organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 1,1′-[selanediyl­bis­(4,1-phenyl­ene)]bis­­(2-chloro­ethan-1-one)

aLaboratoire de Cristallographie, Département de Physique, Université Mentouri-Constantine, 25000 Constantine, Algeria, bLaboratoire VAREN, Département de chimie, Faculté des Sciences Exactes, Université Mentouri-Constantine, 25000 Constantine, Algeria, and cUMR 6226 CNRS–Université Rennes 1 `Sciences Chimiques de Rennes', Equipe `Matière Condensée et Systèmes Electroactifs', 263 Avenue du Général Leclerc, F-35042 Rennes, France
*Correspondence e-mail: bmwnora@yahoo.fr

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 6 October 2015; accepted 21 October 2015; online 14 November 2015)

In the title mol­ecule, C16H12Cl2O2Se, the C—Se—C angle is 100.05 (14)°, with the dihedral angle between the planes of the benzene rings being 69.92 (17)°. The average endocyclic angles (Se—Car—Car; ar = aromatic) facing the Se atom are 120.0 (3) and 119.4 (3)°. The Se atom is essentially coplanar with the benzene rings, with Se—Car—Car—Car torsion angles of −179.2 (3) and −179.7 (3)°. In the crystal, mol­ecules are linked via C—H⋯O hydrogen bonds forming chains propagating along the a-axis direction. The chains are linked via C—H⋯π inter­actions, forming a three-dimensional network.

1. Related literature

For a review of organoselenium chemistry, see: Procter (2001[Procter, D. J. (2001). J. Chem. Soc. Perkin Trans. 1, pp. 335-354.]). For there uses as reagents and inter­mediates in organic synthesis, see: Zade et al. (2005[Zade, S. S., Panda, S., Singh, H. B. & Wolmershäuser, G. (2005). Tetrahedron Lett. 46, 665-669.]). For their use as inter­mediates in the synthesis of pharmaceuticals, see: Woods et al. (1993[Woods, J. A., Hadfield, J. A., McGown, A. T. & Fox, B. W. (1993). Bioorg. Med. Chem. 1, 333-340.]), and fine chemicals and polymers, see: Hellberg et al. (1997[Hellberg, J., Remonen, T., Johansson, M., Inganäs, O., Theander, M., Engman, L. & Eriksson, P. (1997). Synth. Met. 84, 251-252.]). For their biological properties, see: Zhu & Jiang (2008[Zhu, Z. & Jiang, W. (2008). Biomed. Res. Trace Elem. 19, 282-289.]); Anderson et al. (1996[Anderson, C. M., Hallberg, A. & Haegberg, T. (1996). Adv. Drug Res. 28, 65-180.]); Abdel-Hafez (2008[Abdel-Hafez, H. (2008). Eur. J. Med. Chem. 43, 1971-1977.]). For details of how selenium compounds play important roles in protecting the heart, preventing cancer and cardiovascular diseases, see: Yang et al. (2005[Yang, X. L., Liu, J., Yang, L. & Zhang, X. Y. (2005). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 35, 761-766.]). For details of how selenium functions as an anti­oxidant in conjunction with vitamin E, see: Ellis et al. (1984[Ellis, N., Lloyd, B., Lloyd, R. S. & Clayton, B. E. (1984). J. Clin. Pathol. 37, 200-206.]). For the synthesis, see: Mechehoud et al. (2010[Mechehoud, Y., Benayache, F., Benayache, S. & Mosset, P. (2010). E-J. Chem. 7(S1), S143-S150.]). For related structures, see: Zuo (2013[Zuo, Z.-L. (2013). Acta Cryst. E69, o636.]); Bouraoui et al. (2011[Bouraoui, H., Boudjada, A., Bouacida, S., Mechehoud, Y. & Meinnel, J. (2011). Acta Cryst. E67, o941.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C16H12Cl2O2Se

  • Mr = 386.12

  • Triclinic [P \overline 1]

  • a = 7.9664 (7) Å

  • b = 9.2804 (10) Å

  • c = 10.9045 (12) Å

  • α = 104.612 (9)°

  • β = 95.886 (8)°

  • γ = 91.102 (8)°

  • V = 775.14 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.77 mm−1

  • T = 293 K

  • 0.13 × 0.08 × 0.04 mm

2.2. Data collection

  • Oxford Diffraction Xcalibur diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Ltd, Abingdon, Oxfordshire, England.]) Tmin = 0.519, Tmax = 1.000

  • 8193 measured reflections

  • 4862 independent reflections

  • 2878 reflections with I > 2σ(I)

  • Rint = 0.033

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.134

  • S = 1.04

  • 4862 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of benzene rings C1–C6 and C7–C12, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H61⋯O1i 0.93 2.41 3.288 (4) 158
C16—H161⋯Cg2ii 0.97 2.82 3.611 (4) 140
C16—H162⋯Cg1iii 0.97 2.92 3.749 (4) 144
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+1, -z+1; (iii) x, y+1, z.

Data collection: Xcalibur (Oxford Diffraction, 2002[Oxford Diffraction (2002). Xcalibur and CrysAlis RED. Oxford Diffraction, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2002[Oxford Diffraction (2002). Xcalibur and CrysAlis RED. Oxford Diffraction, Yarnton, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SIR2002 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL2014 and PLATON.

Supporting information


Comment top

During the last few years, organoselenium chemistry (Procter, 2001) has been the subject of constant scientific inter­est and organoselenium compounds have been used intensively as important reagents and inter­mediates in organic synthesis (Zade et al., 2005). Moreover, organoselenium compounds are of considerable inter­est as anti-cancer (Zhu & Jiang, 2008), anti-oxydant (Anderson et al., 1996), anti-inflammatory, and anti­allergic agents (Abdel-Hafez, 2008) and they are key inter­mediates for the synthesis of pharmaceuticals (Woods et al., 1993), fine chemicals and polymers (Hellberg et al., 1997). Selenium compounds have been found to play important roles in protecting the heart, preventing cancer and cardiovascular diseases (Yang et al., 2005). Because selenium functions as an anti­oxidant it works in conjunction with vitamin E (Ellis et al., 1984).

In the title compound, Fig. 1, the C1—Se1—C7 angle is 100.05 (14) °, similar to the value observed in two very similar compounds, viz. ca 99.47 ° in bis­(4-nitro­phenyl)­selenide (Zuo, 2013), and 99.59 (14)° in bis­(4-acetyl­phenyl) selenide (Bouraoui et al., 2011) where the Se atom lies on a two-fold rotation axis. In the title compound the two benzene rings are inclined to one another by 69.92 (17) °. This is similar to the same angle observed for the 4-nitro­phenyl derivative, ca 63.77 °, but considerabley diffrent to that observed for the acetyl­phenyl derivative, viz. 87.08 (15) °.

In the crystal of the title compound, molecules are linked by C—H···O hydrogen bonds forming chains along the a axis direction (Table 1 and Fig. 2). The chains are linked by C—H···π inter­actions (Table 1) forming a three-dimensional structure.

Synthesis and crystallization top

The title compound was prepared according to a method proposed by (Mechehoud et al., 2010). Methyl­ene chloride acyl chloride, ClCH2COCl, (36.5 mmol) and anhydrous aluminium chloride 5 g (37.5 mmol, 3 eq) were taken in dry CH2Cl2 (100 ml). The reaction mixture was cooled to 273-278 K, protected from atmospheric moisture, and stirred continuously for 15 min. A solution of di­phenyl selenide (1) 3 g (1.87 mmol) in CH2Cl2 was added drop wise over a period of 5 min. The reaction mixture was allowed to reach room temperature gradually and then stirred at this temperature overnight. The solution was then washed with ice water-HCl (80 ml) and extracted with CH2Cl2. The organic layer was separated and dried (Na2SO4). Removal of the solvent under reduced pressure afforded the crude product which was recrystallized from ether-petrol to yield 4.2 g of the title compound. Yellow single crystals suitable for X-ray diffraction were obtained by recrystallization from CH2Cl2.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. All the H atoms were localized in difference Fourier maps but introduced in calculated positions and treated as riding atoms: C—H = 0.93-0.97 Å with Uiso(H) = 1.2Ueq(C).

Related literature top

For a review of organoselenium chemistry, see: Procter (2001). For there uses as reagents and intermediates in organic synthesis, see: Zade et al. (2005). For there use as intermediates in the synthesis of pharmaceuticals, see: Woods et al. (1993), and fine chemicals and polymers, see: Hellberg et al. (1997). For their biological properties, see: Zhu & Jiang (2008); Anderson et al. (1996); Abdel-Hafez (2008). For details of how selenium compounds play important roles in protecting the heart, preventing cancer and cardiovascular diseases, see: Yang et al. (2005). For details of how selenium functions as an antioxidant in conjunction with vitamin E, see: Ellis et al. (1984). For the synthesis, see: Mechehoud et al. (2010). For related structures, see: Zuo (2013); Bouraoui et al. (2011).

Structure description top

During the last few years, organoselenium chemistry (Procter, 2001) has been the subject of constant scientific inter­est and organoselenium compounds have been used intensively as important reagents and inter­mediates in organic synthesis (Zade et al., 2005). Moreover, organoselenium compounds are of considerable inter­est as anti-cancer (Zhu & Jiang, 2008), anti-oxydant (Anderson et al., 1996), anti-inflammatory, and anti­allergic agents (Abdel-Hafez, 2008) and they are key inter­mediates for the synthesis of pharmaceuticals (Woods et al., 1993), fine chemicals and polymers (Hellberg et al., 1997). Selenium compounds have been found to play important roles in protecting the heart, preventing cancer and cardiovascular diseases (Yang et al., 2005). Because selenium functions as an anti­oxidant it works in conjunction with vitamin E (Ellis et al., 1984).

In the title compound, Fig. 1, the C1—Se1—C7 angle is 100.05 (14) °, similar to the value observed in two very similar compounds, viz. ca 99.47 ° in bis­(4-nitro­phenyl)­selenide (Zuo, 2013), and 99.59 (14)° in bis­(4-acetyl­phenyl) selenide (Bouraoui et al., 2011) where the Se atom lies on a two-fold rotation axis. In the title compound the two benzene rings are inclined to one another by 69.92 (17) °. This is similar to the same angle observed for the 4-nitro­phenyl derivative, ca 63.77 °, but considerabley diffrent to that observed for the acetyl­phenyl derivative, viz. 87.08 (15) °.

In the crystal of the title compound, molecules are linked by C—H···O hydrogen bonds forming chains along the a axis direction (Table 1 and Fig. 2). The chains are linked by C—H···π inter­actions (Table 1) forming a three-dimensional structure.

For a review of organoselenium chemistry, see: Procter (2001). For there uses as reagents and intermediates in organic synthesis, see: Zade et al. (2005). For there use as intermediates in the synthesis of pharmaceuticals, see: Woods et al. (1993), and fine chemicals and polymers, see: Hellberg et al. (1997). For their biological properties, see: Zhu & Jiang (2008); Anderson et al. (1996); Abdel-Hafez (2008). For details of how selenium compounds play important roles in protecting the heart, preventing cancer and cardiovascular diseases, see: Yang et al. (2005). For details of how selenium functions as an antioxidant in conjunction with vitamin E, see: Ellis et al. (1984). For the synthesis, see: Mechehoud et al. (2010). For related structures, see: Zuo (2013); Bouraoui et al. (2011).

Synthesis and crystallization top

The title compound was prepared according to a method proposed by (Mechehoud et al., 2010). Methyl­ene chloride acyl chloride, ClCH2COCl, (36.5 mmol) and anhydrous aluminium chloride 5 g (37.5 mmol, 3 eq) were taken in dry CH2Cl2 (100 ml). The reaction mixture was cooled to 273-278 K, protected from atmospheric moisture, and stirred continuously for 15 min. A solution of di­phenyl selenide (1) 3 g (1.87 mmol) in CH2Cl2 was added drop wise over a period of 5 min. The reaction mixture was allowed to reach room temperature gradually and then stirred at this temperature overnight. The solution was then washed with ice water-HCl (80 ml) and extracted with CH2Cl2. The organic layer was separated and dried (Na2SO4). Removal of the solvent under reduced pressure afforded the crude product which was recrystallized from ether-petrol to yield 4.2 g of the title compound. Yellow single crystals suitable for X-ray diffraction were obtained by recrystallization from CH2Cl2.

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 2. All the H atoms were localized in difference Fourier maps but introduced in calculated positions and treated as riding atoms: C—H = 0.93-0.97 Å with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: Xcalibur (Oxford Diffraction, 2002); cell refinement: CrysAlis RED (Oxford Diffraction, 2002); data reduction: CrysAlis RED (Oxford Diffraction, 2002); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing of the title compound, viewed along the b axis. The hydrogen bonds are shown as dashed lines (see Table 1).
1,1'-[Selanediylbis(4,1-phenylene)]bis(2-chloroethan-1-one) top
Crystal data top
C16H12Cl2O2SeZ = 2
Mr = 386.12F(000) = 384
Triclinic, P1Dx = 1.654 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.7107 Å
a = 7.9664 (7) ÅCell parameters from 1842 reflections
b = 9.2804 (10) Åθ = 3.9–27.7°
c = 10.9045 (12) ŵ = 2.77 mm1
α = 104.612 (9)°T = 293 K
β = 95.886 (8)°Needle, colourless
γ = 91.102 (8)°0.13 × 0.08 × 0.04 mm
V = 775.14 (14) Å3
Data collection top
Oxford Diffraction Xcalibur
diffractometer
2878 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω/2θ scansθmax = 32.0°, θmin = 3.4°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
h = 1111
Tmin = 0.519, Tmax = 1.000k = 1313
8193 measured reflectionsl = 1611
4862 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.047P)2 + 0.1701P]
where P = (Fo2 + 2Fc2)/3
4862 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.49 e Å3
Crystal data top
C16H12Cl2O2Seγ = 91.102 (8)°
Mr = 386.12V = 775.14 (14) Å3
Triclinic, P1Z = 2
a = 7.9664 (7) ÅMo Kα radiation
b = 9.2804 (10) ŵ = 2.77 mm1
c = 10.9045 (12) ÅT = 293 K
α = 104.612 (9)°0.13 × 0.08 × 0.04 mm
β = 95.886 (8)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer
4862 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
2878 reflections with I > 2σ(I)
Tmin = 0.519, Tmax = 1.000Rint = 0.033
8193 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.134H-atom parameters constrained
S = 1.04Δρmax = 0.59 e Å3
4862 reflectionsΔρmin = 0.49 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Se10.53262 (4)0.10191 (4)0.76583 (4)0.05281 (16)
Cl10.25879 (14)0.40473 (13)0.99518 (12)0.0730 (3)
Cl20.13155 (14)0.78058 (13)0.40236 (15)0.0818 (4)
O10.2370 (3)0.1702 (3)0.8662 (3)0.0610 (7)
O20.1088 (4)0.4605 (3)0.3572 (3)0.0714 (8)
C10.3337 (4)0.0067 (4)0.8013 (3)0.0394 (8)
C20.1712 (4)0.0498 (4)0.7722 (4)0.0440 (8)
H210.15480.12710.73280.053*
C30.0353 (4)0.0224 (4)0.8020 (3)0.0423 (8)
H310.07290.00710.78250.051*
C40.0557 (4)0.1385 (3)0.8605 (3)0.0362 (7)
C50.2200 (4)0.1800 (4)0.8892 (3)0.0392 (8)
H510.23650.25740.92850.047*
C60.3576 (4)0.1082 (4)0.8603 (3)0.0406 (8)
H610.46610.13680.88030.049*
C70.4308 (4)0.2302 (4)0.6692 (4)0.0415 (8)
C80.3485 (5)0.1721 (4)0.5489 (4)0.0488 (9)
H810.34150.06950.51390.059*
C90.2762 (5)0.2656 (4)0.4798 (4)0.0470 (8)
H910.22000.22560.39890.056*
C100.2872 (4)0.4188 (4)0.5306 (3)0.0402 (8)
C110.3757 (5)0.4760 (4)0.6494 (4)0.0490 (9)
H1110.38790.57870.68290.059*
C120.4456 (5)0.3831 (4)0.7184 (4)0.0500 (9)
H1210.50330.42320.79890.060*
C130.0979 (4)0.2116 (4)0.8894 (3)0.0425 (8)
C140.0706 (5)0.3401 (4)0.9497 (4)0.0514 (9)
H1410.01170.30871.02440.062*
H1420.02480.42140.88980.062*
C150.1994 (4)0.5136 (4)0.4539 (4)0.0465 (9)
C160.2244 (5)0.6811 (4)0.5070 (4)0.0540 (10)
H1610.34440.70760.52430.065*
H1620.17580.71010.58720.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Se10.03407 (19)0.0680 (3)0.0687 (3)0.00036 (16)0.00438 (18)0.0409 (2)
Cl10.0585 (6)0.0786 (7)0.0896 (9)0.0193 (5)0.0163 (6)0.0345 (6)
Cl20.0582 (6)0.0802 (7)0.1284 (12)0.0049 (5)0.0010 (7)0.0700 (8)
O10.0318 (12)0.0782 (19)0.083 (2)0.0059 (12)0.0080 (13)0.0385 (16)
O20.081 (2)0.0686 (19)0.060 (2)0.0050 (16)0.0141 (17)0.0170 (16)
C10.0312 (15)0.0460 (18)0.044 (2)0.0008 (13)0.0040 (15)0.0170 (16)
C20.0387 (17)0.0477 (19)0.053 (2)0.0035 (15)0.0039 (16)0.0268 (17)
C30.0326 (15)0.0475 (19)0.050 (2)0.0065 (14)0.0018 (15)0.0183 (17)
C40.0303 (15)0.0424 (17)0.0371 (19)0.0027 (13)0.0037 (14)0.0124 (15)
C50.0334 (15)0.0426 (18)0.048 (2)0.0066 (13)0.0045 (15)0.0242 (16)
C60.0277 (14)0.0510 (19)0.048 (2)0.0090 (14)0.0006 (14)0.0218 (16)
C70.0338 (16)0.0500 (19)0.046 (2)0.0004 (14)0.0077 (16)0.0214 (17)
C80.055 (2)0.0373 (18)0.054 (2)0.0036 (16)0.0018 (19)0.0130 (17)
C90.0465 (19)0.050 (2)0.043 (2)0.0039 (16)0.0016 (17)0.0108 (17)
C100.0383 (17)0.0430 (18)0.044 (2)0.0007 (14)0.0103 (16)0.0178 (16)
C110.061 (2)0.0396 (19)0.045 (2)0.0020 (17)0.0022 (19)0.0107 (17)
C120.054 (2)0.055 (2)0.040 (2)0.0037 (18)0.0008 (18)0.0127 (18)
C130.0337 (16)0.053 (2)0.042 (2)0.0001 (14)0.0036 (15)0.0146 (17)
C140.0443 (19)0.057 (2)0.059 (3)0.0034 (17)0.0112 (19)0.0253 (19)
C150.0394 (17)0.054 (2)0.053 (2)0.0040 (16)0.0098 (18)0.0240 (19)
C160.047 (2)0.049 (2)0.077 (3)0.0029 (16)0.009 (2)0.036 (2)
Geometric parameters (Å, º) top
Se1—C71.919 (3)C7—C81.377 (5)
Se1—C11.920 (3)C7—C121.383 (5)
Cl1—C141.766 (4)C8—C91.383 (5)
Cl2—C161.757 (4)C8—H810.9300
O1—C131.203 (4)C9—C101.387 (5)
O2—C151.202 (5)C9—H910.9300
C1—C61.384 (5)C10—C111.382 (5)
C1—C21.392 (4)C10—C151.495 (5)
C2—C31.371 (5)C11—C121.372 (5)
C2—H210.9300C11—H1110.9300
C3—C41.388 (5)C12—H1210.9300
C3—H310.9300C13—C141.510 (5)
C4—C51.398 (4)C14—H1410.9700
C4—C131.487 (4)C14—H1420.9700
C5—C61.376 (4)C15—C161.517 (5)
C5—H510.9300C16—H1610.9700
C6—H610.9300C16—H1620.9700
C7—Se1—C1100.05 (14)C11—C10—C9118.8 (3)
C6—C1—C2120.0 (3)C11—C10—C15123.3 (3)
C6—C1—Se1117.0 (2)C9—C10—C15117.9 (3)
C2—C1—Se1123.0 (3)C12—C11—C10120.8 (3)
C3—C2—C1119.7 (3)C12—C11—H111119.6
C3—C2—H21120.2C10—C11—H111119.6
C1—C2—H21120.2C11—C12—C7120.4 (4)
C2—C3—C4121.5 (3)C11—C12—H121119.8
C2—C3—H31119.2C7—C12—H121119.8
C4—C3—H31119.2O1—C13—C4121.8 (3)
C3—C4—C5118.0 (3)O1—C13—C14121.6 (3)
C3—C4—C13118.3 (3)C4—C13—C14116.7 (3)
C5—C4—C13123.7 (3)C13—C14—Cl1112.6 (3)
C6—C5—C4121.1 (3)C13—C14—H141109.1
C6—C5—H51119.4Cl1—C14—H141109.1
C4—C5—H51119.4C13—C14—H142109.1
C5—C6—C1119.7 (3)Cl1—C14—H142109.1
C5—C6—H61120.1H141—C14—H142107.8
C1—C6—H61120.1O2—C15—C10121.9 (3)
C8—C7—C12119.4 (3)O2—C15—C16121.3 (4)
C8—C7—Se1120.7 (3)C10—C15—C16116.7 (3)
C12—C7—Se1119.9 (3)C15—C16—Cl2112.6 (3)
C7—C8—C9120.2 (3)C15—C16—H161109.1
C7—C8—H81119.9Cl2—C16—H161109.1
C9—C8—H81119.9C15—C16—H162109.1
C8—C9—C10120.4 (4)Cl2—C16—H162109.1
C8—C9—H91119.8H161—C16—H162107.8
C10—C9—H91119.8
C6—C1—C2—C30.2 (5)C15—C10—C11—C12176.3 (3)
Se1—C1—C2—C3179.2 (3)C10—C11—C12—C71.0 (6)
C1—C2—C3—C40.1 (6)C8—C7—C12—C111.5 (5)
C2—C3—C4—C50.3 (5)Se1—C7—C12—C11179.0 (3)
C2—C3—C4—C13179.8 (3)C3—C4—C13—O11.9 (5)
C3—C4—C5—C60.0 (5)C5—C4—C13—O1178.0 (4)
C13—C4—C5—C6180.0 (3)C3—C4—C13—C14178.4 (3)
C4—C5—C6—C10.3 (5)C5—C4—C13—C141.7 (5)
C2—C1—C6—C50.4 (5)O1—C13—C14—Cl16.1 (5)
Se1—C1—C6—C5179.4 (3)C4—C13—C14—Cl1173.6 (3)
C12—C7—C8—C92.2 (5)C11—C10—C15—O2172.1 (4)
Se1—C7—C8—C9179.7 (3)C9—C10—C15—O26.9 (5)
C7—C8—C9—C100.5 (5)C11—C10—C15—C165.5 (5)
C8—C9—C10—C111.9 (5)C9—C10—C15—C16175.5 (3)
C8—C9—C10—C15177.1 (3)O2—C15—C16—Cl27.9 (5)
C9—C10—C11—C122.7 (5)C10—C15—C16—Cl2174.6 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of benzene rings C1-C6 and C7-C12, respectively.
D—H···AD—HH···AD···AD—H···A
C6—H61···O1i0.932.413.288 (4)158
C16—H161···Cg2ii0.972.823.611 (4)140
C16—H162···Cg1iii0.972.923.749 (4)144
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+1; (iii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of benzene rings C1-C6 and C7-C12, respectively.
D—H···AD—HH···AD···AD—H···A
C6—H61···O1i0.932.413.288 (4)158
C16—H161···Cg2ii0.972.823.611 (4)140
C16—H162···Cg1iii0.972.923.749 (4)144
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+1; (iii) x, y+1, z.
 

Acknowledgements

This work is supported by the Laboratoire de Cristallographie Département de Physique, Université Mentouri-Constantine, Algeria. We would also like to thank Mr F. Saidi, Engineer at the Université Mentouri-Constantine, for assistance in collecting the intensity data on the Xcalibur X-ray diffractometer.

References

First citationAbdel-Hafez, H. (2008). Eur. J. Med. Chem. 43, 1971–1977.  Web of Science PubMed CAS Google Scholar
First citationAgilent (2013). CrysAlis PRO. Agilent Technologies Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationAnderson, C. M., Hallberg, A. & Haegberg, T. (1996). Adv. Drug Res. 28, 65–180.  CAS Google Scholar
First citationBouraoui, H., Boudjada, A., Bouacida, S., Mechehoud, Y. & Meinnel, J. (2011). Acta Cryst. E67, o941.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEllis, N., Lloyd, B., Lloyd, R. S. & Clayton, B. E. (1984). J. Clin. Pathol. 37, 200–206.  CrossRef CAS PubMed Web of Science Google Scholar
First citationHellberg, J., Remonen, T., Johansson, M., Inganäs, O., Theander, M., Engman, L. & Eriksson, P. (1997). Synth. Met. 84, 251–252.  CrossRef CAS Web of Science Google Scholar
First citationMechehoud, Y., Benayache, F., Benayache, S. & Mosset, P. (2010). E-J. Chem. 7(S1), S143–S150.  Google Scholar
First citationOxford Diffraction (2002). Xcalibur and CrysAlis RED. Oxford Diffraction, Yarnton, Oxfordshire, England.  Google Scholar
First citationProcter, D. J. (2001). J. Chem. Soc. Perkin Trans. 1, pp. 335–354.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWoods, J. A., Hadfield, J. A., McGown, A. T. & Fox, B. W. (1993). Bioorg. Med. Chem. 1, 333–340.  CrossRef CAS PubMed Google Scholar
First citationYang, X. L., Liu, J., Yang, L. & Zhang, X. Y. (2005). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 35, 761–766.  Web of Science CrossRef CAS Google Scholar
First citationZade, S. S., Panda, S., Singh, H. B. & Wolmershäuser, G. (2005). Tetrahedron Lett. 46, 665–669.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhu, Z. & Jiang, W. (2008). Biomed. Res. Trace Elem. 19, 282–289.  CAS Google Scholar
First citationZuo, Z.-L. (2013). Acta Cryst. E69, o636.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds