organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 3-benzyl-1-[(cyclo­hexyl­­idene)amino]­thio­urea

aFaculty of Science & Engineering, School of Healthcare Science, Manchester Metropolitan University, Manchester M1 5GD, England, bChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and eKirkuk University, College of Education, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 3 November 2015; accepted 6 November 2015; online 14 November 2015)

The conformation of the title compound, C14H19N3S, is partially determined by an intra­molecular N—H⋯N hydro­gen-bond inter­action, although the N—H⋯N angle of 108° is quite small. The cyclo­hexyl­idene ring has a chair conformation and its mean plane is inclined to the benzene ring by 46.30 (8)°. In the crystal, mol­ecules are linked by pairs of N—H⋯S hydrogen bonds, forming inversion dimers, with an R22(8) ring motif. The dimers are reinforced by pairs of C—H⋯S hydrogen bonds, and are linked by further weak C—H⋯S hydrogen bonds, forming chains propagating along [100].

1. Related literature

For pharmacuetical properties of both thio­semicarbazones and their metal complexes, see: Kalinowski & Richardson (2005[Kalinowski, D. S. & Richardson, D. R. (2005). Pharmacol. Rev. 57, 547-583.], 2007[Kalinowski, D. S. & Richardson, D. R. (2007). Chem. Res. Toxicol. 20, 715-720.]); Smee & Sidwell (2003[Smee, D. F. & Sidwell, R. W. (2003). Antivir. Res. 57, 41-52.]); Pandeya et al. (1999[Pandeya, S. N., Sriram, D., Nath, G. & DeClercq, E. (1999). Eur. J. Pharm. Sci. 9, 25-31.]); Beraldo & Gambino (2004[Beraldo, H. & Gambino, D. (2004). Mini Rev. Med. Chem. 4, 31-39.]); Chohan et al. (2004[Chohan, Z. H., Pervez, H., Rauf, A., Khan, K. M. & Supuran, C. T. (2004). J. Enzyme Inhib. Med. Chem. 19, 417-423.]). For the synthesis of the title compound, see: Mague et al. (2014[Mague, J. T., Mohamed, S. K., Akkurt, M., Hassan, A. A. & Albayati, M. R. (2014). Acta Cryst. E70, o515.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C14H19N3S

  • Mr = 261.38

  • Triclinic, [P \overline 1]

  • a = 6.5537 (3) Å

  • b = 10.5247 (5) Å

  • c = 11.3403 (5) Å

  • α = 113.682 (1)°

  • β = 92.969 (2)°

  • γ = 106.610 (2)°

  • V = 673.96 (5) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 2.01 mm−1

  • T = 150 K

  • 0.31 × 0.20 × 0.16 mm

2.2. Data collection

  • Bruker D8 VENTURE PHOTON 100 CMOS diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.66, Tmax = 0.73

  • 5045 measured reflections

  • 2509 independent reflections

  • 2403 reflections with I > 2σ(I)

  • Rint = 0.019

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.086

  • S = 1.09

  • 2509 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N3 0.91 2.14 2.5713 (17) 108
N2—H2A⋯S1i 0.91 2.55 3.4577 (12) 172
C10—H10B⋯S1i 0.99 2.61 3.4847 (14) 147
C7—H7A⋯S1ii 0.99 2.85 3.8413 (15) 175
Symmetry codes: (i) -x+2, -y, -z+1; (ii) x-1, y, z.

Data collection: APEX2 (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Both thiosemicarbazones and their metal complexes have been studied as potential antiviral, antibacterial, antimycobacterial, antiprotozoal, antifungal, and antineoplastic agents (Kalinowski & Richardson, 2005; Kalinowski & Richardson, 2007; Smee & Sidwell, 2003; Pandeya et al., 1999). Furthermore, their anticonvulsant and neurotropic effects also have been reported (Beraldo & Gambino, 2004). The antifungal properties of thiosemicarbazones can be increased upon complexation with metal ions (Chohan et al., 2004). Based on such facts and following to our on-going study on synthesis of bio-active molecules we report in this study the synthesis and crystal structure of the title compound.

In the title compound, Fig. 1, the cyclohexylidene ring has a chair conformation with puckering parameters of Q = 0.564 (2) Å, θ = 177.2 (2)° and φ = 64 (4)°. The molecular conformation of the molecule may also be partially determined by an intramolecular N1—H1A···N3 hydrogen bond (H1A···N3 = 2.14 Å), although the N1—H1A···N3 angle of 108 ° is quite small (see Table 1).

In the crystal, molecules form inversion dimers through complementary N2—H2A···S1i and C10—H10B···S1i hydrogen bonds (Table 1 and Fig. 2). The dimers are linked by further C-H···S hydrogen bonds forming chains along direction [100]; Table 1.

Related literature top

For pharmacuetical properties of both thiosemicarbazones and their metal complexes, see: Kalinowski & Richardson (2005, 2007); Smee & Sidwell (2003); Pandeya et al. (1999); Beraldo & Gambino (2004); Chohan et al. (2004). For the synthesis of the title compound, see: Mague et al. (2014).

Experimental top

The title compound was prepared according to our recently reported method (Mague et al., 2014). Colourless crystals suitable for X-ray analysis were obtained by crystallization of the crude product from ethanol (yield 91%; m.p. 375–376 K).

Refinement top

H atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å) while those attached to nitrogen were placed in locations derived from a difference map and their parameters adjusted to give N—H = 0.91 Å. They were all included as riding contributions with Uiso(H) = 1.2Ueq(N,C).

Structure description top

Both thiosemicarbazones and their metal complexes have been studied as potential antiviral, antibacterial, antimycobacterial, antiprotozoal, antifungal, and antineoplastic agents (Kalinowski & Richardson, 2005; Kalinowski & Richardson, 2007; Smee & Sidwell, 2003; Pandeya et al., 1999). Furthermore, their anticonvulsant and neurotropic effects also have been reported (Beraldo & Gambino, 2004). The antifungal properties of thiosemicarbazones can be increased upon complexation with metal ions (Chohan et al., 2004). Based on such facts and following to our on-going study on synthesis of bio-active molecules we report in this study the synthesis and crystal structure of the title compound.

In the title compound, Fig. 1, the cyclohexylidene ring has a chair conformation with puckering parameters of Q = 0.564 (2) Å, θ = 177.2 (2)° and φ = 64 (4)°. The molecular conformation of the molecule may also be partially determined by an intramolecular N1—H1A···N3 hydrogen bond (H1A···N3 = 2.14 Å), although the N1—H1A···N3 angle of 108 ° is quite small (see Table 1).

In the crystal, molecules form inversion dimers through complementary N2—H2A···S1i and C10—H10B···S1i hydrogen bonds (Table 1 and Fig. 2). The dimers are linked by further C-H···S hydrogen bonds forming chains along direction [100]; Table 1.

For pharmacuetical properties of both thiosemicarbazones and their metal complexes, see: Kalinowski & Richardson (2005, 2007); Smee & Sidwell (2003); Pandeya et al. (1999); Beraldo & Gambino (2004); Chohan et al. (2004). For the synthesis of the title compound, see: Mague et al. (2014).

Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-labeling scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a axis. The N—H···S and C—H···S hydrogen bonds appear as dotted lines (see Table 1).
3-Benzyl-1-[(cyclohexylidene)amino]thiourea top
Crystal data top
C14H19N3SZ = 2
Mr = 261.38F(000) = 280
Triclinic, P1Dx = 1.288 Mg m3
a = 6.5537 (3) ÅCu Kα radiation, λ = 1.54178 Å
b = 10.5247 (5) ÅCell parameters from 4705 reflections
c = 11.3403 (5) Åθ = 4.3–72.1°
α = 113.682 (1)°µ = 2.01 mm1
β = 92.969 (2)°T = 150 K
γ = 106.610 (2)°Block, colourless
V = 673.96 (5) Å30.31 × 0.20 × 0.16 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
2509 independent reflections
Radiation source: INCOATEC IµS micro–focus source2403 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.019
Detector resolution: 10.4167 pixels mm-1θmax = 72.1°, θmin = 4.3°
ω scansh = 78
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
k = 1212
Tmin = 0.66, Tmax = 0.73l = 1313
5045 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: mixed
wR(F2) = 0.086H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0345P)2 + 0.3099P]
where P = (Fo2 + 2Fc2)/3
2509 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C14H19N3Sγ = 106.610 (2)°
Mr = 261.38V = 673.96 (5) Å3
Triclinic, P1Z = 2
a = 6.5537 (3) ÅCu Kα radiation
b = 10.5247 (5) ŵ = 2.01 mm1
c = 11.3403 (5) ÅT = 150 K
α = 113.682 (1)°0.31 × 0.20 × 0.16 mm
β = 92.969 (2)°
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
2509 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
2403 reflections with I > 2σ(I)
Tmin = 0.66, Tmax = 0.73Rint = 0.019
5045 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.086H-atom parameters constrained
S = 1.09Δρmax = 0.23 e Å3
2509 reflectionsΔρmin = 0.23 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å) while those attached to nitrogen were placed in locations derived from a difference map and their parameters adjusted to give N—H = 0.91 Å. All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.84373 (6)0.04432 (4)0.36001 (3)0.02549 (12)
N10.58096 (18)0.18119 (13)0.48809 (11)0.0220 (3)
H1A0.53930.22550.56520.026*
N20.83691 (18)0.15744 (12)0.61404 (11)0.0206 (2)
H2A0.93180.11070.61940.025*
N30.73740 (19)0.21975 (13)0.71731 (11)0.0226 (3)
C10.5199 (2)0.30572 (15)0.35057 (12)0.0199 (3)
C20.7361 (2)0.39067 (16)0.37044 (13)0.0242 (3)
H20.84780.36400.40080.029*
C30.7893 (3)0.51413 (17)0.34603 (15)0.0288 (3)
H30.93710.57200.36030.035*
C40.6271 (3)0.55336 (17)0.30082 (15)0.0299 (3)
H40.66370.63730.28330.036*
C50.4118 (3)0.46964 (17)0.28133 (15)0.0292 (3)
H50.30040.49620.25040.035*
C60.3582 (2)0.34677 (16)0.30689 (14)0.0244 (3)
H60.21010.29040.29440.029*
C70.4581 (2)0.16627 (15)0.36986 (13)0.0227 (3)
H7A0.30180.13640.37350.027*
H7B0.48040.08670.29300.027*
C80.7447 (2)0.13093 (14)0.49275 (13)0.0192 (3)
