research communications
of (2′,3,6′-trichlorobiphenyl-2-yl)boronic acid tetrahydrofuran monosolvate
aPhysical Chemistry Department, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
*Correspondence e-mail: kdurka@ch.pw.edu.pl
The title compound, C12H8BCl3O2·C4H8O, crystallizes as a tetrahydrofuran monosolvate. The boronic acid group adopts a syn–anti conformation and is significantly twisted along the carbon–boron bond by 69.2 (1)°, due to considerable from the 2′,6′-dichlorophenyl group that is located ortho to the boronic acid substituent. The phenyl rings of the biphenyl are almost perpendicular to one another, with a dihedral angle of 87.9 (1)° between them. In the crystal, adjacent molecules are linked via O—H⋯O interactions to form centrosymmetric dimers with R22(8) motifs, which have recently been shown to be energetically very favourable. The hydroxy groups are in an anti conformation and are also engaged in hydrogen-bonding interactions with the O atom of the tetrahydrofuran solvent molecule. Cl⋯Cl halogen-bonding interactions [Cl⋯Cl = 3.464 (1) Å] link neigbouring dimers into chains running along [010]. Further aggregation occurs due to an additional Cl⋯Cl halogen bond [Cl⋯Cl = 3.387 (1) Å].
Keywords: arylboronic acid; hydrogen-bonding interactions; halogen-bonding interactions; biphenyl; THF solvate; crystal structure.
CCDC reference: 1434205
1. Chemical context
; Furukawa & Yaghi, 2009). They are widely used in medicine, for example, as antifungal and antibacterical agents (Adamczyk-Woźniak et al., 2015; Kane et al., 2003; Vogt et al., 2013). Besides these applications, phenylboronic acids have also been studied in terms of crystal engineering (Nishiyabu et al., 2011; Severin, 2009). In contrast, biphenyl-based have been largely neglected. Exceptions to this include reports of the crystal structures of (2-biphenylyl)boronic acid (Filthaus et al., 2008) and (2-methoxy-3-biphenyl)boronic acid (Davies et al., 2008). In this manuscript we focus our attention on a sterically hindered boronic acid derivative based on a biphenyl core with a boronic group located at the 2-position of one benzene ring with a Cl substituent at the 3-position. The second benzene ring of the biphenyl ring system carries chlorine substituents at the 2- and 6-positions. This molecule crystallized as a 1:1 solvate with THF, Fig. 1.
and their derivatives have been studied intensively in recent years due to their numerous applications in organic, analytical and materials chemistry (Hall, 20112. Structural commentary
The B—C [1.5907 (16) Å] and B—O [1.3514 (14), 1.3641 (14) Å] bonds in the title compound (I) are within the expected range typically observed for (Madura et al., 2014; Luliński et al., 2007; Maly et al., 2006; Shimpi et al., 2007; Durka et al., 2012). The molecular structure shows that the B(OH)2 group adopts the usual syn–anti conformation (Fig. 1). The boronic acid substituent is significantly rotated about the C—B bond in order to minimize the between the boronic group and the adjacent 2′,6′-dichlorophenyl ring [τC2—C1—B1—O1 = 69.2 (2)°]. In the structure of the related (2-biphenylyl)boronic acid (Filthaus et al., 2008) this torsion angle is some 20° smaller, which clearly shows the influence of the three chlorine substituents on this structure. It is also notable that in (I) the phenyl rings of the biphenyl system are almost perpendicular to one another [τC1—C6—C7—C11 = 87.9 (1)°], whereas in (2-biphenylyl)boronic acid they are rotated by only 48.4 or 45.4° for the two unique molecules in the asymmetric unit.
3. Supramolecular features
In the crystal, centrosymmetric O—H⋯O hydrogen-bonded dimers are formed. The anti-oriented OH group is engaged in an intermolecular O—H⋯O hydrogen bond (Table 1) with the oxygen atom from the tetrahydrofuran solvate molecule. Because all of the hydrogen-bond acceptor centres are saturated, the syn OH group is not involved in any side hydrogen-bond interactions. Neighbouring dimers are connected through Cl⋯Cl halogen bonds [dCl⋯Cl = 3.464 (1) Å; the sum of the van der Waals radii for Cl is 3.50 Å]. In terms of geometry of this contact, it can be classified as a type I halogen bond (Fig. 2a), (Metrangolo et al., 2005; Nayak et al., 2011). These contacts result in the formation of molecular chains propagating along [010] (Fig. 3). A three-dimensional network forms through additional Cl⋯Cl halogen bonds (Fig. 4) of type II [dCl⋯Cl = 3.387 (1) Å] (Fig. 2b).
4. Synthesis and crystallization
Synthesis of (I) (Fig. 5): A solution of 2-iodo-2′,3,6′-trichlorobiphenyl (3.8 g, 10 mmol) in THF (50 mL) was added to a stirred solution of n-BuLi (10 mmol) in THF (30 mL) at 195 K. The resulting colorless solution was stirred for 1 h to give a colorless precipitate. The B(OMe)3 (2.1 g, 20 mmol) was then added to the stirred mixture to give a colorless solution which was stirred for 1 h and then hydrolyzed with H2O (100 mL). Dilute aq. H2SO4 was added until the pH was slightly acidic. Et2O (50 mL) was next added and the mixture stirred for 10 min. The organic phase was separated and the aqueous phase was extracted with Et2O (20 mL). The combined organic solutions were dried over MgSO4 and evaporated to give a colorless precipitate, yield 2.0 g (66%). 1H NMR (400 MHz, acetone-d6): δ = 8.00 (2H, s, OH), 7.51 (2H, m), 7.39 (3H, m), 7.05 (1H, m); 13C{1H} NMR (100.6 MHz, acetone-d6): δ = 141.49, 139.62, 139 (br), 136.17, 134.84, 130.49, 129.99, 128.24, 128.14, 127.53.
Crystals suitable for X-ray
were grown by slow evaporation of a THF solution.5. details
Crystal data, data collection and structure . All CH hydrogen atoms were placed in calculated positions with C—H distances of 0.95 or 0.99 Å. They were included in the in the riding-motion approximation with Uiso(phenyl H) = 1.2Ueq(C). The positions of the OH hydrogen atoms were first found in a difference map. Then their bond lengths were restrained in the last least-squares cycles, with an O—H distance of 0.85 Å and their coordinates refined with Uiso(hydroxyl H) = 1.5Ueq(O).
details are summarized in Table 2Supporting information
CCDC reference: 1434205
https://doi.org/10.1107/S205698901502054X/sj5482sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698901502054X/sj5482Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S205698901502054X/sj5482Isup3.cdx
Supporting information file. DOI: https://doi.org/10.1107/S205698901502054X/sj5482Isup4.cdx
Supporting information file. DOI: https://doi.org/10.1107/S205698901502054X/sj5482Isup5.cml
Data collection: CrysAlis PRO (Agilent, 2014); cell
CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2015); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: publCIF (Westrip, 2010).C12H8BCl3O2·C4H8O | F(000) = 384 |
Mr = 373.45 | Dx = 1.429 Mg m−3 |
Triclinic, P1 | Melting point: 411 K |
a = 8.3306 (3) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 8.7122 (2) Å | Cell parameters from 14113 reflections |
c = 12.4307 (4) Å | θ = 2.4–32.4° |
α = 98.683 (3)° | µ = 0.54 mm−1 |
β = 97.737 (3)° | T = 130 K |
γ = 99.398 (3)° | Fragment, colourless |
V = 868.07 (5) Å3 | 0.15 × 0.12 × 0.10 mm |
Z = 2 |
Agilent SuperNova Dual Source diffractometer with an Atlas detector | 6107 independent reflections |
Radiation source: SuperNova (Mo) X-ray Source | 5162 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.032 |
Detector resolution: 5.2195 pixels mm-1 | θmax = 32.6°, θmin = 2.4° |
ω scans | h = −12→12 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) | k = −13→13 |
Tmin = 0.795, Tmax = 1.000 | l = −18→18 |
28647 measured reflections |
Refinement on F2 | 2 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.034 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.085 | w = 1/[σ2(Fo2) + (0.0328P)2 + 0.3549P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max = 0.001 |
6107 reflections | Δρmax = 0.45 e Å−3 |
214 parameters | Δρmin = −0.36 e Å−3 |
Experimental. Absorption correction: CrysAlisPro (Agilent Technologies, 2014), Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.77416 (13) | 0.33187 (12) | 0.22248 (8) | 0.01544 (18) | |
C2 | 0.85513 (13) | 0.33777 (12) | 0.13113 (9) | 0.01761 (19) | |
C3 | 0.77605 (15) | 0.28436 (14) | 0.02290 (9) | 0.0221 (2) | |
H3 | 0.8355 | 0.2914 | −0.0368 | 0.027* | |
C5 | 0.52304 (15) | 0.21255 (15) | 0.09167 (10) | 0.0233 (2) | |
H5 | 0.4085 | 0.1690 | 0.0782 | 0.028* | |
C6 | 0.60414 (13) | 0.26808 (13) | 0.19972 (9) | 0.01703 (19) | |
C7 | 0.50529 (13) | 0.26201 (13) | 0.29144 (9) | 0.01742 (19) | |
C8 | 0.47656 (14) | 0.12861 (13) | 0.34104 (9) | 0.0188 (2) | |
C9 | 0.38144 (14) | 0.12012 (15) | 0.42447 (10) | 0.0230 (2) | |
H9 | 0.3646 | 0.0276 | 0.4565 | 0.028* | |
C10 | 0.31167 (15) | 0.24852 (16) | 0.46023 (11) | 0.0263 (2) | |
H10 | 0.2466 | 0.2441 | 0.5172 | 0.032* | |
C11 | 0.43238 (14) | 0.38827 (13) | 0.33025 (10) | 0.0211 (2) | |
C12 | 0.33610 (15) | 0.38351 (16) | 0.41341 (11) | 0.0262 (2) | |
H12 | 0.2879 | 0.4714 | 0.4377 | 0.031* | |
C13 | 0.60897 (16) | 0.22065 (15) | 0.00366 (10) | 0.0257 (2) | |
H13 | 0.5531 | 0.1825 | −0.0697 | 0.031* | |
C14 | 0.82695 (16) | 0.75012 (14) | 0.14313 (10) | 0.0241 (2) | |
H14A | 0.7067 | 0.7154 | 0.1184 | 0.029* | |
H14B | 0.8843 | 0.6702 | 0.1077 | 0.029* | |
C15 | 0.88574 (17) | 0.91105 (15) | 0.11452 (11) | 0.0283 (3) | |
H15A | 0.8014 | 0.9785 | 0.1202 | 0.034* | |
H15B | 0.9142 | 0.9012 | 0.0393 | 0.034* | |
C16 | 1.03885 (18) | 0.97668 (16) | 0.20241 (12) | 0.0325 (3) | |
H16A | 1.1369 | 0.9378 | 0.1804 | 0.039* | |
H16B | 1.0621 | 1.0937 | 0.2165 | 0.039* | |
C17 | 0.9899 (2) | 0.91251 (17) | 0.30259 (12) | 0.0358 (3) | |
H17A | 1.0868 | 0.8873 | 0.3471 | 0.043* | |
H17B | 0.9443 | 0.9914 | 0.3495 | 0.043* | |
B1 | 0.86796 (14) | 0.39672 (14) | 0.34516 (10) | 0.0160 (2) | |
O1 | 0.92407 (11) | 0.55444 (9) | 0.38238 (7) | 0.02050 (16) | |
O2 | 0.89019 (11) | 0.29285 (10) | 0.41379 (7) | 0.02293 (17) | |
O3 | 0.86646 (12) | 0.77103 (10) | 0.26144 (7) | 0.02631 (19) | |
Cl1 | 0.56394 (4) | −0.03377 (3) | 0.29838 (2) | 0.02648 (7) | |
Cl2 | 0.46307 (4) | 0.55927 (3) | 0.27352 (3) | 0.02936 (8) | |
Cl3 | 1.06696 (3) | 0.41387 (4) | 0.15296 (2) | 0.02402 (7) | |
H1A | 0.902 (2) | 0.6121 (19) | 0.3383 (13) | 0.036* | |
H2A | 0.941 (2) | 0.336 (2) | 0.4767 (12) | 0.036* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0179 (5) | 0.0142 (4) | 0.0137 (4) | 0.0028 (3) | 0.0005 (3) | 0.0028 (3) |
C2 | 0.0196 (5) | 0.0163 (4) | 0.0168 (5) | 0.0029 (4) | 0.0027 (4) | 0.0034 (4) |
C3 | 0.0289 (6) | 0.0237 (5) | 0.0148 (5) | 0.0061 (4) | 0.0047 (4) | 0.0040 (4) |
C5 | 0.0212 (5) | 0.0264 (6) | 0.0181 (5) | 0.0002 (4) | −0.0030 (4) | 0.0013 (4) |
C6 | 0.0186 (5) | 0.0169 (4) | 0.0146 (4) | 0.0025 (4) | 0.0002 (4) | 0.0028 (4) |
C7 | 0.0156 (4) | 0.0194 (5) | 0.0152 (4) | 0.0009 (4) | 0.0001 (3) | 0.0015 (4) |
C8 | 0.0197 (5) | 0.0202 (5) | 0.0150 (5) | 0.0025 (4) | 0.0003 (4) | 0.0014 (4) |
C9 | 0.0208 (5) | 0.0284 (6) | 0.0192 (5) | 0.0013 (4) | 0.0022 (4) | 0.0065 (4) |
C10 | 0.0186 (5) | 0.0363 (7) | 0.0236 (6) | 0.0033 (5) | 0.0060 (4) | 0.0044 (5) |
C11 | 0.0176 (5) | 0.0196 (5) | 0.0243 (5) | 0.0016 (4) | 0.0010 (4) | 0.0027 (4) |
C12 | 0.0193 (5) | 0.0296 (6) | 0.0293 (6) | 0.0065 (4) | 0.0056 (4) | 0.0005 (5) |
C13 | 0.0305 (6) | 0.0290 (6) | 0.0138 (5) | 0.0024 (5) | −0.0024 (4) | 0.0013 (4) |
C14 | 0.0267 (6) | 0.0221 (5) | 0.0226 (5) | 0.0031 (4) | 0.0000 (4) | 0.0059 (4) |
C15 | 0.0332 (7) | 0.0258 (6) | 0.0278 (6) | 0.0044 (5) | 0.0057 (5) | 0.0114 (5) |
C16 | 0.0333 (7) | 0.0243 (6) | 0.0375 (7) | −0.0023 (5) | 0.0049 (6) | 0.0068 (5) |
C17 | 0.0411 (8) | 0.0261 (6) | 0.0328 (7) | −0.0066 (5) | −0.0064 (6) | 0.0072 (5) |
B1 | 0.0152 (5) | 0.0170 (5) | 0.0146 (5) | 0.0022 (4) | 0.0009 (4) | 0.0015 (4) |
O1 | 0.0278 (4) | 0.0162 (4) | 0.0149 (4) | 0.0019 (3) | −0.0030 (3) | 0.0027 (3) |
O2 | 0.0302 (4) | 0.0179 (4) | 0.0170 (4) | 0.0010 (3) | −0.0053 (3) | 0.0036 (3) |
O3 | 0.0328 (5) | 0.0202 (4) | 0.0233 (4) | −0.0005 (3) | −0.0017 (3) | 0.0072 (3) |
Cl1 | 0.04097 (17) | 0.02093 (13) | 0.02001 (13) | 0.00986 (11) | 0.00736 (11) | 0.00481 (10) |
Cl2 | 0.02627 (15) | 0.02037 (13) | 0.04284 (18) | 0.00462 (10) | 0.00663 (12) | 0.00884 (12) |
Cl3 | 0.01988 (13) | 0.02816 (14) | 0.02462 (14) | 0.00239 (10) | 0.00640 (10) | 0.00636 (11) |
C1—C2 | 1.3999 (15) | C11—Cl2 | 1.7388 (12) |
C1—C6 | 1.4081 (15) | C12—H12 | 0.9500 |
C1—B1 | 1.5907 (16) | C13—H13 | 0.9500 |
C2—C3 | 1.3902 (16) | C14—O3 | 1.4400 (15) |
C2—Cl3 | 1.7498 (11) | C14—C15 | 1.5183 (17) |
C3—C13 | 1.3859 (18) | C14—H14A | 0.9900 |
C3—H3 | 0.9500 | C14—H14B | 0.9900 |
C5—C13 | 1.3900 (17) | C15—C16 | 1.532 (2) |
C5—C6 | 1.3954 (15) | C15—H15A | 0.9900 |
C5—H5 | 0.9500 | C15—H15B | 0.9900 |
C6—C7 | 1.4959 (15) | C16—C17 | 1.517 (2) |
C7—C11 | 1.3959 (16) | C16—H16A | 0.9900 |
C7—C8 | 1.3976 (15) | C16—H16B | 0.9900 |
C8—C9 | 1.3908 (16) | C17—O3 | 1.4465 (16) |
C8—Cl1 | 1.7395 (12) | C17—H17A | 0.9900 |
C9—C10 | 1.3851 (18) | C17—H17B | 0.9900 |
C9—H9 | 0.9500 | B1—O2 | 1.3514 (14) |
C10—C12 | 1.3869 (19) | B1—O1 | 1.3641 (14) |
C10—H10 | 0.9500 | O1—H1A | 0.821 (14) |
C11—C12 | 1.3924 (17) | O2—H2A | 0.838 (14) |
C2—C1—C6 | 116.31 (9) | C3—C13—C5 | 120.03 (11) |
C2—C1—B1 | 121.95 (9) | C3—C13—H13 | 120.0 |
C6—C1—B1 | 121.73 (9) | C5—C13—H13 | 120.0 |
C3—C2—C1 | 123.29 (10) | O3—C14—C15 | 105.36 (10) |
C3—C2—Cl3 | 117.77 (9) | O3—C14—H14A | 110.7 |
C1—C2—Cl3 | 118.93 (8) | C15—C14—H14A | 110.7 |
C13—C3—C2 | 118.82 (11) | O3—C14—H14B | 110.7 |
C13—C3—H3 | 120.6 | C15—C14—H14B | 110.7 |
C2—C3—H3 | 120.6 | H14A—C14—H14B | 108.8 |
C13—C5—C6 | 120.36 (11) | C14—C15—C16 | 102.13 (10) |
C13—C5—H5 | 119.8 | C14—C15—H15A | 111.3 |
C6—C5—H5 | 119.8 | C16—C15—H15A | 111.3 |
C5—C6—C1 | 121.18 (10) | C14—C15—H15B | 111.3 |
C5—C6—C7 | 118.41 (10) | C16—C15—H15B | 111.3 |
C1—C6—C7 | 120.40 (9) | H15A—C15—H15B | 109.2 |
C11—C7—C8 | 116.15 (10) | C17—C16—C15 | 102.58 (11) |
C11—C7—C6 | 121.66 (10) | C17—C16—H16A | 111.3 |
C8—C7—C6 | 122.17 (10) | C15—C16—H16A | 111.3 |
C9—C8—C7 | 122.68 (11) | C17—C16—H16B | 111.3 |
C9—C8—Cl1 | 118.09 (9) | C15—C16—H16B | 111.3 |
C7—C8—Cl1 | 119.23 (9) | H16A—C16—H16B | 109.2 |
C10—C9—C8 | 119.03 (11) | O3—C17—C16 | 106.63 (11) |
C10—C9—H9 | 120.5 | O3—C17—H17A | 110.4 |
C8—C9—H9 | 120.5 | C16—C17—H17A | 110.4 |
C9—C10—C12 | 120.49 (11) | O3—C17—H17B | 110.4 |
C9—C10—H10 | 119.8 | C16—C17—H17B | 110.4 |
C12—C10—H10 | 119.8 | H17A—C17—H17B | 108.6 |
C12—C11—C7 | 122.63 (11) | O2—B1—O1 | 119.71 (10) |
C12—C11—Cl2 | 118.30 (9) | O2—B1—C1 | 118.96 (9) |
C7—C11—Cl2 | 119.07 (9) | O1—B1—C1 | 121.33 (9) |
C10—C12—C11 | 119.01 (12) | B1—O1—H1A | 115.3 (13) |
C10—C12—H12 | 120.5 | B1—O2—H2A | 113.1 (12) |
C11—C12—H12 | 120.5 | C14—O3—C17 | 109.77 (10) |
C6—C1—C2—C3 | −0.15 (16) | Cl1—C8—C9—C10 | 179.55 (9) |
B1—C1—C2—C3 | −178.97 (10) | C8—C9—C10—C12 | 0.09 (18) |
C6—C1—C2—Cl3 | −179.42 (8) | C8—C7—C11—C12 | −0.07 (17) |
B1—C1—C2—Cl3 | 1.76 (14) | C6—C7—C11—C12 | 178.17 (11) |
C1—C2—C3—C13 | −0.56 (17) | C8—C7—C11—Cl2 | 179.60 (8) |
Cl3—C2—C3—C13 | 178.72 (9) | C6—C7—C11—Cl2 | −2.15 (15) |
C13—C5—C6—C1 | −0.63 (18) | C9—C10—C12—C11 | −0.26 (19) |
C13—C5—C6—C7 | 177.91 (11) | C7—C11—C12—C10 | 0.25 (18) |
C2—C1—C6—C5 | 0.74 (16) | Cl2—C11—C12—C10 | −179.42 (10) |
B1—C1—C6—C5 | 179.56 (10) | C2—C3—C13—C5 | 0.69 (18) |
C2—C1—C6—C7 | −177.77 (9) | C6—C5—C13—C3 | −0.11 (19) |
B1—C1—C6—C7 | 1.05 (15) | O3—C14—C15—C16 | 33.84 (13) |
C5—C6—C7—C11 | −90.69 (13) | C14—C15—C16—C17 | −35.53 (14) |
C1—C6—C7—C11 | 87.86 (13) | C15—C16—C17—O3 | 25.23 (15) |
C5—C6—C7—C8 | 87.44 (14) | C2—C1—B1—O2 | −111.66 (12) |
C1—C6—C7—C8 | −94.00 (13) | C6—C1—B1—O2 | 69.59 (14) |
C11—C7—C8—C9 | −0.11 (16) | C2—C1—B1—O1 | 69.17 (14) |
C6—C7—C8—C9 | −178.35 (10) | C6—C1—B1—O1 | −109.58 (12) |
C11—C7—C8—Cl1 | −179.56 (8) | C15—C14—O3—C17 | −18.86 (14) |
C6—C7—C8—Cl1 | 2.21 (14) | C16—C17—O3—C14 | −4.30 (16) |
C7—C8—C9—C10 | 0.10 (17) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···O3 | 0.82 (1) | 1.84 (1) | 2.6475 (12) | 169 (2) |
O2—H2A···O1i | 0.84 (1) | 1.96 (1) | 2.7997 (12) | 175 (2) |
Symmetry code: (i) −x+2, −y+1, −z+1. |
Acknowledgements
The X-ray measurements were undertaken in the Crystallographic Unit of the Physical Chemistry Laboratory at the Chemistry Department of the University of Warsaw. This work was supported by the Aldrich Chemical Company through the donation of chemicals and equipment, and by the Warsaw University of Technology.
References
Adamczyk-Woźniak, A., Borys, K. M. & Sporzyński, A. (2015). Chem. Rev. 115, 5224–5247. Web of Science PubMed Google Scholar
Agilent (2014). CrysAlis PRO. Agilent Technologies, Santa Clara, USA. Google Scholar
Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Davies, C. J., Gregory, A., Griffith, P., Perkins, T., Singh, K. & Solan, G. A. (2008). Tetrahedron, 64, 9857–9864. Web of Science CSD CrossRef CAS Google Scholar
Durka, K., Jarzembska, K. N., Kamiński, R., Luliński, S., Serwatowski, J. & Woźniak, K. (2012). Cryst. Growth Des. 12, 3720–3734. Web of Science CSD CrossRef CAS Google Scholar
Filthaus, M., Oppel, I. M. & Bettinger, H. F. (2008). Org. Biomol. Chem. 6, 1201–1207. Web of Science CSD CrossRef PubMed CAS Google Scholar
Furukawa, H. & Yaghi, O. M. (2009). J. Am. Chem. Soc. 131, 8875–8883. Web of Science CrossRef PubMed CAS Google Scholar
Hall, D. G. (2011). In Boronic Acids. Weinheim: Wiley-VCH. Google Scholar
Kane, R. C., Bross, P. F., Farrell, A. T. & Pazdur, R. (2003). Oncologist, 8, 508–513. Web of Science CrossRef PubMed Google Scholar
Luliński, S., Madura, I., Serwatowski, J., Szatyłowicz, H. & Zachara, J. (2007). New J. Chem. 31, 144–154. Google Scholar
Madura, I., Czerwińska, K. & Sołdańska, D. (2014). Cryst. Growth Des. 14, 5912–5921. Web of Science CSD CrossRef CAS Google Scholar
Maly, K. E., Maris, T. & Wuest, J. D. (2006). CrystEngComm, 8, 33–35. CAS Google Scholar
Metrangolo, P., Neukirch, H., Pilati, T. & Resnati, G. (2005). Acc. Chem. Res. 38, 386–395. Web of Science CrossRef PubMed CAS Google Scholar
Nayak, S. K., Reddy, M. K., Guru Row, T. N. & Chopra, D. (2011). Cryst. Growth Des. 11, 1578–1596. Web of Science CSD CrossRef CAS Google Scholar
Nishiyabu, R., Kubo, Y., James, T. D. & Fossey, J. S. (2011). Chem. Commun. 47, 1124–1150. Web of Science CrossRef CAS Google Scholar
Severin, K. (2009). Dalton Trans. pp. 5254–5264. Web of Science CrossRef Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shimpi, M. R., SeethaLekshmi, N. & Pedireddi, V. R. (2007). Cryst. Growth Des. 7, 1958–1963. Web of Science CSD CrossRef CAS Google Scholar
Vogt, F. G., Williams, G. R. & Copley, R. C. B. (2013). J. Pharm. Sci. 102, 3705–3716. Web of Science CSD CrossRef CAS PubMed Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.