organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of N-[3-(di­methyl­aza­nium­yl)prop­yl]-N′,N′,N′′,N′′-tetra­methyl-N-(N,N,N′,N′-tetra­methyl­form­am­id­in­ium­yl)­guanidinium dibromide hydroxide monohydrate

aFakultät Chemie/Organische Chemie, Hochschule Aalen, Beethovenstrasse 1, D-73430 Aalen, Germany
*Correspondence e-mail: willi.kantlehner@hs-aalen.de

Edited by J. Simpson, University of Otago, New Zealand (Received 12 December 2015; accepted 17 December 2015; online 24 December 2015)

The asymmetric unit of the title hydrated salt, C15H37N63+·2Br·OH·H2O, contains one cation, three partial-occupancy bromide ions, one hydroxide ion and one water mol­ecule. Refinement of the site-occupancy factors of the three disordered bromide ions converges with occupancies 0.701 (2), 0.831 (2) and 0.456 (2) summing to approximately two bromide ions per formula unit. The structure was refined as a two-component inversion twin with volume fractions 0.109 (8):0.891 (8) for the two domains. The central C3N unit of the bis­amidinium ion is linked to the aliphatic propyl chain by a C—N single bond. The other two bonds in this unit have double-bond character as have the four C—N bonds to the outer NMe2 groups. In contrast, the three C—N bonds to the central N atom of the (di­methyl­aza­nium­yl)propyl group have single-bond character. Delocalization of the two positive charges occurs in the N/C/N and C/N/C planes, while the third positive charge is localized on the di­methyl­ammonium group. The crystal structure is stabilized by O—H⋯O, N—H⋯Br, O—H⋯Br and C—H⋯Br hydrogen bonds, forming a three-dimensional network.

1. Related literature

For the crystal structure of N,N,N′,N′-tetra­methyl­chloro­formamidinium chloride, see: Tiritiris & Kantlehner (2008[Tiritiris, I. & Kantlehner, W. (2008). Z. Kristallogr. 223, 345-346.]); for ethyl­tri­phenyl­phospho­nium bromide dihydrate, see: Betz & Gerber (2011[Betz, R. & Gerber, T. (2011). Acta Cryst. E67, o1950.]); for N-[3-(di­methyl­amino)­prop­yl]-N-(N,N,N′,N′-tetra­methyl-formamidinium­yl)-N′,N′,N′′,N′′-tetra­methyl­guanidinium bis­(tetra­phenyl­borate), see: Tiritiris & Kantlehner (2015[Tiritiris, I. & Kantlehner, W. (2015). Acta Cryst. E71, o1045-o1046.]). For the synthesis of N′′-[3-(di­methyl­amino)­prop­yl]-N,N,N′,N′-tetra­methyl­guanidine, see: Tiritiris & Kantlehner (2012[Tiritiris, I. & Kantlehner, W. (2012). Z. Naturforsch. Teil B, 67, 685-698.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C15H37N63+·1.988Br·OH·H2O

  • Mr = 495.37

  • Monoclinic, P 21

  • a = 9.1584 (6) Å

  • b = 12.2932 (7) Å

  • c = 10.6633 (6) Å

  • β = 97.454 (3)°

  • V = 1190.39 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.40 mm−1

  • T = 100 K

  • 0.41 × 0.29 × 0.25 mm

2.2. Data collection

  • Bruker Kappa APEXII DUO diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.334, Tmax = 0.481

  • 25793 measured reflections

  • 7244 independent reflections

  • 6391 reflections with I > 2σ(I)

  • Rint = 0.033

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.069

  • S = 0.99

  • 7244 reflections

  • 265 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.23 e Å−3

  • Absolute structure: refined as an inversion twin

  • Absolute structure parameter: 0.109 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N6—H6⋯Br3i 0.86 (4) 2.18 (4) 3.038 (4) 172 (3)
O2—H18⋯O1ii 0.86 (5) 1.96 (4) 2.825 (4) 179 (3)
O2—H17⋯Br1iii 0.80 (5) 2.48 (4) 3.273 (4) 171 (3)
C2—H2A⋯Br2iv 0.98 2.87 3.650 (4) 137
C3—H3A⋯Br1v 0.98 2.72 3.688 (4) 170
C5—H5C⋯Br3vi 0.98 2.69 3.594 (4) 153
C7—H7B⋯Br3ii 0.98 2.67 3.498 (4) 142
C8—H8C⋯Br1 0.98 2.87 3.805 (4) 160
C11—H11A⋯Br3vi 0.99 2.70 3.618 (4) 154
C12—H12A⋯Br1iii 0.99 2.75 3.649 (4) 151
C14—H14C⋯Br1iii 0.98 2.78 3.743 (4) 167
C15—H15B⋯Br1ii 0.98 2.86 3.676 (4) 142
Symmetry codes: (i) x, y-1, z+1; (ii) [-x+1, y-{\script{1\over 2}}, -z+1]; (iii) x-1, y, z; (iv) [-x+1, y-{\script{1\over 2}}, -z+2]; (v) [-x+1, y+{\script{1\over 2}}, -z+1]; (vi) [-x, y-{\script{1\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, D-53002 Bonn, Germany.]); software used to prepare material for publication: SHELXL2014.

Supporting information


Comment top

N''-[3-(dimethylamino)propyl]- N,N,N',N'-tetramethylguanidine (Tiritiris & Kantlehner, 2012) reacts with one equivalent of N,N,N',N'- tetramethylchloroformamidinium chloride (Tiritiris & Kantlehner, 2008), yielding N-[3-(dimethylamino)propyl]- N-(N,N,N',N'-tetramethyl-formamidinio)- N',N',N'',N''-tetramethylguanidinium dichloride as the product. As expected, on protonation with acid, the terminal 3-(dimethylamino)propyl group can be converted into a 3-(dimethylammonio)propyl group and a triply charged cationic species is formed. The crystal structure presented here is the first structural study of a tricationic nonasubstituted bisamidinium salt. The asymmetric unit contains one cation, three partial occupancy bromide ions, one hydroxide ion and one water molecule (Fig. 1). The sites of the disordered bromine atoms are not fully occupied, the refinement of their site occupation factors converges to Br = [Br1 + Br2 + Br3] = [0.701 (2) + 0.831 (2) + 0.456 (2) = 1.988 (2)] resulting in approximately two bromide ions per formula unit. Prominent bond parameters in the bisamidinium ion are: N5–C6 = 1.390 (3) Å, N5–C1 = 1.399 (4) Å, N5–C11 = 1.494 (4) Å, indicating the N–C single- and double-bond character of the central C3N unit. The C–N–C angles are 119.6 (3)°, 119.8 (2)° and 120.4 (2)°, signalling a nearly ideal trigonal-planar arangement about the central N5 nitrogen atom by the C1, C6 and C11 carbon atoms. These carbon atoms are further bound to the N1, N2, N3 and N4 nitrogen atoms and the resulting C–N bonds show double-bond character with bond lengths in the range 1.326 (4) Å to 1.335 (4) Å. The N–C–N angles range from 118.7 (3)° to 122.5 (3)°, again indicating almost ideal trigonal-planar surroundings of both carbon centres by the nitrogen atoms. The dihedral angle between the N1/C1/N2 and N3/C6/N4 planes is 70.1 (3)°. Structural data for the cation agree very well with those from the crystal structure analysis of N-[3-(dimethylamino)propyl]- N-(N,N,N',N'-tetramethyl-formamidinio)- N',N',N'',N''-tetramethylguanidinium bis(tetraphenylborate) (Tiritiris & Kantlehner, 2015). Two of the positive charges are delocalized in the N1/C1/N2, N3/C6/N4 and C1/N5/C6, planes the third positive charge is localized on the dimethylammonium group. The N–C bond lengths in the terminal ammonium group are in a range from 1.492 (4) to 1.494 (4) Å. A strong N–H···Br hydrogen bond forms between the hydrogen atom H6 of the ammonium group and one of the bromide ions (Br3) [d(H···Br) = 2.18 (4) Å, (Tab.1)]. O–H···O hydrogen bonds [d(H···O) = 1.96 (4) Å, (Table 1)] between the water molecule and the hydroxide ion and O–H···Br hydrogen bonds between the water molecule and the bromide ion [d(H···Br) = 2.48 (4) Å, (Table 1)] are also observed (Fig. 2). In addition, C–H···Br interactions are apparent between the bisamidimium hydrogen atoms of –N(CH3)2 and –CH2 groups and the bromide ions [d(H···Br) = 2.67 - 2.87 Å, (Tab.1)], forming a three-dimensional network (Fig. 3). Similar H···Br distances have been observed in the crystal structure of ethyltriphenylphosphonium bromide dihydrate (Betz & Gerber, 2011) for both the O–H···Br and C–H···Br hydrogen bonds.

Related literature top

For the crystal structure of N,N,N',N'-tetramethylchloroformamidinium chloride, see: Tiritiris & Kantlehner (2008); for ethyltriphenylphosphonium bromide dihydrate, see: Betz & Gerber (2011); for N-[3-(dimethylamino)propyl]-N-(N,N,N',N'-tetramethyl-formamidiniumyl)-N',N',N'',N''-tetramethylguanidinium bis(tetraphenylborate), see: Tiritiris & Kantlehner (2015). For the synthesis of N''-[3-(dimethylamino)propyl]-N,N,N',N'-tetramethylguanidine, see: Tiritiris & Kantlehner (2012).

Experimental top

The title compound was prepared by treating an aqueous solution of N-[3-(dimethylamino)propyl]-N-(N,N,N', N'-tetramethyl-formamidinio)-N',N',N'',N''- tetramethylguanidinium dichloride with hydrobromic acid (48 wt.% in H2O). After slow evaporation of the water at ambient temperature, colorless single crystals of the title compound emerged.

Refinement top

The O-bound and N-bound H atoms were located in a difference Fourier map and were refined freely [O—H = 0.75 (5) - 0.86 (5) Å; N—H = 0.86 (4) Å]. The title compound crystallizes in the non-centrosymmetric space group P21; the crystal was refined as a 2-component inversion twin using the matrix [-1 0 0 0 -1 0 0 0 -1] with a volume fraction of 0.109 (8):0.891 (8) for the two domains. The positions of the bromide ions were not fully occupied and their site occupancy factors were refined and converged to Br1 = 0.701 (2), Br2 = 0.831 (2), Br3 = 0.456 (2). The hydrogen atoms of the methyl groups were allowed to rotate with a fixed angle around the C–N bond to best fit the experimental electron density, with Uiso(H) set to 1.5Ueq(C) and d(C—H) = 0.98 Å. The remaining H atoms were placed in calculated positions with d(C—H) = 0.99 Å (H atoms in CH2 groups) and were refined using a riding model, with Uiso(H) set to 1.2 Ueq(C).

Structure description top

N''-[3-(dimethylamino)propyl]- N,N,N',N'-tetramethylguanidine (Tiritiris & Kantlehner, 2012) reacts with one equivalent of N,N,N',N'- tetramethylchloroformamidinium chloride (Tiritiris & Kantlehner, 2008), yielding N-[3-(dimethylamino)propyl]- N-(N,N,N',N'-tetramethyl-formamidinio)- N',N',N'',N''-tetramethylguanidinium dichloride as the product. As expected, on protonation with acid, the terminal 3-(dimethylamino)propyl group can be converted into a 3-(dimethylammonio)propyl group and a triply charged cationic species is formed. The crystal structure presented here is the first structural study of a tricationic nonasubstituted bisamidinium salt. The asymmetric unit contains one cation, three partial occupancy bromide ions, one hydroxide ion and one water molecule (Fig. 1). The sites of the disordered bromine atoms are not fully occupied, the refinement of their site occupation factors converges to Br = [Br1 + Br2 + Br3] = [0.701 (2) + 0.831 (2) + 0.456 (2) = 1.988 (2)] resulting in approximately two bromide ions per formula unit. Prominent bond parameters in the bisamidinium ion are: N5–C6 = 1.390 (3) Å, N5–C1 = 1.399 (4) Å, N5–C11 = 1.494 (4) Å, indicating the N–C single- and double-bond character of the central C3N unit. The C–N–C angles are 119.6 (3)°, 119.8 (2)° and 120.4 (2)°, signalling a nearly ideal trigonal-planar arangement about the central N5 nitrogen atom by the C1, C6 and C11 carbon atoms. These carbon atoms are further bound to the N1, N2, N3 and N4 nitrogen atoms and the resulting C–N bonds show double-bond character with bond lengths in the range 1.326 (4) Å to 1.335 (4) Å. The N–C–N angles range from 118.7 (3)° to 122.5 (3)°, again indicating almost ideal trigonal-planar surroundings of both carbon centres by the nitrogen atoms. The dihedral angle between the N1/C1/N2 and N3/C6/N4 planes is 70.1 (3)°. Structural data for the cation agree very well with those from the crystal structure analysis of N-[3-(dimethylamino)propyl]- N-(N,N,N',N'-tetramethyl-formamidinio)- N',N',N'',N''-tetramethylguanidinium bis(tetraphenylborate) (Tiritiris & Kantlehner, 2015). Two of the positive charges are delocalized in the N1/C1/N2, N3/C6/N4 and C1/N5/C6, planes the third positive charge is localized on the dimethylammonium group. The N–C bond lengths in the terminal ammonium group are in a range from 1.492 (4) to 1.494 (4) Å. A strong N–H···Br hydrogen bond forms between the hydrogen atom H6 of the ammonium group and one of the bromide ions (Br3) [d(H···Br) = 2.18 (4) Å, (Tab.1)]. O–H···O hydrogen bonds [d(H···O) = 1.96 (4) Å, (Table 1)] between the water molecule and the hydroxide ion and O–H···Br hydrogen bonds between the water molecule and the bromide ion [d(H···Br) = 2.48 (4) Å, (Table 1)] are also observed (Fig. 2). In addition, C–H···Br interactions are apparent between the bisamidimium hydrogen atoms of –N(CH3)2 and –CH2 groups and the bromide ions [d(H···Br) = 2.67 - 2.87 Å, (Tab.1)], forming a three-dimensional network (Fig. 3). Similar H···Br distances have been observed in the crystal structure of ethyltriphenylphosphonium bromide dihydrate (Betz & Gerber, 2011) for both the O–H···Br and C–H···Br hydrogen bonds.

For the crystal structure of N,N,N',N'-tetramethylchloroformamidinium chloride, see: Tiritiris & Kantlehner (2008); for ethyltriphenylphosphonium bromide dihydrate, see: Betz & Gerber (2011); for N-[3-(dimethylamino)propyl]-N-(N,N,N',N'-tetramethyl-formamidiniumyl)-N',N',N'',N''-tetramethylguanidinium bis(tetraphenylborate), see: Tiritiris & Kantlehner (2015). For the synthesis of N''-[3-(dimethylamino)propyl]-N,N,N',N'-tetramethylguanidine, see: Tiritiris & Kantlehner (2012).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with displacement ellipsoids at the 50% probability level. All carbon-bonded hydrogen atoms are omitted for the sake of clarity.
[Figure 2] Fig. 2. N—H···Br, O—H···Br and O—H···O hydrogen bonds (black dashed lines) in the crystal structure of the title compound (ac view).
[Figure 3] Fig. 3. Molecular packing of the title compound (bc view). The N—H···Br, O—H···Br, O—H···O and C—H···Br hydrogen bonds are depicted by black dashed lines.
N-[3-(Dimethylazaniumyl)propyl]-N',N',N'',N''-tetramethyl-N-(N,N,N',N'-tetramethylformamidiniumyl)guanidinium dibromide hydroxide monohydrate top
Crystal data top
C15H37N63+·1.988Br·OH·H2OF(000) = 515.2
Mr = 495.37Dx = 1.382 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 9.1584 (6) ÅCell parameters from 25793 reflections
b = 12.2932 (7) Åθ = 1.9–30.5°
c = 10.6633 (6) ŵ = 3.40 mm1
β = 97.454 (3)°T = 100 K
V = 1190.39 (12) Å3Prism, colorless
Z = 20.41 × 0.29 × 0.25 mm
Data collection top
Bruker Kappa APEXII DUO
diffractometer
7244 independent reflections
Radiation source: fine-focus sealed tube6391 reflections with I > 2σ(I)
Triumph monochromatorRint = 0.033
φ scans, and ω scansθmax = 30.5°, θmin = 1.9°
Absorption correction: multi-scan
(Blessing, 1995)
h = 1312
Tmin = 0.334, Tmax = 0.481k = 1717
25793 measured reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.069 w = 1/[σ2(Fo2) + (0.0344P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max < 0.001
7244 reflectionsΔρmax = 0.37 e Å3
265 parametersΔρmin = 0.23 e Å3
1 restraintAbsolute structure: refined as an inversion twin
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.109 (8)
Crystal data top
C15H37N63+·1.988Br·OH·H2OV = 1190.39 (12) Å3
Mr = 495.37Z = 2
Monoclinic, P21Mo Kα radiation
a = 9.1584 (6) ŵ = 3.40 mm1
b = 12.2932 (7) ÅT = 100 K
c = 10.6633 (6) Å0.41 × 0.29 × 0.25 mm
β = 97.454 (3)°
Data collection top
Bruker Kappa APEXII DUO
diffractometer
7244 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
6391 reflections with I > 2σ(I)
Tmin = 0.334, Tmax = 0.481Rint = 0.033
25793 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.069Δρmax = 0.37 e Å3
S = 0.99Δρmin = 0.23 e Å3
7244 reflectionsAbsolute structure: refined as an inversion twin
265 parametersAbsolute structure parameter: 0.109 (8)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The crystal was refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.93762 (4)0.22807 (3)0.49250 (4)0.01601 (14)0.701 (2)
Br20.53705 (4)0.94972 (3)0.87115 (3)0.01916 (12)0.831 (2)
Br30.05637 (7)0.84749 (5)0.00432 (6)0.0171 (2)0.456 (2)
O10.7750 (3)0.7662 (2)0.8224 (3)0.0300 (6)
H160.720 (5)0.809 (4)0.831 (4)0.033 (13)*
C10.3100 (3)0.4939 (2)0.7726 (2)0.0129 (6)
N10.4205 (3)0.5645 (2)0.7784 (2)0.0150 (5)
N20.1715 (3)0.5246 (2)0.7743 (2)0.0158 (5)
C20.5739 (3)0.5375 (3)0.8281 (3)0.0196 (6)
H2A0.57470.48000.89190.029*
H2B0.62310.60230.86680.029*
H2C0.62580.51220.75880.029*
C30.4007 (4)0.6751 (2)0.7265 (3)0.0205 (6)
H3A0.30670.67960.67120.031*
H3B0.48140.69220.67770.031*
H3C0.40090.72740.79590.031*
C40.1345 (4)0.6237 (3)0.8414 (3)0.0234 (7)
H4A0.22180.64910.89650.035*
H4B0.05580.60740.89260.035*
H4C0.10130.68040.77970.035*
C50.0433 (3)0.4656 (3)0.7104 (3)0.0182 (6)
H5A0.07700.40340.66430.027*
H5B0.01500.51440.65080.027*
H5C0.01750.43960.77340.027*
C60.4445 (3)0.3476 (2)0.6899 (3)0.0118 (5)
N30.5375 (3)0.26813 (19)0.7292 (2)0.0141 (5)
N40.4440 (3)0.3922 (2)0.5757 (2)0.0146 (5)
C70.5991 (3)0.2503 (3)0.8627 (3)0.0182 (6)
H7A0.56510.30810.91520.027*
H7B0.70690.25140.87040.027*
H7C0.56610.17960.89090.027*
C80.5846 (4)0.1889 (2)0.6400 (3)0.0194 (6)
H8A0.51750.19160.56060.029*
H8B0.58320.11570.67630.029*
H8C0.68480.20640.62340.029*
C90.3103 (3)0.4361 (3)0.5014 (3)0.0187 (6)
H9A0.22440.39450.52000.028*
H9B0.31930.43040.41100.028*
H9C0.29830.51260.52360.028*
C100.5804 (3)0.4063 (3)0.5171 (3)0.0203 (6)
H10A0.66470.38000.57520.031*
H10B0.59410.48350.49900.031*
H10C0.57290.36460.43810.031*
N50.3413 (3)0.38281 (19)0.7657 (2)0.0113 (5)
C110.2721 (3)0.3039 (2)0.8469 (3)0.0126 (5)
H11A0.19240.34110.88460.015*
H11B0.34690.28000.91690.015*
C120.2085 (3)0.2040 (2)0.7739 (3)0.0149 (6)
H12A0.11520.22330.72090.018*
H12B0.27860.17710.71780.018*
C130.1805 (3)0.1162 (2)0.8688 (3)0.0141 (6)
H13A0.27610.08460.90540.017*
H13B0.13520.15010.93850.017*
N60.0827 (3)0.0267 (2)0.8125 (2)0.0159 (5)
H60.084 (4)0.022 (3)0.870 (4)0.032 (11)*
C140.0748 (3)0.0601 (3)0.7838 (3)0.0254 (7)
H14A0.10610.09570.85810.038*
H14B0.13590.00430.76210.038*
H14C0.08570.11090.71230.038*
C150.1372 (4)0.0259 (3)0.7013 (3)0.0246 (7)
H15A0.12640.02470.62970.037*
H15B0.07970.09180.67830.037*
H15C0.24120.04520.72290.037*
O20.2652 (3)0.1697 (2)0.4200 (3)0.0299 (6)
H170.185 (6)0.177 (4)0.442 (4)0.045 (14)*
H180.252 (5)0.200 (4)0.346 (5)0.049 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0157 (2)0.0191 (2)0.0127 (2)0.00070 (16)0.00014 (14)0.00164 (16)
Br20.01885 (18)0.01493 (17)0.02373 (19)0.00227 (15)0.00287 (13)0.00258 (15)
Br30.0172 (4)0.0156 (4)0.0191 (4)0.0025 (2)0.0050 (3)0.0041 (2)
O10.0258 (13)0.0279 (14)0.0368 (15)0.0011 (11)0.0059 (11)0.0102 (11)
C10.0176 (14)0.0119 (13)0.0090 (12)0.0003 (11)0.0016 (10)0.0012 (10)
N10.0173 (12)0.0124 (12)0.0149 (12)0.0028 (10)0.0005 (9)0.0002 (10)
N20.0184 (13)0.0124 (12)0.0173 (12)0.0015 (10)0.0043 (10)0.0000 (10)
C20.0197 (15)0.0169 (15)0.0203 (15)0.0047 (12)0.0048 (12)0.0008 (12)
C30.0268 (17)0.0121 (14)0.0220 (15)0.0028 (12)0.0005 (13)0.0022 (12)
C40.0311 (18)0.0163 (15)0.0245 (16)0.0071 (14)0.0105 (14)0.0020 (13)
C50.0131 (13)0.0179 (17)0.0234 (15)0.0016 (11)0.0017 (11)0.0031 (12)
C60.0112 (12)0.0109 (13)0.0132 (13)0.0017 (10)0.0013 (10)0.0036 (10)
N30.0135 (12)0.0125 (12)0.0161 (12)0.0005 (9)0.0015 (9)0.0014 (9)
N40.0159 (12)0.0147 (12)0.0133 (11)0.0010 (10)0.0029 (9)0.0010 (10)
C70.0149 (14)0.0190 (16)0.0188 (14)0.0017 (11)0.0044 (11)0.0018 (12)
C80.0216 (16)0.0151 (14)0.0222 (15)0.0066 (12)0.0057 (12)0.0000 (12)
C90.0231 (15)0.0188 (16)0.0137 (13)0.0035 (13)0.0000 (11)0.0026 (12)
C100.0224 (16)0.0199 (15)0.0210 (15)0.0015 (12)0.0112 (13)0.0003 (12)
N50.0123 (11)0.0099 (11)0.0118 (11)0.0025 (9)0.0018 (9)0.0016 (9)
C110.0149 (13)0.0109 (13)0.0124 (12)0.0010 (10)0.0032 (10)0.0016 (10)
C120.0169 (14)0.0139 (14)0.0137 (13)0.0055 (11)0.0016 (11)0.0007 (10)
C130.0163 (14)0.0116 (13)0.0138 (13)0.0018 (11)0.0007 (11)0.0010 (11)
N60.0167 (12)0.0121 (12)0.0182 (12)0.0019 (10)0.0010 (10)0.0032 (10)
C140.0135 (14)0.0285 (18)0.0328 (19)0.0045 (13)0.0023 (13)0.0104 (15)
C150.0351 (19)0.0179 (18)0.0201 (15)0.0014 (13)0.0008 (14)0.0047 (12)
O20.0250 (14)0.0323 (14)0.0315 (14)0.0052 (11)0.0001 (11)0.0046 (12)
Geometric parameters (Å, º) top
O1—H160.75 (5)C8—H8A0.9800
C1—N21.326 (4)C8—H8B0.9800
C1—N11.329 (4)C8—H8C0.9800
C1—N51.399 (4)C9—H9A0.9800
N1—C31.471 (4)C9—H9B0.9800
N1—C21.474 (4)C9—H9C0.9800
N2—C51.470 (4)C10—H10A0.9800
N2—C41.474 (4)C10—H10B0.9800
C2—H2A0.9800C10—H10C0.9800
C2—H2B0.9800N5—C111.494 (4)
C2—H2C0.9800C11—C121.528 (4)
C3—H3A0.9800C11—H11A0.9900
C3—H3B0.9800C11—H11B0.9900
C3—H3C0.9800C12—C131.523 (4)
C4—H4A0.9800C12—H12A0.9900
C4—H4B0.9800C12—H12B0.9900
C4—H4C0.9800C13—N61.494 (4)
C5—H5A0.9800C13—H13A0.9900
C5—H5B0.9800C13—H13B0.9900
C5—H5C0.9800N6—C151.492 (4)
C6—N31.328 (4)N6—C141.493 (4)
C6—N41.335 (4)N6—H60.86 (4)
C6—N51.390 (3)C14—H14A0.9800
N3—C81.465 (4)C14—H14B0.9800
N3—C71.478 (4)C14—H14C0.9800
N4—C91.472 (4)C15—H15A0.9800
N4—C101.477 (4)C15—H15B0.9800
C7—H7A0.9800C15—H15C0.9800
C7—H7B0.9800O2—H170.80 (5)
C7—H7C0.9800O2—H180.86 (5)
N2—C1—N1122.5 (3)H8B—C8—H8C109.5
N2—C1—N5118.8 (3)N4—C9—H9A109.5
N1—C1—N5118.7 (3)N4—C9—H9B109.5
C1—N1—C3122.1 (3)H9A—C9—H9B109.5
C1—N1—C2123.6 (2)N4—C9—H9C109.5
C3—N1—C2114.1 (2)H9A—C9—H9C109.5
C1—N2—C5124.1 (2)H9B—C9—H9C109.5
C1—N2—C4121.5 (3)N4—C10—H10A109.5
C5—N2—C4114.4 (2)N4—C10—H10B109.5
N1—C2—H2A109.5H10A—C10—H10B109.5
N1—C2—H2B109.5N4—C10—H10C109.5
H2A—C2—H2B109.5H10A—C10—H10C109.5
N1—C2—H2C109.5H10B—C10—H10C109.5
H2A—C2—H2C109.5C6—N5—C1119.6 (2)
H2B—C2—H2C109.5C6—N5—C11120.4 (2)
N1—C3—H3A109.5C1—N5—C11119.8 (2)
N1—C3—H3B109.5N5—C11—C12112.9 (2)
H3A—C3—H3B109.5N5—C11—H11A109.0
N1—C3—H3C109.5C12—C11—H11A109.0
H3A—C3—H3C109.5N5—C11—H11B109.0
H3B—C3—H3C109.5C12—C11—H11B109.0
N2—C4—H4A109.5H11A—C11—H11B107.8
N2—C4—H4B109.5C13—C12—C11108.5 (2)
H4A—C4—H4B109.5C13—C12—H12A110.0
N2—C4—H4C109.5C11—C12—H12A110.0
H4A—C4—H4C109.5C13—C12—H12B110.0
H4B—C4—H4C109.5C11—C12—H12B110.0
N2—C5—H5A109.5H12A—C12—H12B108.4
N2—C5—H5B109.5N6—C13—C12113.5 (2)
H5A—C5—H5B109.5N6—C13—H13A108.9
N2—C5—H5C109.5C12—C13—H13A108.9
H5A—C5—H5C109.5N6—C13—H13B108.9
H5B—C5—H5C109.5C12—C13—H13B108.9
N3—C6—N4121.1 (3)H13A—C13—H13B107.7
N3—C6—N5120.1 (3)C15—N6—C14111.7 (3)
N4—C6—N5118.7 (3)C15—N6—C13113.2 (2)
C6—N3—C8121.0 (2)C14—N6—C13113.1 (2)
C6—N3—C7124.2 (2)C15—N6—H6107 (3)
C8—N3—C7114.7 (2)C14—N6—H6105 (3)
C6—N4—C9123.1 (2)C13—N6—H6106 (3)
C6—N4—C10122.1 (2)N6—C14—H14A109.5
C9—N4—C10114.8 (2)N6—C14—H14B109.5
N3—C7—H7A109.5H14A—C14—H14B109.5
N3—C7—H7B109.5N6—C14—H14C109.5
H7A—C7—H7B109.5H14A—C14—H14C109.5
N3—C7—H7C109.5H14B—C14—H14C109.5
H7A—C7—H7C109.5N6—C15—H15A109.5
H7B—C7—H7C109.5N6—C15—H15B109.5
N3—C8—H8A109.5H15A—C15—H15B109.5
N3—C8—H8B109.5N6—C15—H15C109.5
H8A—C8—H8B109.5H15A—C15—H15C109.5
N3—C8—H8C109.5H15B—C15—H15C109.5
H8A—C8—H8C109.5H17—O2—H18101 (4)
N2—C1—N1—C330.6 (4)N5—C6—N4—C10148.0 (3)
N5—C1—N1—C3150.0 (3)N3—C6—N5—C1140.6 (3)
N2—C1—N1—C2153.9 (3)N4—C6—N5—C141.9 (4)
N5—C1—N1—C225.5 (4)N3—C6—N5—C1134.9 (4)
N1—C1—N2—C5149.2 (3)N4—C6—N5—C11142.5 (3)
N5—C1—N2—C531.4 (4)N2—C1—N5—C6139.8 (3)
N1—C1—N2—C430.2 (4)N1—C1—N5—C640.8 (4)
N5—C1—N2—C4149.2 (3)N2—C1—N5—C1144.6 (4)
N4—C6—N3—C832.5 (4)N1—C1—N5—C11134.8 (3)
N5—C6—N3—C8144.8 (3)C6—N5—C11—C1251.0 (3)
N4—C6—N3—C7148.6 (3)C1—N5—C11—C12133.5 (3)
N5—C6—N3—C734.0 (4)N5—C11—C12—C13164.3 (2)
N3—C6—N4—C9148.6 (3)C11—C12—C13—N6164.6 (2)
N5—C6—N4—C928.8 (4)C12—C13—N6—C1555.4 (3)
N3—C6—N4—C1034.6 (4)C12—C13—N6—C1473.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6···Br3i0.86 (4)2.18 (4)3.038 (4)172 (3)
O2—H18···O1ii0.86 (5)1.96 (4)2.825 (4)179 (3)
O2—H17···Br1iii0.80 (5)2.48 (4)3.273 (4)171 (3)
C2—H2A···Br2iv0.982.873.650 (4)137
C3—H3A···Br1v0.982.723.688 (4)170
C5—H5C···Br3vi0.982.693.594 (4)153
C7—H7B···Br3ii0.982.673.498 (4)142
C8—H8C···Br10.982.873.805 (4)160
C11—H11A···Br3vi0.992.703.618 (4)154
C12—H12A···Br1iii0.992.753.649 (4)151
C14—H14C···Br1iii0.982.783.743 (4)167
C15—H15B···Br1ii0.982.863.676 (4)142
Symmetry codes: (i) x, y1, z+1; (ii) x+1, y1/2, z+1; (iii) x1, y, z; (iv) x+1, y1/2, z+2; (v) x+1, y+1/2, z+1; (vi) x, y1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6···Br3i0.86 (4)2.18 (4)3.038 (4)172 (3)
O2—H18···O1ii0.86 (5)1.96 (4)2.825 (4)179 (3)
O2—H17···Br1iii0.80 (5)2.48 (4)3.273 (4)171 (3)
C2—H2A···Br2iv0.982.873.650 (4)137
C3—H3A···Br1v0.982.723.688 (4)170
C5—H5C···Br3vi0.982.693.594 (4)153
C7—H7B···Br3ii0.982.673.498 (4)142
C8—H8C···Br10.982.873.805 (4)160
C11—H11A···Br3vi0.992.703.618 (4)154
C12—H12A···Br1iii0.992.753.649 (4)151
C14—H14C···Br1iii0.982.783.743 (4)167
C15—H15B···Br1ii0.982.863.676 (4)142
Symmetry codes: (i) x, y1, z+1; (ii) x+1, y1/2, z+1; (iii) x1, y, z; (iv) x+1, y1/2, z+2; (v) x+1, y+1/2, z+1; (vi) x, y1/2, z+1.
 

Acknowledgements

The authors thank Dr W. Frey (Institut für Organische Chemie, Universität Stuttgart) for measuring the diffraction data.

References

First citationBetz, R. & Gerber, T. (2011). Acta Cryst. E67, o1950.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, D-53002 Bonn, Germany.  Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTiritiris, I. & Kantlehner, W. (2008). Z. Kristallogr. 223, 345–346.  CAS Google Scholar
First citationTiritiris, I. & Kantlehner, W. (2012). Z. Naturforsch. Teil B, 67, 685–698.  Web of Science CSD CrossRef CAS Google Scholar
First citationTiritiris, I. & Kantlehner, W. (2015). Acta Cryst. E71, o1045–o1046.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds