research communications
Crystal structures of two bis(iodomethyl)benzene derivatives: similarities and differences in the crystal packing
aDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
*Correspondence e-mail: mcadamj@chemistry.otago.ac.nz
The isomeric derivatives 1,2-bis(iodomethyl)benzene, (I), and 1,3-bis(iodomethyl)benzene (II), both C8H8I2, were prepared by metathesis from their dibromo analogues. The ortho-derivative, (I), lies about a crystallographic twofold axis that bisects the C—C bond between the two iodomethyl substituents. The packing in (I) relies solely on C—H⋯I hydrogen bonds supported by weak parallel slipped π–π stacking interactions [inter-centroid distance = 4.0569 (11) Å, inter-planar distance = 3.3789 (8) Å and slippage = 2.245 Å]. While C—H⋯I hydrogen bonds are also found in the packing of (II), type II, I⋯I halogen bonds [I⋯I = 3.8662 (2) Å] and C—H⋯π contacts feature prominently in stabilizing the three-dimensional structure.
1. Chemical context
The isomeric xylene derivatives reported here, 1,2-bis(iodomethyl)benzene, (I), and 1,3-bis(iodomethyl)benzene (II), are useful synthons for the preparation of a range of organic compounds. (I) is used particularly in the synthesis of polycyclic aromatic systems (see for example: Takahashi et al. 2006; Abreu et al., 2010; Wang et al., 2012). Similarly (II) has been used in polymer formation (Pandya & Gibson, 1991), in the synthesis of metacyclophanes (Ramming & Gleiter, 1997) and to provide aromatic spacers in organic synthesis (Kida et al., 2005). Our interest in such compounds is as components of ionene polymers. The compounds were readily prepared by metathesis from the bis(bromomethyl)benzene derivatives.
2. Structural commentary
The molecular structures of 1,2-bis(iodomethyl)benzene, (I), and 1,3-bis(iodomethyl)benzene, (II), are shown in Figs. 1 and 2 and are sufficiently similar to be discussed together. Each comprises a benzene ring with two iodomethyl substituents in the 1,2- and 1,3-positions for (I) and (II) respectively. The molecule of (I) lies about a twofold axis that bisects the C—C bond between the two iodomethyl substituents. For each molecule the C—I bonds of the substituents point away from opposite faces of the benzene rings with the C—C—I planes almost orthogonal to the ring planes; dihedral angles = 87.99 (14)° for (I) and 82.23 (14) and 83.61 (15)° for (II). The C1—C11 and C11—I1 bond lengths in (I) and C1—C11, C11—I1, C3—C31 and C31—I3 in (II) are reasonably self-consistent and also compare well with those found in the isomeric 1,4-bis(iodomethyl)benzene (McAdam et al. 2009).
3. Supramolecular features
3.1. Crystal packing for (I)
In the crystal of (I), weak parallel slipped π–π stacking interactions [inter-centroid distance = 4.0569 (11) Å, inter-planar distance = 3.3789 (8) Å, slippage = 2.245 Å], between the benzene rings of inversion-related molecules are supported by C3—H3⋯I1 hydrogen bonds, Table 1, to link molecules in a head-to tail-fashion, stacking them along c, Fig. 3. In addition, the iodine atoms act as bifurcated acceptors, forming weak C2—H2⋯I1 and C11—H112⋯I1 hydrogen bonds generating R21(6) ring motifs (Bernstein et al., 1995). These contacts link the molecules into zigzag chains along [101], Fig. 4. These contacts combine to link stacked columns of molecules through weak C—H⋯I hydrogen bonds and generate a three dimensional network structure, Fig. 5.
3.2. Crystal packing for (II)
In the crystal of (II), C11—H11B⋯I1 hydrogen bonds, Table 2, form a column supported by a series of C31—H31B⋯Cg1 contacts. C31—H31A⋯I3 hydrogen bonds link these in an obverse fashion, forming double chains along b, Fig. 6. C5—H5⋯I1 hydrogen bonds, Fig. 7, link the double chains into sheets in the ab plane. An extensive series of I1⋯I3 halogen bonds Fig. 8, I1⋯I3v,vi = 3.8662 (2) Å; symmetry codes: (v) = − + x, − y, + z; (vi) = + x, − y, − + z (Desiraju et al., 2013; Metrangolo et al., 2008), extend the structure in the third dimension, Fig. 9. The angles C11—I1—I3 = 117° and C31—I3—I1 = 165° characterize this halogen bond as type II (Pedireddi et al., 1994).
4. Database survey
A search of the Cambridge Structural Database (Version 5.36 with three updates; Groom & Allen, 2014) for molecules incorporating a C6CH2I fragment surprisingly generated only five hits for iodomethylbenzene derivatives. One of these is the isomeric 1,4-bis(iodomethyl)benzene reported by us previously (McAdam et al., 2009), while two others are the organic compounds 2-(iodomethyl)-1,3,5-trimethylbenzene (Bats, 2014) and 3′-iodo-5′-(iodomethyl)biphenyl-4-carbonitrile (He et al., 2013). The other two entries are metal complexes (Martínez-García et al., 2010; Rivada-Wheelaghan et al., 2012). In one of these, the iodine atom of the iodomethyl unit was found to act as a ligand to a platinum(II) nucleus (Rivada-Wheelaghan et al., 2012). The structures of both the chloro- and bromo-analogues of 1,2-bis(iodomethyl)benzene (Basaran et al., 1992; Jones & Kus, 2007) and 1,3-bis(iodomethyl)benzene (Sanders et al., 2013; Li et al., 2006; Jones & Kus, 2007) have also been reported. Interestingly, 1,3-bis(bromomethyl)benzene is isostructural with (II) and the packing features for the two compounds are identical, apart from somewhat increased distances for the iodo compound. For example I1⋯I3 = 3.8662 (2) Å for (II) but the equivalent Br⋯Br distance is 3.6742 (3) Å for the meta-dibromo analogue (Jones & Kus, 2007). Similar isostructural behaviour is observed for para-bis(iodomethyl)benzene (McAdam et al., 2009) and its dibromo analogue (Jones & Kus, 2007). However, in contrast, despite (I) and the ortho-dibromo analogue both displaying twofold symmetry, compound (I) crystallizes in the monoclinic C2/c while that for the dibromo counterpart is found to be orthorhombic, Fdd2 (Jones & Kus, 2007).
5. Synthesis and crystallization
Preparation of the title compounds was based on literature methods (Moore & Stupp, 1986; Kida et al., 2005). The appropriate bis(bromomethyl)benzene (1.32 g, 5 mmol) was refluxed for 7 h with sodium iodide (2.25 g, 15 mmol) in acetone (25 ml). The solution was allowed to cool overnight, the crystals that developed were rinsed gently with water to remove sodium bromide and air dried. The product was recrystallized a second time from acetone to give X-ray quality crystals. Confirmation of the metathesised (iodo) product was by microanalysis and 13C NMR spectra of the diiodo compounds are distinct from those of their dibromo precursors.
Compound (I): Analysis calculated for C8H8I2: C, 26.84; H, 2.25%. Found: C, 26.86; H, 2.14%. 13C NMR (δ p.p.m.): 137.4, 130.8, 129.0, 1.8.
Compound (II): Analysis calculated for C8H8I2: C, 26.84; H, 2.25%. Found: C, 26.63; H, 2.19%. 13C NMR (δ p.p.m.): 140.0, 129.4, 129.0, 128.4, 4.9.
6. Refinement
Crystal data, data collection and structure . All H atoms were refined using a riding model with d(C—H) = 0.95 Å, Uiso = 1.2Ueq(C) for aromatic and 0.99 Å, Uiso = 1.2Ueq(C) for CH2 H atoms. For (I), a low-angle reflection with Fo << Fc, that may have been affected by the beam-stop, was omitted from the final cycles.
details are summarized in Table 3Supporting information
https://doi.org/10.1107/S2056989015021295/su5235sup1.cif
contains datablocks global, I, II. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989015021295/su5235Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989015021295/su5235IIsup3.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989015021295/su5235Isup4.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989015021295/su5235IIsup5.cml
For both compounds, data collection: APEX2 (Bruker, 2013); cell
APEX2 and SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b) and TITAN2000 (Hunter & Simpson, 1999); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b), enCIFer (Allen et al., 2004), PLATON (Spek, 2009), publCIF (Westrip, 2010) and WinGX (Farrugia, 2012).C8H8I2 | F(000) = 648 |
Mr = 357.94 | Dx = 2.573 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 14.5485 (5) Å | Cell parameters from 5091 reflections |
b = 8.0461 (3) Å | θ = 2.6–32.9° |
c = 8.0582 (3) Å | µ = 6.74 mm−1 |
β = 101.637 (2)° | T = 90 K |
V = 923.89 (6) Å3 | Block, colourless |
Z = 4 | 0.31 × 0.17 × 0.15 mm |
Bruker APEXII CCD area-detector diffractometer | 1552 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.030 |
ω scans | θmax = 33.4°, θmin = 2.9° |
Absorption correction: multi-scan (SADABS; Bruker, 2013) | h = −21→21 |
Tmin = 0.534, Tmax = 1.000 | k = −11→12 |
8422 measured reflections | l = −12→10 |
1667 independent reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.018 | H-atom parameters constrained |
wR(F2) = 0.044 | w = 1/[σ2(Fo2) + (0.0175P)2 + 1.2212P] where P = (Fo2 + 2Fc2)/3 |
S = 1.15 | (Δ/σ)max = 0.002 |
1667 reflections | Δρmax = 0.52 e Å−3 |
46 parameters | Δρmin = −1.23 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. One low angle reflection with Fo << Fc was omitted from the final refinement cycles. |
x | y | z | Uiso*/Ueq | ||
I1 | 0.31503 (2) | 0.11885 (2) | 0.75250 (2) | 0.01529 (5) | |
C11 | 0.41526 (13) | 0.2215 (2) | 0.6102 (3) | 0.0142 (3) | |
H111 | 0.4651 | 0.1386 | 0.6070 | 0.017* | |
H112 | 0.3826 | 0.2433 | 0.4921 | 0.017* | |
C1 | 0.45886 (13) | 0.3782 (2) | 0.6864 (2) | 0.0111 (3) | |
C2 | 0.41839 (13) | 0.5301 (2) | 0.6268 (3) | 0.0136 (3) | |
H2 | 0.3623 | 0.5307 | 0.5427 | 0.016* | |
C3 | 0.45882 (14) | 0.6802 (2) | 0.6886 (3) | 0.0156 (4) | |
H3 | 0.4304 | 0.7823 | 0.6470 | 0.019* |
U11 | U22 | U33 | U12 | U13 | U23 | |
I1 | 0.01370 (7) | 0.01474 (7) | 0.01747 (8) | −0.00335 (4) | 0.00325 (5) | 0.00078 (4) |
C11 | 0.0139 (8) | 0.0163 (8) | 0.0132 (9) | −0.0016 (6) | 0.0044 (7) | −0.0027 (7) |
C1 | 0.0115 (8) | 0.0123 (8) | 0.0102 (8) | −0.0008 (5) | 0.0039 (6) | −0.0001 (6) |
C2 | 0.0131 (8) | 0.0158 (8) | 0.0122 (9) | 0.0026 (6) | 0.0035 (7) | 0.0011 (7) |
C3 | 0.0212 (9) | 0.0122 (8) | 0.0153 (9) | 0.0026 (7) | 0.0085 (7) | 0.0031 (7) |
I1—C11 | 2.1902 (19) | C1—C1i | 1.410 (4) |
C11—C1 | 1.487 (3) | C2—C3 | 1.391 (3) |
C11—H111 | 0.9900 | C2—H2 | 0.9500 |
C11—H112 | 0.9900 | C3—C3i | 1.392 (4) |
C1—C2 | 1.399 (3) | C3—H3 | 0.9500 |
C1—C11—I1 | 112.15 (13) | C1i—C1—C11 | 121.93 (11) |
C1—C11—H111 | 109.2 | C3—C2—C1 | 121.16 (18) |
I1—C11—H111 | 109.2 | C3—C2—H2 | 119.4 |
C1—C11—H112 | 109.2 | C1—C2—H2 | 119.4 |
I1—C11—H112 | 109.2 | C2—C3—C3i | 119.72 (12) |
H111—C11—H112 | 107.9 | C2—C3—H3 | 120.1 |
C2—C1—C1i | 119.10 (11) | C3i—C3—H3 | 120.1 |
C2—C1—C11 | 118.94 (18) | ||
I1—C11—C1—C2 | −93.41 (19) | C11—C1—C2—C3 | −177.12 (17) |
I1—C11—C1—C1i | 88.3 (2) | C1—C2—C3—C3i | 0.2 (3) |
C1i—C1—C2—C3 | 1.2 (3) |
Symmetry code: (i) −x+1, y, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···I1ii | 0.95 | 3.38 | 4.046 (2) | 129 |
C11—H112···I1iii | 0.99 | 3.33 | 4.179 (2) | 145 |
C2—H2···I1iii | 0.95 | 3.36 | 4.257 (2) | 158 |
Symmetry codes: (ii) x, −y+1, z−1/2; (iii) −x+1/2, −y+1/2, −z+1. |
C8H8I2 | F(000) = 648 |
Mr = 357.94 | Dx = 2.483 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 13.5323 (3) Å | θ = 2.6–33.0° |
b = 4.5464 (1) Å | µ = 6.50 mm−1 |
c = 15.6269 (4) Å | T = 90 K |
β = 95.203 (1)° | Needle, colourless |
V = 957.46 (4) Å3 | 0.45 × 0.06 × 0.05 mm |
Z = 4 |
Bruker APEXII CCD area-detector diffractometer | 2826 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.033 |
ω scans | θmax = 33.4°, θmin = 3.0° |
Absorption correction: multi-scan (SADABS; Bruker, 2013) | h = −20→20 |
Tmin = 0.569, Tmax = 1.000 | k = −6→5 |
16804 measured reflections | l = −23→24 |
3435 independent reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.024 | H-atom parameters constrained |
wR(F2) = 0.048 | w = 1/[σ2(Fo2) + (0.0109P)2 + 1.4343P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max = 0.002 |
3435 reflections | Δρmax = 1.24 e Å−3 |
91 parameters | Δρmin = −0.77 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
I1 | 0.35561 (2) | 0.36401 (4) | 0.46514 (2) | 0.01445 (4) | |
C11 | 0.4498 (2) | 0.1469 (6) | 0.37746 (17) | 0.0197 (5) | |
H11A | 0.5193 | 0.1461 | 0.4034 | 0.024* | |
H11B | 0.4282 | −0.0599 | 0.3690 | 0.024* | |
C1 | 0.44471 (19) | 0.2984 (6) | 0.29275 (16) | 0.0152 (5) | |
C2 | 0.51858 (18) | 0.4993 (5) | 0.27547 (16) | 0.0138 (5) | |
H2 | 0.5707 | 0.5419 | 0.3185 | 0.017* | |
C3 | 0.51650 (18) | 0.6379 (5) | 0.19574 (16) | 0.0128 (4) | |
C31 | 0.59593 (19) | 0.8514 (6) | 0.17788 (17) | 0.0175 (5) | |
H31A | 0.6261 | 0.9352 | 0.2326 | 0.021* | |
H31B | 0.5667 | 1.0148 | 0.1421 | 0.021* | |
I3 | 0.71036 (2) | 0.63230 (4) | 0.11079 (2) | 0.01692 (5) | |
C4 | 0.43920 (19) | 0.5755 (6) | 0.13244 (16) | 0.0171 (5) | |
H4 | 0.4369 | 0.6696 | 0.0780 | 0.021* | |
C5 | 0.36591 (19) | 0.3753 (6) | 0.14961 (17) | 0.0179 (5) | |
H5 | 0.3138 | 0.3322 | 0.1066 | 0.022* | |
C6 | 0.36832 (19) | 0.2379 (6) | 0.22919 (18) | 0.0178 (5) | |
H6 | 0.3177 | 0.1021 | 0.2404 | 0.021* |
U11 | U22 | U33 | U12 | U13 | U23 | |
I1 | 0.01484 (7) | 0.01475 (9) | 0.01451 (8) | 0.00033 (6) | 0.00534 (5) | 0.00083 (6) |
C11 | 0.0223 (12) | 0.0167 (13) | 0.0216 (12) | 0.0064 (11) | 0.0091 (10) | 0.0020 (11) |
C1 | 0.0174 (11) | 0.0125 (12) | 0.0167 (11) | 0.0032 (10) | 0.0065 (9) | 0.0003 (9) |
C2 | 0.0149 (11) | 0.0112 (12) | 0.0155 (11) | 0.0011 (9) | 0.0035 (9) | −0.0025 (9) |
C3 | 0.0139 (10) | 0.0097 (11) | 0.0153 (10) | 0.0010 (9) | 0.0044 (8) | −0.0013 (9) |
C31 | 0.0191 (12) | 0.0131 (13) | 0.0215 (12) | −0.0020 (10) | 0.0083 (10) | −0.0037 (10) |
I3 | 0.01582 (8) | 0.01765 (9) | 0.01833 (8) | −0.00134 (6) | 0.00728 (6) | −0.00027 (6) |
C4 | 0.0184 (11) | 0.0182 (13) | 0.0148 (11) | 0.0024 (10) | 0.0016 (9) | 0.0005 (10) |
C5 | 0.0152 (11) | 0.0191 (13) | 0.0190 (12) | 0.0004 (10) | −0.0012 (9) | −0.0044 (10) |
C6 | 0.0153 (11) | 0.0147 (13) | 0.0243 (13) | −0.0029 (10) | 0.0057 (10) | −0.0010 (11) |
I1—C11 | 2.189 (3) | C3—C31 | 1.493 (3) |
I1—I3i | 3.8662 (2) | C31—I3 | 2.187 (2) |
C11—C1 | 1.488 (4) | C31—H31A | 0.9900 |
C11—H11A | 0.9900 | C31—H31B | 0.9900 |
C11—H11B | 0.9900 | C4—C5 | 1.390 (4) |
C1—C6 | 1.394 (4) | C4—H4 | 0.9500 |
C1—C2 | 1.399 (3) | C5—C6 | 1.390 (4) |
C2—C3 | 1.394 (3) | C5—H5 | 0.9500 |
C2—H2 | 0.9500 | C6—H6 | 0.9500 |
C3—C4 | 1.402 (3) | ||
C11—I1—I3i | 117.47 (7) | C3—C31—I3 | 110.27 (16) |
C1—C11—I1 | 111.45 (17) | C3—C31—H31A | 109.6 |
C1—C11—H11A | 109.3 | I3—C31—H31A | 109.6 |
I1—C11—H11A | 109.3 | C3—C31—H31B | 109.6 |
C1—C11—H11B | 109.3 | I3—C31—H31B | 109.6 |
I1—C11—H11B | 109.3 | H31A—C31—H31B | 108.1 |
H11A—C11—H11B | 108.0 | C5—C4—C3 | 119.7 (2) |
C6—C1—C2 | 119.2 (2) | C5—C4—H4 | 120.1 |
C6—C1—C11 | 120.9 (2) | C3—C4—H4 | 120.1 |
C2—C1—C11 | 119.9 (2) | C6—C5—C4 | 120.5 (2) |
C3—C2—C1 | 120.7 (2) | C6—C5—H5 | 119.7 |
C3—C2—H2 | 119.6 | C4—C5—H5 | 119.7 |
C1—C2—H2 | 119.6 | C5—C6—C1 | 120.3 (2) |
C2—C3—C4 | 119.5 (2) | C5—C6—H6 | 119.9 |
C2—C3—C31 | 120.3 (2) | C1—C6—H6 | 119.9 |
C4—C3—C31 | 120.2 (2) | ||
I1—C11—C1—C6 | −83.6 (3) | C4—C3—C31—I3 | −83.7 (3) |
I1—C11—C1—C2 | 97.9 (2) | C2—C3—C4—C5 | −0.3 (4) |
C6—C1—C2—C3 | −0.1 (4) | C31—C3—C4—C5 | 179.7 (2) |
C11—C1—C2—C3 | 178.4 (2) | C3—C4—C5—C6 | 0.4 (4) |
C1—C2—C3—C4 | 0.2 (4) | C4—C5—C6—C1 | −0.3 (4) |
C1—C2—C3—C31 | −179.8 (2) | C2—C1—C6—C5 | 0.2 (4) |
C2—C3—C31—I3 | 96.4 (2) | C11—C1—C6—C5 | −178.4 (2) |
Symmetry code: (i) x−1/2, −y+1/2, z+1/2. |
Cg is the centroid of the C1–C6 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C11—H11B···I1ii | 0.99 | 3.22 | 4.060 (3) | 144 |
C5—H5···I1iii | 0.95 | 3.25 | 4.078 (3) | 147 |
C31—H31A···I3iv | 0.99 | 3.27 | 4.224 (3) | 162 |
C31—H31A···Cgv | 0.99 | 2.84 | 3.453 (3) | 121 |
Symmetry codes: (ii) x, y−1, z; (iii) −x+1/2, y−1/2, −z+1/2; (iv) −x+3/2, y+1/2, −z+1/2; (v) x, y+1, z. |
Acknowledgements
We thank the NZ Ministry of Business, Innovation and Employment Science Investment Fund (grant No. UOO-X1206), for support of this work and the University of Otago for the purchase of the diffractometer. JS thanks the Department of Chemistry, University of Otago, for support of his work.
References
Abreu, A. R., Pereira, M. M. & Bayón, J. C. (2010). Tetrahedron, 66, 743–749. Web of Science CrossRef CAS Google Scholar
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Basaran, R., Dou, S.-Q. & Weiss, A. (1992). Ber. Bunsenges. Phys. Chem. 96, 1688–1698. CrossRef CAS Google Scholar
Bats, J. W. (2014). Private Communication (deposition number 1000209). CCDC Union Road, Cambridge, England. Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Desiraju, G. R., Ho, P. S., Kloo, L., Legon, A. C., Marquardt, R., Metrangolo, P., Politzer, P., Resnati, G. & Rissanen, K. (2013). Pure Appl. Chem. 85, 1711–1713. Web of Science CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. Web of Science CSD CrossRef CAS Google Scholar
He, Y., Zhang, X.-Y., Cui, L.-Y. & Fan, X.-S. (2013). Chem. Asian J. 8, 717–722. Web of Science CSD CrossRef CAS PubMed Google Scholar
Hunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand. Google Scholar
Jones, P. G. & Kus, P. (2007). Z. Naturforsch. Teil B, 62, 725–731. CAS Google Scholar
Kida, T., Kikuzawa, A., Higashimoto, H., Nakatsuji, Y. & Akashi, M. (2005). Tetrahedron, 61, 5763–5768. Web of Science CrossRef CAS Google Scholar
Li, Q.-X., Cai, L., Wang, X.-F. & Shen, Y.-J. (2006). Acta Cryst. E62, o5726–o5727. Web of Science CSD CrossRef IUCr Journals Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Martínez-García, H., Morales, D., Pérez, J., Puerto, M. & Miguel, D. (2010). Inorg. Chem. 49, 6974–6985. Web of Science PubMed Google Scholar
McAdam, C. J., Hanton, L. R., Moratti, S. C. & Simpson, J. (2009). Acta Cryst. E65, o1573–o1574. Web of Science CSD CrossRef IUCr Journals Google Scholar
Metrangolo, P., Resnati, G., Pilati, T. & Biella, S. (2008). In Halogen Bonding: Fundamentals and Applications, edited by P. Metrangolo, & G. Resnati. Berlin: Springer-Verlag. Google Scholar
Moore, J. S. & Stupp, S. I. (1986). Macromolecules, 19, 1815–1824. CrossRef CAS Web of Science Google Scholar
Pandya, A. & Gibson, H. W. (1991). Polym. Bull. 25, 17–24. CAS Google Scholar
Pedireddi, V. R., Reddy, D. S., Goud, B. S., Craig, D. C., Rae, A. D. & Desiraju, G. R. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 2353–2360. CSD CrossRef Web of Science Google Scholar
Ramming, M. & Gleiter, R. (1997). J. Org. Chem. 62, 5821–5829. CrossRef CAS Web of Science Google Scholar
Rivada-Wheelaghan, O., Ortuño, M. A., Díez, J., García-Garrido, S. E., Maya, C., Lledós, A. & Conejero, S. (2012). J. Am. Chem. Soc. 134, 15261–15264. Web of Science CAS PubMed Google Scholar
Sanders, M. B., Leon, D., Ndichie, E. I. & Chan, B. C. (2013). Acta Cryst. E69, o1150. CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Takahashi, T., Li, S., Huang, W., Kong, F., Nakajima, K., Shen, B., Ohe, T. & Kanno, K. (2006). J. Org. Chem. 71, 7967–7977. Web of Science CSD CrossRef PubMed CAS Google Scholar
Wang, J.-G., Wang, M., Xiang, J.-C., Zhu, Y.-P., Xue, W.-J. & Wu, A.-X. (2012). Org. Lett. 14, 6060–6063. Web of Science CSD CrossRef CAS PubMed Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.