C90.8216 (2)0.25262 (15)0.83473 (13)0.0228 (3)
C101.0256 (2)0.23519 (16)0.88270 (13)0.0238 (3)
H10A1.12940.33290.94380.029*
H10B1.09400.19190.80750.029*
C110.9736 (2)0.13508 (17)0.95292 (14)0.0265 (3)
H11A0.88940.03320.88820.032*
H11B1.11050.13390.99300.032*
C120.8435 (2)0.18855 (17)1.05953 (14)0.0281 (3)
H12A0.80360.11821.09870.034*
H12B0.93490.28531.12970.034*
C130.6383 (2)0.20312 (18)1.00518 (14)0.0284 (3)
H13A0.56160.24171.07730.034*
H13B0.54060.10500.94050.034*
C140.6939 (3)0.30723 (18)0.93927 (15)0.0297 (3)
H14A0.55890.31110.89970.036*
H14B0.78030.40791.00540.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0279 (2)0.0337 (2)0.02208 (19)0.01730 (16)0.00831 (13)0.01400 (15)
N10.0244 (6)0.0269 (6)0.0220 (6)0.0131 (5)0.0072 (4)0.0143 (5)
N20.0229 (6)0.0239 (6)0.0212 (6)0.0113 (5)0.0064 (4)0.0131 (5)
N30.0276 (6)0.0239 (6)0.0229 (6)0.0123 (5)0.0088 (5)0.0135 (5)
C10.0234 (7)0.0219 (7)0.0152 (6)0.0089 (6)0.0042 (5)0.0079 (5)
C20.0228 (7)0.0274 (7)0.0234 (7)0.0084 (6)0.0031 (5)0.0123 (6)
C30.0291 (7)0.0267 (8)0.0282 (7)0.0043 (6)0.0071 (6)0.0129 (6)
C40.0425 (9)0.0251 (7)0.0286 (7)0.0132 (7)0.0121 (6)0.0161 (6)
C50.0355 (8)0.0308 (8)0.0304 (8)0.0182 (7)0.0075 (6)0.0172 (6)
C60.0241 (7)0.0275 (7)0.0249 (7)0.0113 (6)0.0054 (5)0.0126 (6)
C70.0197 (6)0.0241 (7)0.0253 (7)0.0067 (6)0.0006 (5)0.0125 (6)
C80.0188 (6)0.0177 (6)0.0231 (6)0.0044 (5)0.0045 (5)0.0119 (5)
C90.0291 (7)0.0214 (7)0.0234 (7)0.0108 (6)0.0070 (5)0.0130 (6)
C100.0250 (7)0.0258 (7)0.0209 (6)0.0085 (6)0.0043 (5)0.0103 (6)
C110.0314 (7)0.0296 (8)0.0241 (7)0.0150 (6)0.0047 (6)0.0139 (6)
C120.0339 (8)0.0333 (8)0.0225 (7)0.0131 (7)0.0067 (6)0.0159 (6)
C130.0282 (7)0.0366 (8)0.0216 (7)0.0122 (6)0.0086 (6)0.0126 (6)
C140.0369 (8)0.0361 (8)0.0250 (7)0.0227 (7)0.0099 (6)0.0144 (6)
Geometric parameters (Å, º) top
S1—C81.6898 (13)C6—H60.9500
N1—C81.3323 (17)C7—H7A0.9900
N1—C71.4551 (17)C7—H7B0.9900
N1—H1A0.9098C9—C101.5041 (19)
N2—C81.3580 (17)C9—C141.5053 (19)
N2—N31.3905 (16)C10—C111.5353 (19)
N2—H2A0.9098C10—H10A0.9900
N3—C91.2814 (18)C10—H10B0.9900
C1—C61.3911 (19)C11—C121.530 (2)
C1—C21.392 (2)C11—H11A0.9900
C1—C71.5144 (18)C11—H11B0.9900
C2—C31.388 (2)C12—C131.523 (2)
C2—H20.9500C12—H12A0.9900
C3—C41.389 (2)C12—H12B0.9900
C3—H30.9500C13—C141.533 (2)
C4—C51.384 (2)C13—H13A0.9900
C4—H40.9500C13—H13B0.9900
C5—C61.390 (2)C14—H14A0.9900
C5—H50.9500C14—H14B0.9900
C8—N1—C7125.66 (12)N3—C9—C10128.89 (13)
C8—N1—H1A117.0N3—C9—C14116.47 (12)
C7—N1—H1A117.3C10—C9—C14114.51 (12)
C8—N2—N3116.90 (11)C9—C10—C11110.25 (12)
C8—N2—H2A117.8C9—C10—H10A109.6
N3—N2—H2A122.8C11—C10—H10A109.6
C9—N3—N2119.80 (12)C9—C10—H10B109.6
C6—C1—C2119.17 (13)C11—C10—H10B109.6
C6—C1—C7119.45 (12)H10A—C10—H10B108.1
C2—C1—C7121.32 (12)C12—C11—C10111.12 (12)
C3—C2—C1120.32 (13)C12—C11—H11A109.4
C3—C2—H2119.8C10—C11—H11A109.4
C1—C2—H2119.8C12—C11—H11B109.4
C2—C3—C4120.19 (14)C10—C11—H11B109.4
C2—C3—H3119.9H11A—C11—H11B108.0
C4—C3—H3119.9C13—C12—C11111.75 (12)
C5—C4—C3119.75 (13)C13—C12—H12A109.3
C5—C4—H4120.1C11—C12—H12A109.3
C3—C4—H4120.1C13—C12—H12B109.3
C4—C5—C6120.13 (14)C11—C12—H12B109.3
C4—C5—H5119.9H12A—C12—H12B107.9
C6—C5—H5119.9C12—C13—C14110.59 (12)
C5—C6—C1120.42 (14)C12—C13—H13A109.5
C5—C6—H6119.8C14—C13—H13A109.5
C1—C6—H6119.8C12—C13—H13B109.5
N1—C7—C1113.77 (11)C14—C13—H13B109.5
N1—C7—H7A108.8H13A—C13—H13B108.1
C1—C7—H7A108.8C9—C14—C13109.31 (12)
N1—C7—H7B108.8C9—C14—H14A109.8
C1—C7—H7B108.8C13—C14—H14A109.8
H7A—C7—H7B107.7C9—C14—H14B109.8
N1—C8—N2115.81 (12)C13—C14—H14B109.8
N1—C8—S1123.98 (10)H14A—C14—H14B108.3
N2—C8—S1120.18 (10)
C8—N2—N3—C9177.30 (12)C7—N1—C8—S11.96 (19)
C6—C1—C2—C30.4 (2)N3—N2—C8—N16.42 (17)
C7—C1—C2—C3176.86 (13)N3—N2—C8—S1175.61 (9)
C1—C2—C3—C40.4 (2)N2—N3—C9—C100.8 (2)
C2—C3—C4—C50.6 (2)N2—N3—C9—C14174.84 (12)
C3—C4—C5—C60.0 (2)N3—C9—C10—C11120.72 (16)
C4—C5—C6—C10.8 (2)C14—C9—C10—C1154.96 (16)
C2—C1—C6—C51.0 (2)C9—C10—C11—C1252.49 (16)
C7—C1—C6—C5176.31 (13)C10—C11—C12—C1355.00 (17)
C8—N1—C7—C1102.88 (15)C11—C12—C13—C1456.90 (17)
C6—C1—C7—N1138.48 (13)N3—C9—C14—C13119.63 (14)
C2—C1—C7—N144.22 (17)C10—C9—C14—C1356.62 (17)
C7—N1—C8—N2179.85 (12)C12—C13—C14—C956.04 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N30.912.142.5713 (17)108
N2—H2A···S1i0.912.553.4577 (12)172
C10—H10B···S1i0.992.613.4847 (14)147
C7—H7A···S1ii0.992.853.8413 (15)175
Symmetry codes: (i) x+2, y, z+1; (ii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N30.912.142.5713 (17)108
N2—H2A···S1i0.912.553.4577 (12)172
C10—H10B···S1i0.992.613.4847 (14)147
C7—H7A···S1ii0.992.853.8413 (15)175
Symmetry codes: (i) x+2, y, z+1; (ii) x1, y, z.
 

Acknowledgements

The support of NSF–MRI Grant No. 1228232 for the purchase of the diffractometer, and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationBeraldo, H. & Gambino, D. (2004). Mini Rev. Med. Chem. 4, 31–39.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChohan, Z. H., Pervez, H., Rauf, A., Khan, K. M. & Supuran, C. T. (2004). J. Enzyme Inhib. Med. Chem. 19, 417–423.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKalinowski, D. S. & Richardson, D. R. (2005). Pharmacol. Rev. 57, 547–583.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKalinowski, D. S. & Richardson, D. R. (2007). Chem. Res. Toxicol. 20, 715–720.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMague, J. T., Mohamed, S. K., Akkurt, M., Hassan, A. A. & Albayati, M. R. (2014). Acta Cryst. E70, o515.  CSD CrossRef IUCr Journals Google Scholar
First citationPandeya, S. N., Sriram, D., Nath, G. & DeClercq, E. (1999). Eur. J. Pharm. Sci. 9, 25–31.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSmee, D. F. & Sidwell, R. W. (2003). Antivir. Res. 57, 41–52.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds