research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (2′,3,6′-tri­chloro­bi­phenyl-2-yl)boronic acid tetra­hydro­furan monosolvate

aPhysical Chemistry Department, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
*Correspondence e-mail: kdurka@ch.pw.edu.pl

Edited by J. Simpson, University of Otago, New Zealand (Received 10 October 2015; accepted 29 October 2015; online 7 November 2015)

The title compound, C12H8BCl3O2·C4H8O, crystallizes as a tetra­hydro­furan monosolvate. The boronic acid group adopts a syn–anti conformation and is significantly twisted along the carbon–boron bond by 69.2 (1)°, due to considerable steric hindrance from the 2′,6′-di­chloro­phenyl group that is located ortho to the boronic acid substituent. The phenyl rings of the biphenyl are almost perpendicular to one another, with a dihedral angle of 87.9 (1)° between them. In the crystal, adjacent mol­ecules are linked via O—H⋯O inter­actions to form centrosymmetric dimers with R22(8) motifs, which have recently been shown to be energetically very favourable. The hy­droxy groups are in an anti conformation and are also engaged in hydrogen-bonding inter­actions with the O atom of the tetra­hydro­furan solvent mol­ecule. Cl⋯Cl halogen-bonding inter­actions [Cl⋯Cl = 3.464 (1) Å] link neigbouring dimers into chains running along [010]. Further aggregation occurs due to an additional Cl⋯Cl halogen bond [Cl⋯Cl = 3.387 (1) Å].

1. Chemical context

Boronic acids and their derivatives have been studied intensively in recent years due to their numerous applications in organic, analytical and materials chemistry (Hall, 2011[Hall, D. G. (2011). In Boronic Acids. Weinheim: Wiley-VCH.]; Furukawa & Yaghi, 2009[Furukawa, H. & Yaghi, O. M. (2009). J. Am. Chem. Soc. 131, 8875-8883.]). They are widely used in medicine, for example, as anti­fungal and anti­bacterical agents (Adamczyk-Woźniak et al., 2015[Adamczyk-Woźniak, A., Borys, K. M. & Sporzyński, A. (2015). Chem. Rev. 115, 5224-5247.]; Kane et al., 2003[Kane, R. C., Bross, P. F., Farrell, A. T. & Pazdur, R. (2003). Oncologist, 8, 508-513.]; Vogt et al., 2013[Vogt, F. G., Williams, G. R. & Copley, R. C. B. (2013). J. Pharm. Sci. 102, 3705-3716.]). Besides these applications, phenyl­boronic acids have also been studied in terms of crystal engineering (Nishiyabu et al., 2011[Nishiyabu, R., Kubo, Y., James, T. D. & Fossey, J. S. (2011). Chem. Commun. 47, 1124-1150.]; Severin, 2009[Severin, K. (2009). Dalton Trans. pp. 5254-5264.]). In contrast, biphenyl-based boronic acids have been largely neglected. Exceptions to this include reports of the crystal structures of (2-bi­phenyl­yl)boronic acid (Filthaus et al., 2008[Filthaus, M., Oppel, I. M. & Bettinger, H. F. (2008). Org. Biomol. Chem. 6, 1201-1207.]) and (2-meth­oxy-3-biphen­yl)boronic acid (Davies et al., 2008[Davies, C. J., Gregory, A., Griffith, P., Perkins, T., Singh, K. & Solan, G. A. (2008). Tetrahedron, 64, 9857-9864.]). In this manuscript we focus our attention on a sterically hindered boronic acid derivative based on a biphenyl core with a boronic group located at the 2-position of one benzene ring with a Cl substituent at the 3-position. The second benzene ring of the biphenyl ring system carries chlorine substituents at the 2- and 6-positions. This mol­ecule crystallized as a 1:1 solvate with THF, Fig. 1[link].

[Scheme 1]
[Figure 1]
Figure 1
The structure of 1, showing the atom numbering, with displacement ellipsoids drawn at the 50% probability level.

2. Structural commentary

The B—C [1.5907 (16) Å] and B—O [1.3514 (14), 1.3641 (14) Å] bonds in the title compound (I)[link] are within the expected range typically observed for boronic acids (Madura et al., 2014[Madura, I., Czerwińska, K. & Sołdańska, D. (2014). Cryst. Growth Des. 14, 5912-5921.]; Luliński et al., 2007[Luliński, S., Madura, I., Serwatowski, J., Szatyłowicz, H. & Zachara, J. (2007). New J. Chem. 31, 144-154.]; Maly et al., 2006[Maly, K. E., Maris, T. & Wuest, J. D. (2006). CrystEngComm, 8, 33-35.]; Shimpi et al., 2007[Shimpi, M. R., SeethaLekshmi, N. & Pedireddi, V. R. (2007). Cryst. Growth Des. 7, 1958-1963.]; Durka et al., 2012[Durka, K., Jarzembska, K. N., Kamiński, R., Luliński, S., Serwatowski, J. & Woźniak, K. (2012). Cryst. Growth Des. 12, 3720-3734.]). The mol­ecular structure shows that the B(OH)2 group adopts the usual syn–anti conformation (Fig. 1[link]). The boronic acid substituent is significantly rotated about the C—B bond in order to minimize the steric hindrance between the boronic group and the adjacent 2′,6′-di­chloro­phenyl ring [τC2—C1—B1—O1 = 69.2 (2)°]. In the structure of the related (2-bi­phenyl­yl)boronic acid (Filthaus et al., 2008[Filthaus, M., Oppel, I. M. & Bettinger, H. F. (2008). Org. Biomol. Chem. 6, 1201-1207.]) this torsion angle is some 20° smaller, which clearly shows the influence of the three chlorine substituents on this structure. It is also notable that in (I)[link] the phenyl rings of the biphenyl system are almost perpendicular to one another [τC1—C6—C7—C11 = 87.9 (1)°], whereas in (2-bi­phenyl­yl)boronic acid they are rotated by only 48.4 or 45.4° for the two unique mol­ecules in the asymmetric unit.

3. Supra­molecular features

In the crystal, centrosymmetric O—H⋯O hydrogen-bonded dimers are formed. The anti-oriented OH group is engaged in an inter­molecular O—H⋯O hydrogen bond (Table 1[link]) with the oxygen atom from the tetra­hydro­furan solvate mol­ecule. Because all of the hydrogen-bond acceptor centres are saturated, the syn OH group is not involved in any side hydrogen-bond inter­actions. Neighbouring dimers are connected through Cl⋯Cl halogen bonds [dCl⋯Cl = 3.464 (1) Å; the sum of the van der Waals radii for Cl is 3.50 Å]. In terms of geometry of this contact, it can be classified as a type I halogen bond (Fig. 2[link]a), (Metrangolo et al., 2005[Metrangolo, P., Neukirch, H., Pilati, T. & Resnati, G. (2005). Acc. Chem. Res. 38, 386-395.]; Nayak et al., 2011[Nayak, S. K., Reddy, M. K., Guru Row, T. N. & Chopra, D. (2011). Cryst. Growth Des. 11, 1578-1596.]). These contacts result in the formation of mol­ecular chains propagating along [010] (Fig. 3[link]). A three-dimensional network forms through additional Cl⋯Cl halogen bonds (Fig. 4[link]) of type II [dCl⋯Cl = 3.387 (1) Å] (Fig. 2[link]b).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O3 0.82 (1) 1.84 (1) 2.6475 (12) 169 (2)
O2—H2A⋯O1i 0.84 (1) 1.96 (1) 2.7997 (12) 175 (2)
Symmetry code: (i) -x+2, -y+1, -z+1.
[Figure 2]
Figure 2
Type I (a) and II (b) Cl⋯Cl halogen bonds in (I)[link].
[Figure 3]
Figure 3
Mol­ecular chains formed along b by type 1 Cl⋯Cl halogen bonds. Also shown are inversion dimers and inclusion of the solvent through O—H⋯O hydrogen bonds. Aromatic H atoms have been omitted for clarity.
[Figure 4]
Figure 4
Crystal packing showing inter­molecular O—H⋯O and type II Cl⋯Cl inter­actions.

4. Synthesis and crystallization

Synthesis of (I)[link] (Fig. 5[link]): A solution of 2-iodo-2′,3,6′-tri­chloro­biphenyl (3.8 g, 10 mmol) in THF (50 mL) was added to a stirred solution of n-BuLi (10 mmol) in THF (30 mL) at 195 K. The resulting colorless solution was stirred for 1 h to give a colorless precipitate. The electrophile, B(OMe)3 (2.1 g, 20 mmol) was then added to the stirred mixture to give a colorless solution which was stirred for 1 h and then hydrolyzed with H2O (100 mL). Dilute aq. H2SO4 was added until the pH was slightly acidic. Et2O (50 mL) was next added and the mixture stirred for 10 min. The organic phase was separ­ated and the aqueous phase was extracted with Et2O (20 mL). The combined organic solutions were dried over MgSO4 and evaporated to give a colorless precipitate, yield 2.0 g (66%). 1H NMR (400 MHz, acetone-d6): δ = 8.00 (2H, s, OH), 7.51 (2H, m), 7.39 (3H, m), 7.05 (1H, m); 13C{1H} NMR (100.6 MHz, acetone-d6): δ = 141.49, 139.62, 139 (br), 136.17, 134.84, 130.49, 129.99, 128.24, 128.14, 127.53.

[Figure 5]
Figure 5
The synthesis of 2-chloro-6-(2′,6′-di­chloro­phen­yl)phenyl­boronic acid.

Crystals suitable for X-ray diffraction analysis were grown by slow evaporation of a THF solution.

5. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All CH hydrogen atoms were placed in calculated positions with C—H distances of 0.95 or 0.99 Å. They were included in the refinement in the riding-motion approximation with Uiso(phenyl H) = 1.2Ueq(C). The positions of the OH hydrogen atoms were first found in a difference map. Then their bond lengths were restrained in the last least-squares cycles, with an O—H distance of 0.85 Å and their coordinates refined with Uiso(hydroxyl H) = 1.5Ueq(O).

Table 2
Experimental details

Crystal data
Chemical formula C12H8BCl3O2·C4H8O
Mr 373.45
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 130
a, b, c (Å) 8.3306 (3), 8.7122 (2), 12.4307 (4)
α, β, γ (°) 98.683 (3), 97.737 (3), 99.398 (3)
V3) 868.07 (5)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.54
Crystal size (mm) 0.15 × 0.12 × 0.10
 
Data collection
Diffractometer Agilent SuperNova Dual Source diffractometer with an Atlas detector
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Santa Clara, USA.])
Tmin, Tmax 0.795, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 28647, 6107, 5162
Rint 0.032
(sin θ/λ)max−1) 0.758
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.085, 1.05
No. of reflections 6107
No. of parameters 214
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.45, −0.36
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Santa Clara, USA.]), SHELXS97 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2005[Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2015); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: publCIF (Westrip, 2010).

(2',3,6'-Trichlorobiphenyl-2-yl)boronic acid tetrahydrofuran monosolvate top
Crystal data top
C12H8BCl3O2·C4H8OF(000) = 384
Mr = 373.45Dx = 1.429 Mg m3
Triclinic, P1Melting point: 411 K
a = 8.3306 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.7122 (2) ÅCell parameters from 14113 reflections
c = 12.4307 (4) Åθ = 2.4–32.4°
α = 98.683 (3)°µ = 0.54 mm1
β = 97.737 (3)°T = 130 K
γ = 99.398 (3)°Fragment, colourless
V = 868.07 (5) Å30.15 × 0.12 × 0.10 mm
Z = 2
Data collection top
Agilent SuperNova Dual Source
diffractometer with an Atlas detector
6107 independent reflections
Radiation source: SuperNova (Mo) X-ray Source5162 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.032
Detector resolution: 5.2195 pixels mm-1θmax = 32.6°, θmin = 2.4°
ω scansh = 1212
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
k = 1313
Tmin = 0.795, Tmax = 1.000l = 1818
28647 measured reflections
Refinement top
Refinement on F22 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.085 w = 1/[σ2(Fo2) + (0.0328P)2 + 0.3549P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
6107 reflectionsΔρmax = 0.45 e Å3
214 parametersΔρmin = 0.36 e Å3
Special details top

Experimental. Absorption correction: CrysAlisPro (Agilent Technologies, 2014), Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.77416 (13)0.33187 (12)0.22248 (8)0.01544 (18)
C20.85513 (13)0.33777 (12)0.13113 (9)0.01761 (19)
C30.77605 (15)0.28436 (14)0.02290 (9)0.0221 (2)
H30.83550.29140.03680.027*
C50.52304 (15)0.21255 (15)0.09167 (10)0.0233 (2)
H50.40850.16900.07820.028*
C60.60414 (13)0.26808 (13)0.19972 (9)0.01703 (19)
C70.50529 (13)0.26201 (13)0.29144 (9)0.01742 (19)
C80.47656 (14)0.12861 (13)0.34104 (9)0.0188 (2)
C90.38144 (14)0.12012 (15)0.42447 (10)0.0230 (2)
H90.36460.02760.45650.028*
C100.31167 (15)0.24852 (16)0.46023 (11)0.0263 (2)
H100.24660.24410.51720.032*
C110.43238 (14)0.38827 (13)0.33025 (10)0.0211 (2)
C120.33610 (15)0.38351 (16)0.41341 (11)0.0262 (2)
H120.28790.47140.43770.031*
C130.60897 (16)0.22065 (15)0.00366 (10)0.0257 (2)
H130.55310.18250.06970.031*
C140.82695 (16)0.75012 (14)0.14313 (10)0.0241 (2)
H14A0.70670.71540.11840.029*
H14B0.88430.67020.10770.029*
C150.88574 (17)0.91105 (15)0.11452 (11)0.0283 (3)
H15A0.80140.97850.12020.034*
H15B0.91420.90120.03930.034*
C161.03885 (18)0.97668 (16)0.20241 (12)0.0325 (3)
H16A1.13690.93780.18040.039*
H16B1.06211.09370.21650.039*
C170.9899 (2)0.91251 (17)0.30259 (12)0.0358 (3)
H17A1.08680.88730.34710.043*
H17B0.94430.99140.34950.043*
B10.86796 (14)0.39672 (14)0.34516 (10)0.0160 (2)
O10.92407 (11)0.55444 (9)0.38238 (7)0.02050 (16)
O20.89019 (11)0.29285 (10)0.41379 (7)0.02293 (17)
O30.86646 (12)0.77103 (10)0.26144 (7)0.02631 (19)
Cl10.56394 (4)0.03377 (3)0.29838 (2)0.02648 (7)
Cl20.46307 (4)0.55927 (3)0.27352 (3)0.02936 (8)
Cl31.06696 (3)0.41387 (4)0.15296 (2)0.02402 (7)
H1A0.902 (2)0.6121 (19)0.3383 (13)0.036*
H2A0.941 (2)0.336 (2)0.4767 (12)0.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0179 (5)0.0142 (4)0.0137 (4)0.0028 (3)0.0005 (3)0.0028 (3)
C20.0196 (5)0.0163 (4)0.0168 (5)0.0029 (4)0.0027 (4)0.0034 (4)
C30.0289 (6)0.0237 (5)0.0148 (5)0.0061 (4)0.0047 (4)0.0040 (4)
C50.0212 (5)0.0264 (6)0.0181 (5)0.0002 (4)0.0030 (4)0.0013 (4)
C60.0186 (5)0.0169 (4)0.0146 (4)0.0025 (4)0.0002 (4)0.0028 (4)
C70.0156 (4)0.0194 (5)0.0152 (4)0.0009 (4)0.0001 (3)0.0015 (4)
C80.0197 (5)0.0202 (5)0.0150 (5)0.0025 (4)0.0003 (4)0.0014 (4)
C90.0208 (5)0.0284 (6)0.0192 (5)0.0013 (4)0.0022 (4)0.0065 (4)
C100.0186 (5)0.0363 (7)0.0236 (6)0.0033 (5)0.0060 (4)0.0044 (5)
C110.0176 (5)0.0196 (5)0.0243 (5)0.0016 (4)0.0010 (4)0.0027 (4)
C120.0193 (5)0.0296 (6)0.0293 (6)0.0065 (4)0.0056 (4)0.0005 (5)
C130.0305 (6)0.0290 (6)0.0138 (5)0.0024 (5)0.0024 (4)0.0013 (4)
C140.0267 (6)0.0221 (5)0.0226 (5)0.0031 (4)0.0000 (4)0.0059 (4)
C150.0332 (7)0.0258 (6)0.0278 (6)0.0044 (5)0.0057 (5)0.0114 (5)
C160.0333 (7)0.0243 (6)0.0375 (7)0.0023 (5)0.0049 (6)0.0068 (5)
C170.0411 (8)0.0261 (6)0.0328 (7)0.0066 (5)0.0064 (6)0.0072 (5)
B10.0152 (5)0.0170 (5)0.0146 (5)0.0022 (4)0.0009 (4)0.0015 (4)
O10.0278 (4)0.0162 (4)0.0149 (4)0.0019 (3)0.0030 (3)0.0027 (3)
O20.0302 (4)0.0179 (4)0.0170 (4)0.0010 (3)0.0053 (3)0.0036 (3)
O30.0328 (5)0.0202 (4)0.0233 (4)0.0005 (3)0.0017 (3)0.0072 (3)
Cl10.04097 (17)0.02093 (13)0.02001 (13)0.00986 (11)0.00736 (11)0.00481 (10)
Cl20.02627 (15)0.02037 (13)0.04284 (18)0.00462 (10)0.00663 (12)0.00884 (12)
Cl30.01988 (13)0.02816 (14)0.02462 (14)0.00239 (10)0.00640 (10)0.00636 (11)
Geometric parameters (Å, º) top
C1—C21.3999 (15)C11—Cl21.7388 (12)
C1—C61.4081 (15)C12—H120.9500
C1—B11.5907 (16)C13—H130.9500
C2—C31.3902 (16)C14—O31.4400 (15)
C2—Cl31.7498 (11)C14—C151.5183 (17)
C3—C131.3859 (18)C14—H14A0.9900
C3—H30.9500C14—H14B0.9900
C5—C131.3900 (17)C15—C161.532 (2)
C5—C61.3954 (15)C15—H15A0.9900
C5—H50.9500C15—H15B0.9900
C6—C71.4959 (15)C16—C171.517 (2)
C7—C111.3959 (16)C16—H16A0.9900
C7—C81.3976 (15)C16—H16B0.9900
C8—C91.3908 (16)C17—O31.4465 (16)
C8—Cl11.7395 (12)C17—H17A0.9900
C9—C101.3851 (18)C17—H17B0.9900
C9—H90.9500B1—O21.3514 (14)
C10—C121.3869 (19)B1—O11.3641 (14)
C10—H100.9500O1—H1A0.821 (14)
C11—C121.3924 (17)O2—H2A0.838 (14)
C2—C1—C6116.31 (9)C3—C13—C5120.03 (11)
C2—C1—B1121.95 (9)C3—C13—H13120.0
C6—C1—B1121.73 (9)C5—C13—H13120.0
C3—C2—C1123.29 (10)O3—C14—C15105.36 (10)
C3—C2—Cl3117.77 (9)O3—C14—H14A110.7
C1—C2—Cl3118.93 (8)C15—C14—H14A110.7
C13—C3—C2118.82 (11)O3—C14—H14B110.7
C13—C3—H3120.6C15—C14—H14B110.7
C2—C3—H3120.6H14A—C14—H14B108.8
C13—C5—C6120.36 (11)C14—C15—C16102.13 (10)
C13—C5—H5119.8C14—C15—H15A111.3
C6—C5—H5119.8C16—C15—H15A111.3
C5—C6—C1121.18 (10)C14—C15—H15B111.3
C5—C6—C7118.41 (10)C16—C15—H15B111.3
C1—C6—C7120.40 (9)H15A—C15—H15B109.2
C11—C7—C8116.15 (10)C17—C16—C15102.58 (11)
C11—C7—C6121.66 (10)C17—C16—H16A111.3
C8—C7—C6122.17 (10)C15—C16—H16A111.3
C9—C8—C7122.68 (11)C17—C16—H16B111.3
C9—C8—Cl1118.09 (9)C15—C16—H16B111.3
C7—C8—Cl1119.23 (9)H16A—C16—H16B109.2
C10—C9—C8119.03 (11)O3—C17—C16106.63 (11)
C10—C9—H9120.5O3—C17—H17A110.4
C8—C9—H9120.5C16—C17—H17A110.4
C9—C10—C12120.49 (11)O3—C17—H17B110.4
C9—C10—H10119.8C16—C17—H17B110.4
C12—C10—H10119.8H17A—C17—H17B108.6
C12—C11—C7122.63 (11)O2—B1—O1119.71 (10)
C12—C11—Cl2118.30 (9)O2—B1—C1118.96 (9)
C7—C11—Cl2119.07 (9)O1—B1—C1121.33 (9)
C10—C12—C11119.01 (12)B1—O1—H1A115.3 (13)
C10—C12—H12120.5B1—O2—H2A113.1 (12)
C11—C12—H12120.5C14—O3—C17109.77 (10)
C6—C1—C2—C30.15 (16)Cl1—C8—C9—C10179.55 (9)
B1—C1—C2—C3178.97 (10)C8—C9—C10—C120.09 (18)
C6—C1—C2—Cl3179.42 (8)C8—C7—C11—C120.07 (17)
B1—C1—C2—Cl31.76 (14)C6—C7—C11—C12178.17 (11)
C1—C2—C3—C130.56 (17)C8—C7—C11—Cl2179.60 (8)
Cl3—C2—C3—C13178.72 (9)C6—C7—C11—Cl22.15 (15)
C13—C5—C6—C10.63 (18)C9—C10—C12—C110.26 (19)
C13—C5—C6—C7177.91 (11)C7—C11—C12—C100.25 (18)
C2—C1—C6—C50.74 (16)Cl2—C11—C12—C10179.42 (10)
B1—C1—C6—C5179.56 (10)C2—C3—C13—C50.69 (18)
C2—C1—C6—C7177.77 (9)C6—C5—C13—C30.11 (19)
B1—C1—C6—C71.05 (15)O3—C14—C15—C1633.84 (13)
C5—C6—C7—C1190.69 (13)C14—C15—C16—C1735.53 (14)
C1—C6—C7—C1187.86 (13)C15—C16—C17—O325.23 (15)
C5—C6—C7—C887.44 (14)C2—C1—B1—O2111.66 (12)
C1—C6—C7—C894.00 (13)C6—C1—B1—O269.59 (14)
C11—C7—C8—C90.11 (16)C2—C1—B1—O169.17 (14)
C6—C7—C8—C9178.35 (10)C6—C1—B1—O1109.58 (12)
C11—C7—C8—Cl1179.56 (8)C15—C14—O3—C1718.86 (14)
C6—C7—C8—Cl12.21 (14)C16—C17—O3—C144.30 (16)
C7—C8—C9—C100.10 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O30.82 (1)1.84 (1)2.6475 (12)169 (2)
O2—H2A···O1i0.84 (1)1.96 (1)2.7997 (12)175 (2)
Symmetry code: (i) x+2, y+1, z+1.
 

Acknowledgements

The X-ray measurements were undertaken in the Crystallographic Unit of the Physical Chemistry Laboratory at the Chemistry Department of the University of Warsaw. This work was supported by the Aldrich Chemical Company through the donation of chemicals and equipment, and by the Warsaw University of Technology.

References

First citationAdamczyk-Woźniak, A., Borys, K. M. & Sporzyński, A. (2015). Chem. Rev. 115, 5224–5247.  Web of Science PubMed Google Scholar
First citationAgilent (2014). CrysAlis PRO. Agilent Technologies, Santa Clara, USA.  Google Scholar
First citationBrandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDavies, C. J., Gregory, A., Griffith, P., Perkins, T., Singh, K. & Solan, G. A. (2008). Tetrahedron, 64, 9857–9864.  Web of Science CSD CrossRef CAS Google Scholar
First citationDurka, K., Jarzembska, K. N., Kamiński, R., Luliński, S., Serwatowski, J. & Woźniak, K. (2012). Cryst. Growth Des. 12, 3720–3734.  Web of Science CSD CrossRef CAS Google Scholar
First citationFilthaus, M., Oppel, I. M. & Bettinger, H. F. (2008). Org. Biomol. Chem. 6, 1201–1207.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFurukawa, H. & Yaghi, O. M. (2009). J. Am. Chem. Soc. 131, 8875–8883.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHall, D. G. (2011). In Boronic Acids. Weinheim: Wiley-VCH.  Google Scholar
First citationKane, R. C., Bross, P. F., Farrell, A. T. & Pazdur, R. (2003). Oncologist, 8, 508–513.  Web of Science CrossRef PubMed Google Scholar
First citationLuliński, S., Madura, I., Serwatowski, J., Szatyłowicz, H. & Zachara, J. (2007). New J. Chem. 31, 144–154.  Google Scholar
First citationMadura, I., Czerwińska, K. & Sołdańska, D. (2014). Cryst. Growth Des. 14, 5912–5921.  Web of Science CSD CrossRef CAS Google Scholar
First citationMaly, K. E., Maris, T. & Wuest, J. D. (2006). CrystEngComm, 8, 33–35.  CAS Google Scholar
First citationMetrangolo, P., Neukirch, H., Pilati, T. & Resnati, G. (2005). Acc. Chem. Res. 38, 386–395.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNayak, S. K., Reddy, M. K., Guru Row, T. N. & Chopra, D. (2011). Cryst. Growth Des. 11, 1578–1596.  Web of Science CSD CrossRef CAS Google Scholar
First citationNishiyabu, R., Kubo, Y., James, T. D. & Fossey, J. S. (2011). Chem. Commun. 47, 1124–1150.  Web of Science CrossRef CAS Google Scholar
First citationSeverin, K. (2009). Dalton Trans. pp. 5254–5264.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShimpi, M. R., SeethaLekshmi, N. & Pedireddi, V. R. (2007). Cryst. Growth Des. 7, 1958–1963.  Web of Science CSD CrossRef CAS Google Scholar
First citationVogt, F. G., Williams, G. R. & Copley, R. C. B. (2013). J. Pharm. Sci. 102, 3705–3716.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds