0155 (4)0.0017 (3)0.0062 (4)0.0005 (3)
C330.0177 (4)0.0174 (4)0.0196 (5)0.0031 (4)0.0095 (4)0.0037 (4)
C340.0166 (4)0.0151 (4)0.0273 (5)0.0001 (4)0.0108 (4)0.0006 (4)
C350.0162 (4)0.0199 (5)0.0215 (5)0.0026 (4)0.0062 (4)0.0047 (4)
C360.0163 (4)0.0189 (5)0.0156 (4)0.0004 (4)0.0048 (4)0.0000 (4)
C370.0137 (4)0.0171 (4)0.0125 (4)0.0001 (3)0.0034 (3)0.0007 (3)
C380.0183 (5)0.0186 (5)0.0169 (4)0.0011 (4)0.0056 (4)0.0009 (4)
C390.0200 (5)0.0282 (5)0.0195 (5)0.0030 (4)0.0065 (4)0.0060 (4)
C400.0198 (5)0.0402 (6)0.0169 (5)0.0004 (4)0.0090 (4)0.0028 (4)
C410.0231 (5)0.0303 (6)0.0206 (5)0.0049 (4)0.0104 (4)0.0029 (4)
C420.0196 (5)0.0194 (5)0.0199 (5)0.0018 (4)0.0084 (4)0.0003 (4)
C430.0153 (4)0.0129 (4)0.0178 (4)0.0011 (3)0.0061 (4)0.0001 (3)
C440.0181 (5)0.0203 (5)0.0202 (5)0.0017 (4)0.0077 (4)0.0037 (4)
C450.0197 (5)0.0256 (5)0.0261 (5)0.0037 (4)0.0061 (4)0.0092 (4)
C460.0188 (5)0.0197 (5)0.0385 (6)0.0054 (4)0.0078 (5)0.0016 (4)
C470.0197 (5)0.0223 (5)0.0337 (6)0.0008 (4)0.0112 (5)0.0089 (4)
C480.0166 (5)0.0194 (5)0.0207 (5)0.0012 (4)0.0069 (4)0.0036 (4)
B20.0134 (5)0.0211 (5)0.0144 (5)0.0000 (4)0.0056 (4)0.0004 (4)
C490.0128 (4)0.0196 (5)0.0157 (4)0.0027 (3)0.0053 (3)0.0018 (3)
C500.0183 (5)0.0203 (5)0.0179 (5)0.0001 (4)0.0059 (4)0.0027 (4)
C510.0208 (5)0.0209 (5)0.0193 (5)0.0009 (4)0.0046 (4)0.0017 (4)
C520.0231 (5)0.0265 (5)0.0165 (5)0.0045 (4)0.0084 (4)0.0008 (4)
C530.0246 (5)0.0260 (5)0.0194 (5)0.0010 (4)0.0125 (4)0.0023 (4)
C540.0186 (5)0.0207 (5)0.0186 (5)0.0000 (4)0.0084 (4)0.0000 (4)
C550.0160 (4)0.0144 (4)0.0168 (4)0.0012 (3)0.0069 (4)0.0006 (3)
C560.0163 (4)0.0164 (4)0.0181 (4)0.0003 (3)0.0061 (4)0.0001 (3)
C570.0161 (5)0.0175 (5)0.0237 (5)0.0005 (4)0.0044 (4)0.0005 (4)
C580.0179 (5)0.0149 (4)0.0310 (6)0.0017 (4)0.0119 (4)0.0012 (4)
C590.0238 (5)0.0152 (4)0.0229 (5)0.0007 (4)0.0130 (4)0.0009 (4)
C600.0199 (5)0.0169 (4)0.0178 (5)0.0009 (4)0.0075 (4)0.0003 (4)
C610.0178 (5)0.0314 (6)0.0132 (4)0.0043 (4)0.0072 (4)0.0025 (4)
C620.0265 (6)0.0299 (6)0.0241 (5)0.0088 (5)0.0127 (5)0.0059 (4)
C630.0433 (7)0.0381 (7)0.0313 (6)0.0210 (6)0.0234 (6)0.0132 (5)
C640.0390 (7)0.0655 (10)0.0244 (6)0.0332 (7)0.0183 (6)0.0187 (6)
C650.0200 (5)0.0824 (11)0.0143 (5)0.0175 (6)0.0057 (4)0.0051 (6)
C660.0180 (5)0.0497 (7)0.0139 (5)0.0051 (5)0.0073 (4)0.0006 (5)
C670.0148 (4)0.0225 (5)0.0131 (4)0.0003 (4)0.0036 (4)0.0002 (4)
C680.0149 (4)0.0212 (5)0.0180 (4)0.0002 (4)0.0054 (4)0.0007 (4)
C690.0182 (5)0.0239 (5)0.0190 (5)0.0037 (4)0.0042 (4)0.0020 (4)
C700.0228 (5)0.0201 (5)0.0196 (5)0.0001 (4)0.0001 (4)0.0022 (4)
C710.0217 (5)0.0266 (5)0.0202 (5)0.0077 (4)0.0026 (4)0.0009 (4)
C720.0192 (5)0.0303 (6)0.0170 (5)0.0059 (4)0.0064 (4)0.0017 (4)
Geometric parameters (Å, º) top
N1—C11.3407 (13)C31—C321.4021 (13)
N1—C21.4639 (13)C31—C361.4073 (13)
N1—C31.4644 (13)C32—C331.3966 (14)
N2—C11.3364 (13)C32—H320.9500
N2—C51.4648 (14)C33—C341.3890 (15)
N2—C41.4673 (14)C33—H330.9500
N3—C11.3539 (13)C34—C351.3941 (15)
N3—C131.4676 (12)C34—H340.9500
N3—C61.4820 (12)C35—C361.3912 (14)
N4—C161.4994 (13)C35—H350.9500
N4—C171.5017 (12)C36—H360.9500
N4—C151.5144 (13)C37—C381.4041 (14)
N4—C181.5293 (13)C37—C421.4073 (14)
C2—H2A0.9800C38—C391.3999 (14)
C2—H2B0.9800C38—H380.9500
C2—H2C0.9800C39—C401.3862 (17)
C3—H3A0.9800C39—H390.9500
C3—H3B0.9800C40—C411.3906 (17)
C3—H3C0.9800C40—H400.9500
C4—H4A0.9800C41—C421.3939 (14)
C4—H4B0.9800C41—H410.9500
C4—H4C0.9800C42—H420.9500
C5—H5A0.9800C43—C481.4083 (13)
C5—H5B0.9800C43—C441.4091 (14)
C5—H5C0.9800C44—C451.3921 (15)
C6—C71.5119 (15)C44—H440.9500
C6—H6A0.9900C45—C461.3867 (17)
C6—H6B0.9900C45—H450.9500
C7—C81.3963 (15)C46—C471.3882 (17)
C7—C121.3965 (15)C46—H460.9500
C8—C91.3919 (17)C47—C481.3932 (15)
C8—H80.9500C47—H470.9500
C9—C101.3823 (18)C48—H480.9500
C9—H90.9500B2—C491.6463 (14)
C10—C111.3910 (17)B2—C551.6477 (15)
C10—H100.9500B2—C611.6512 (16)
C11—C121.3895 (17)B2—C671.6521 (15)
C11—H110.9500C49—C541.4047 (14)
C12—H120.9500C49—C501.4051 (14)
C13—C141.5315 (14)C50—C511.3953 (14)
C13—H13A0.9900C50—H500.9500
C13—H13B0.9900C51—C521.3904 (15)
C14—C151.5205 (13)C51—H510.9500
C14—H14A0.9900C52—C531.3896 (16)
C14—H14B0.9900C52—H520.9500
C15—H15A0.9900C53—C541.3966 (14)
C15—H15B0.9900C53—H530.9500
C16—H16A0.9800C54—H540.9500
C16—H16B0.9800C55—C561.4008 (14)
C16—H16C0.9800C55—C601.4127 (13)
C17—H17A0.9800C56—C571.3967 (14)
C17—H17B0.9800C56—H560.9500
C17—H17C0.9800C57—C581.3907 (15)
C18—C191.5030 (14)C57—H570.9500
C18—H18A0.9900C58—C591.3897 (16)
C18—H18B0.9900C58—H580.9500
C19—C241.3946 (14)C59—C601.3913 (14)
C19—C201.3958 (14)C59—H590.9500
C20—C211.3919 (16)C60—H600.9500
C20—H200.9500C61—C661.4008 (15)
C21—C221.3852 (18)C61—C621.4099 (17)
C21—H210.9500C62—C631.3967 (16)
C22—C231.3858 (17)C62—H620.9500
C22—H220.9500C63—C641.381 (2)
C23—C241.3870 (15)C63—H630.9500
C23—H230.9500C64—C651.385 (2)
C24—H240.9500C64—H640.9500
B1—C431.6430 (14)C65—C661.3995 (18)
B1—C311.6447 (14)C65—H650.9500
B1—C371.6465 (14)C66—H660.9500
B1—C251.6505 (15)C67—C721.4080 (14)
C25—C261.4040 (14)C67—C681.4082 (13)
C25—C301.4075 (14)C68—C691.3991 (15)
C26—C271.3979 (15)C68—H680.9500
C26—H260.9500C69—C701.3880 (16)
C27—C281.3867 (16)C69—H690.9500
C27—H270.9500C70—C711.3908 (16)
C28—C291.3919 (15)C70—H700.9500
C28—H280.9500C71—C721.3917 (16)
C29—C301.3885 (15)C71—H710.9500
C29—H290.9500C72—H720.9500
C30—H300.9500
C1—N1—C2121.72 (9)C30—C29—C28120.04 (10)
C1—N1—C3123.01 (9)C30—C29—H29120.0
C2—N1—C3115.22 (8)C28—C29—H29120.0
C1—N2—C5122.30 (9)C29—C30—C25123.21 (10)
C1—N2—C4121.50 (9)C29—C30—H30118.4
C5—N2—C4116.13 (9)C25—C30—H30118.4
C1—N3—C13120.42 (8)C32—C31—C36115.19 (9)
C1—N3—C6121.80 (8)C32—C31—B1124.25 (8)
C13—N3—C6117.78 (8)C36—C31—B1120.41 (8)
C16—N4—C17107.85 (8)C33—C32—C31122.61 (9)
C16—N4—C15111.56 (8)C33—C32—H32118.7
C17—N4—C15107.40 (7)C31—C32—H32118.7
C16—N4—C18107.36 (8)C34—C33—C32120.42 (9)
C17—N4—C18110.02 (8)C34—C33—H33119.8
C15—N4—C18112.57 (7)C32—C33—H33119.8
N2—C1—N1121.16 (9)C33—C34—C35118.74 (9)
N2—C1—N3119.26 (9)C33—C34—H34120.6
N1—C1—N3119.57 (9)C35—C34—H34120.6
N1—C2—H2A109.5C36—C35—C34119.90 (9)
N1—C2—H2B109.5C36—C35—H35120.1
H2A—C2—H2B109.5C34—C35—H35120.1
N1—C2—H2C109.5C35—C36—C31123.13 (9)
H2A—C2—H2C109.5C35—C36—H36118.4
H2B—C2—H2C109.5C31—C36—H36118.4
N1—C3—H3A109.5C38—C37—C42115.16 (9)
N1—C3—H3B109.5C38—C37—B1124.42 (8)
H3A—C3—H3B109.5C42—C37—B1120.08 (8)
N1—C3—H3C109.5C39—C38—C37122.54 (10)
H3A—C3—H3C109.5C39—C38—H38118.7
H3B—C3—H3C109.5C37—C38—H38118.7
N2—C4—H4A109.5C40—C39—C38120.34 (10)
N2—C4—H4B109.5C40—C39—H39119.8
H4A—C4—H4B109.5C38—C39—H39119.8
N2—C4—H4C109.5C39—C40—C41118.96 (10)
H4A—C4—H4C109.5C39—C40—H40120.5
H4B—C4—H4C109.5C41—C40—H40120.5
N2—C5—H5A109.5C40—C41—C42119.91 (10)
N2—C5—H5B109.5C40—C41—H41120.0
H5A—C5—H5B109.5C42—C41—H41120.0
N2—C5—H5C109.5C41—C42—C37123.07 (10)
H5A—C5—H5C109.5C41—C42—H42118.5
H5B—C5—H5C109.5C37—C42—H42118.5
N3—C6—C7109.57 (8)C48—C43—C44114.87 (9)
N3—C6—H6A109.8C48—C43—B1121.75 (9)
C7—C6—H6A109.8C44—C43—B1123.24 (8)
N3—C6—H6B109.8C45—C44—C43122.86 (10)
C7—C6—H6B109.8C45—C44—H44118.6
H6A—C6—H6B108.2C43—C44—H44118.6
C8—C7—C12118.81 (10)C46—C45—C44120.28 (10)
C8—C7—C6120.56 (10)C46—C45—H45119.9
C12—C7—C6120.60 (10)C44—C45—H45119.9
C9—C8—C7120.37 (11)C45—C46—C47118.82 (10)
C9—C8—H8119.8C45—C46—H46120.6
C7—C8—H8119.8C47—C46—H46120.6
C10—C9—C8120.20 (11)C46—C47—C48120.28 (10)
C10—C9—H9119.9C46—C47—H47119.9
C8—C9—H9119.9C48—C47—H47119.9
C9—C10—C11120.11 (11)C47—C48—C43122.77 (10)
C9—C10—H10119.9C47—C48—H48118.6
C11—C10—H10119.9C43—C48—H48118.6
C12—C11—C10119.73 (11)C49—B2—C55108.64 (8)
C12—C11—H11120.1C49—B2—C61108.73 (8)
C10—C11—H11120.1C55—B2—C61108.51 (8)
C11—C12—C7120.75 (10)C49—B2—C67109.06 (8)
C11—C12—H12119.6C55—B2—C67109.66 (8)
C7—C12—H12119.6C61—B2—C67112.18 (8)
N3—C13—C14110.54 (8)C54—C49—C50115.39 (9)
N3—C13—H13A109.5C54—C49—B2122.73 (9)
C14—C13—H13A109.5C50—C49—B2121.53 (9)
N3—C13—H13B109.5C51—C50—C49122.97 (9)
C14—C13—H13B109.5C51—C50—H50118.5
H13A—C13—H13B108.1C49—C50—H50118.5
C15—C14—C13108.91 (8)C52—C51—C50119.77 (10)
C15—C14—H14A109.9C52—C51—H51120.1
C13—C14—H14A109.9C50—C51—H51120.1
C15—C14—H14B109.9C53—C52—C51119.11 (10)
C13—C14—H14B109.9C53—C52—H52120.4
H14A—C14—H14B108.3C51—C52—H52120.4
N4—C15—C14114.25 (8)C52—C53—C54120.21 (10)
N4—C15—H15A108.7C52—C53—H53119.9
C14—C15—H15A108.7C54—C53—H53119.9
N4—C15—H15B108.7C53—C54—C49122.50 (10)
C14—C15—H15B108.7C53—C54—H54118.7
H15A—C15—H15B107.6C49—C54—H54118.7
N4—C16—H16A109.5C56—C55—C60115.27 (9)
N4—C16—H16B109.5C56—C55—B2123.89 (8)
H16A—C16—H16B109.5C60—C55—B2120.83 (9)
N4—C16—H16C109.5C57—C56—C55122.51 (9)
H16A—C16—H16C109.5C57—C56—H56118.7
H16B—C16—H16C109.5C55—C56—H56118.7
N4—C17—H17A109.5C58—C57—C56120.37 (10)
N4—C17—H17B109.5C58—C57—H57119.8
H17A—C17—H17B109.5C56—C57—H57119.8
N4—C17—H17C109.5C59—C58—C57118.96 (9)
H17A—C17—H17C109.5C59—C58—H58120.5
H17B—C17—H17C109.5C57—C58—H58120.5
C19—C18—N4114.89 (8)C58—C59—C60119.90 (9)
C19—C18—H18A108.5C58—C59—H59120.1
N4—C18—H18A108.5C60—C59—H59120.1
C19—C18—H18B108.5C59—C60—C55122.97 (10)
N4—C18—H18B108.5C59—C60—H60118.5
H18A—C18—H18B107.5C55—C60—H60118.5
C24—C19—C20119.33 (10)C66—C61—C62115.02 (10)
C24—C19—C18119.01 (9)C66—C61—B2124.16 (10)
C20—C19—C18121.59 (9)C62—C61—B2120.72 (9)
C21—C20—C19119.76 (10)C63—C62—C61123.07 (12)
C21—C20—H20120.1C63—C62—H62118.5
C19—C20—H20120.1C61—C62—H62118.5
C22—C21—C20120.27 (11)C64—C63—C62120.12 (14)
C22—C21—H21119.9C64—C63—H63119.9
C20—C21—H21119.9C62—C63—H63119.9
C21—C22—C23120.33 (11)C63—C64—C65118.60 (12)
C21—C22—H22119.8C63—C64—H64120.7
C23—C22—H22119.8C65—C64—H64120.7
C22—C23—C24119.58 (11)C64—C65—C66120.96 (13)
C22—C23—H23120.2C64—C65—H65119.5
C24—C23—H23120.2C66—C65—H65119.5
C23—C24—C19120.71 (10)C65—C66—C61122.22 (13)
C23—C24—H24119.6C65—C66—H66118.9
C19—C24—H24119.6C61—C66—H66118.9
C43—B1—C31104.53 (7)C72—C67—C68114.73 (9)
C43—B1—C37111.84 (8)C72—C67—B2120.29 (9)
C31—B1—C37112.32 (8)C68—C67—B2124.92 (9)
C43—B1—C25113.09 (8)C69—C68—C67122.66 (10)
C31—B1—C25110.61 (8)C69—C68—H68118.7
C37—B1—C25104.66 (7)C67—C68—H68118.7
C26—C25—C30114.94 (9)C70—C69—C68120.56 (10)
C26—C25—B1126.45 (9)C70—C69—H69119.7
C30—C25—B1118.57 (8)C68—C69—H69119.7
C27—C26—C25122.68 (10)C69—C70—C71118.51 (10)
C27—C26—H26118.7C69—C70—H70120.7
C25—C26—H26118.7C71—C70—H70120.7
C28—C27—C26120.33 (10)C70—C71—C72120.24 (10)
C28—C27—H27119.8C70—C71—H71119.9
C26—C27—H27119.8C72—C71—H71119.9
C27—C28—C29118.77 (10)C71—C72—C67123.29 (10)
C27—C28—H28120.6C71—C72—H72118.4
C29—C28—H28120.6C67—C72—H72118.4
C5—N2—C1—N130.14 (15)C42—C37—C38—C391.15 (15)
C4—N2—C1—N1146.67 (10)B1—C37—C38—C39172.02 (9)
C5—N2—C1—N3150.09 (10)C37—C38—C39—C400.37 (16)
C4—N2—C1—N333.10 (14)C38—C39—C40—C410.70 (16)
C2—N1—C1—N2147.59 (10)C39—C40—C41—C420.93 (16)
C3—N1—C1—N234.77 (14)C40—C41—C42—C370.10 (17)
C2—N1—C1—N332.64 (14)C38—C37—C42—C410.92 (15)
C3—N1—C1—N3145.00 (10)B1—C37—C42—C41172.57 (10)
C13—N3—C1—N2136.31 (10)C31—B1—C43—C4874.29 (11)
C6—N3—C1—N244.00 (14)C37—B1—C43—C48163.94 (9)
C13—N3—C1—N143.47 (13)C25—B1—C43—C4846.09 (12)
C6—N3—C1—N1136.23 (10)C31—B1—C43—C44101.32 (10)
C1—N3—C6—C7124.68 (10)C37—B1—C43—C4420.44 (13)
C13—N3—C6—C755.02 (11)C25—B1—C43—C44138.30 (9)
N3—C6—C7—C8107.17 (10)C48—C43—C44—C452.20 (15)
N3—C6—C7—C1270.71 (12)B1—C43—C44—C45178.09 (10)
C12—C7—C8—C91.94 (15)C43—C44—C45—C460.80 (17)
C6—C7—C8—C9175.97 (9)C44—C45—C46—C472.22 (17)
C7—C8—C9—C101.02 (16)C45—C46—C47—C480.54 (17)
C8—C9—C10—C110.36 (17)C46—C47—C48—C432.69 (17)
C9—C10—C11—C120.80 (17)C44—C43—C48—C473.93 (15)
C10—C11—C12—C70.15 (16)B1—C43—C48—C47179.89 (9)
C8—C7—C12—C111.51 (15)C55—B2—C49—C5490.58 (11)
C6—C7—C12—C11176.41 (9)C61—B2—C49—C5427.32 (13)
C1—N3—C13—C14119.40 (10)C67—B2—C49—C54149.93 (9)
C6—N3—C13—C1460.90 (11)C55—B2—C49—C5082.32 (11)
N3—C13—C14—C15163.36 (8)C61—B2—C49—C50159.77 (9)
C16—N4—C15—C1446.69 (11)C67—B2—C49—C5037.17 (12)
C17—N4—C15—C14164.67 (8)C54—C49—C50—C512.28 (15)
C18—N4—C15—C1474.08 (10)B2—C49—C50—C51171.12 (9)
C13—C14—C15—N4171.78 (8)C49—C50—C51—C521.13 (16)
C16—N4—C18—C19177.68 (8)C50—C51—C52—C530.67 (16)
C17—N4—C18—C1965.21 (11)C51—C52—C53—C541.16 (16)
C15—N4—C18—C1954.53 (11)C52—C53—C54—C490.11 (16)
N4—C18—C19—C2499.44 (11)C50—C49—C54—C531.76 (15)
N4—C18—C19—C2083.67 (12)B2—C49—C54—C53171.54 (10)
C24—C19—C20—C211.63 (16)C49—B2—C55—C567.72 (13)
C18—C19—C20—C21178.51 (10)C61—B2—C55—C56125.77 (10)
C19—C20—C21—C221.29 (18)C67—B2—C55—C56111.39 (10)
C20—C21—C22—C230.03 (19)C49—B2—C55—C60173.08 (9)
C21—C22—C23—C240.87 (18)C61—B2—C55—C6055.03 (11)
C22—C23—C24—C190.51 (16)C67—B2—C55—C6067.81 (11)
C20—C19—C24—C230.74 (15)C60—C55—C56—C571.07 (14)
C18—C19—C24—C23177.69 (9)B2—C55—C56—C57178.18 (9)
C43—B1—C25—C264.50 (13)C55—C56—C57—C580.11 (16)
C31—B1—C25—C26121.35 (10)C56—C57—C58—C590.67 (15)
C37—B1—C25—C26117.47 (10)C57—C58—C59—C600.02 (15)
C43—B1—C25—C30177.93 (8)C58—C59—C60—C551.31 (15)
C31—B1—C25—C3061.08 (11)C56—C55—C60—C591.79 (14)
C37—B1—C25—C3060.10 (10)B2—C55—C60—C59177.48 (9)
C30—C25—C26—C272.03 (14)C49—B2—C61—C6690.18 (11)
B1—C25—C26—C27179.67 (9)C55—B2—C61—C66151.82 (9)
C25—C26—C27—C281.11 (16)C67—B2—C61—C6630.51 (13)
C26—C27—C28—C290.66 (16)C49—B2—C61—C6286.04 (11)
C27—C28—C29—C301.36 (16)C55—B2—C61—C6231.96 (12)
C28—C29—C30—C250.36 (16)C67—B2—C61—C62153.26 (9)
C26—C25—C30—C291.30 (14)C66—C61—C62—C630.73 (15)
B1—C25—C30—C29179.14 (9)B2—C61—C62—C63177.28 (10)
C43—B1—C31—C32102.65 (10)C61—C62—C63—C640.46 (18)
C37—B1—C31—C32135.90 (9)C62—C63—C64—C650.78 (18)
C25—B1—C31—C3219.38 (12)C63—C64—C65—C660.10 (18)
C43—B1—C31—C3672.61 (10)C64—C65—C66—C611.38 (17)
C37—B1—C31—C3648.84 (12)C62—C61—C66—C651.63 (15)
C25—B1—C31—C36165.37 (8)B2—C61—C66—C65178.05 (9)
C36—C31—C32—C331.25 (14)C49—B2—C67—C7246.45 (12)
B1—C31—C32—C33176.73 (9)C55—B2—C67—C72165.31 (9)
C31—C32—C33—C340.23 (15)C61—B2—C67—C7274.05 (12)
C32—C33—C34—C350.87 (15)C49—B2—C67—C68130.67 (10)
C33—C34—C35—C360.85 (15)C55—B2—C67—C6811.82 (13)
C34—C35—C36—C310.25 (15)C61—B2—C67—C68108.82 (11)
C32—C31—C36—C351.27 (14)C72—C67—C68—C690.65 (15)
B1—C31—C36—C35176.94 (9)B2—C67—C68—C69177.92 (10)
C43—B1—C37—C38137.32 (10)C67—C68—C69—C700.54 (16)
C31—B1—C37—C3820.16 (13)C68—C69—C70—C710.02 (16)
C25—B1—C37—C3899.88 (10)C69—C70—C71—C720.34 (16)
C43—B1—C37—C4249.82 (12)C70—C71—C72—C670.20 (17)
C31—B1—C37—C42166.99 (9)C68—C67—C72—C710.29 (16)
C25—B1—C37—C4272.97 (11)B2—C67—C72—C71177.70 (10)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the C31–C36, C43–C48 and C61–C66 aromatic rings, respectively.
D—H···AD—HH···AD···AD—H···A
C2—H2B···Cg1i0.982.763.441127
C15—H15A···Cg1ii0.992.943.538120
C17—H17A···Cg2ii0.982.763.716166
C4—H4A···Cg3iii0.982.883.840169
C20—H20···Cg3iv0.952.913.719144
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+1/2, z1/2; (iii) x, y1/2, z+1/2; (iv) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the C31–C36, C43–C48 and C61–C66 aromatic rings, respectively.
D—H···AD—HH···AD···AD—H···A
C2—H2B···Cg1i0.982.763.441127
C15—H15A···Cg1ii0.992.943.538120
C17—H17A···Cg2ii0.982.763.716166
C4—H4A···Cg3iii0.982.883.840169
C20—H20···Cg3iv0.952.913.719144
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+1/2, z1/2; (iii) x, y1/2, z+1/2; (iv) x, y+1, z.
 

Acknowledgements

The authors thank Dr W. Frey (Institut für Organische Chemie, Universität Stuttgart) for measuring the diffraction data.

References

First citationBehrens, U., Hoffmann, F. & Olbrich, F. (2012a). Organometallics, 31, 905–913.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTiritiris, I. (2013a). Acta Cryst. E69, o292.  CSD CrossRef IUCr Journals Google Scholar
First citationTiritiris, I. (2013b). Acta Cryst. E69, o899.  CrossRef IUCr Journals Google Scholar
First citationTiritiris, I. & Kantlehner, W. (2012b). Z. Naturforsch. Teil B, 67, 685–698.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds