research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of two bis­­(iodo­meth­yl)benzene derivatives: similarities and differences in the crystal packing

aDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
*Correspondence e-mail: mcadamj@chemistry.otago.ac.nz

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 3 November 2015; accepted 9 November 2015; online 18 November 2015)

The isomeric derivatives 1,2-bis­(iodo­meth­yl)benzene, (I), and 1,3-bis­(iodo­meth­yl)benzene (II), both C8H8I2, were prepared by metathesis from their di­bromo analogues. The ortho-derivative, (I), lies about a crystallographic twofold axis that bis­ects the C—C bond between the two iodo­methyl substituents. The packing in (I) relies solely on C—H⋯I hydrogen bonds supported by weak parallel slipped ππ stacking inter­actions [inter-centroid distance = 4.0569 (11) Å, inter-planar distance = 3.3789 (8) Å and slippage = 2.245 Å]. While C—H⋯I hydrogen bonds are also found in the packing of (II), type II, I⋯I halogen bonds [I⋯I = 3.8662 (2) Å] and C—H⋯π contacts feature prominently in stabilizing the three-dimensional structure.

1. Chemical context

The isomeric xylene derivatives reported here, 1,2-bis­(iodo­meth­yl)benzene, (I)[link], and 1,3-bis­(iodo­meth­yl)benzene (II)[link], are useful synthons for the preparation of a range of organic compounds. (I)[link] is used particularly in the synthesis of polycyclic aromatic systems (see for example: Takahashi et al. 2006[Takahashi, T., Li, S., Huang, W., Kong, F., Nakajima, K., Shen, B., Ohe, T. & Kanno, K. (2006). J. Org. Chem. 71, 7967-7977.]; Abreu et al., 2010[Abreu, A. R., Pereira, M. M. & Bayón, J. C. (2010). Tetrahedron, 66, 743-749.]; Wang et al., 2012[Wang, J.-G., Wang, M., Xiang, J.-C., Zhu, Y.-P., Xue, W.-J. & Wu, A.-X. (2012). Org. Lett. 14, 6060-6063.]). Similarly (II)[link] has been used in polymer formation (Pandya & Gibson, 1991[Pandya, A. & Gibson, H. W. (1991). Polym. Bull. 25, 17-24.]), in the synthesis of meta­cyclo­phanes (Ramming & Gleiter, 1997[Ramming, M. & Gleiter, R. (1997). J. Org. Chem. 62, 5821-5829.]) and to provide aromatic spacers in organic synthesis (Kida et al., 2005[Kida, T., Kikuzawa, A., Higashimoto, H., Nakatsuji, Y. & Akashi, M. (2005). Tetrahedron, 61, 5763-5768.]). Our inter­est in such compounds is as components of ionene polymers. The compounds were readily prepared by metathesis from the bis­(bromo­meth­yl)benzene derivatives.

[Scheme 1]

2. Structural commentary

The mol­ecular structures of 1,2-bis­(iodo­meth­yl)benzene, (I)[link], and 1,3-bis­(iodo­meth­yl)benzene, (II)[link], are shown in Figs. 1[link] and 2[link] and are sufficiently similar to be discussed together. Each comprises a benzene ring with two iodo­methyl substituents in the 1,2- and 1,3-positions for (I)[link] and (II)[link] respectively. The mol­ecule of (I)[link] lies about a twofold axis that bis­ects the C—C bond between the two iodo­methyl substituents. For each mol­ecule the C—I bonds of the substituents point away from opposite faces of the benzene rings with the C—C—I planes almost orthogonal to the ring planes; dihedral angles = 87.99 (14)° for (I)[link] and 82.23 (14) and 83.61 (15)° for (II)[link]. The C1—C11 and C11—I1 bond lengths in (I)[link] and C1—C11, C11—I1, C3—C31 and C31—I3 in (II)[link] are reasonably self-consistent and also compare well with those found in the isomeric 1,4-bis­(iodo­meth­yl)benzene (McAdam et al. 2009[McAdam, C. J., Hanton, L. R., Moratti, S. C. & Simpson, J. (2009). Acta Cryst. E65, o1573-o1574.]).

[Figure 1]
Figure 1
The mol­ecular structure of compound (I)[link], with displacement ellipsoids drawn at the 50% probability level. The unlabelled atoms are related to labelled atoms by the symmetry operation (−x + 1, y, −z + [{3\over 2}]).
[Figure 2]
Figure 2
The mol­ecular structure of compound (II)[link], with displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

3.1. Crystal packing for (I)

In the crystal of (I)[link], weak parallel slipped ππ stacking inter­actions [inter-centroid distance = 4.0569 (11) Å, inter-planar distance = 3.3789 (8) Å, slippage = 2.245 Å], between the benzene rings of inversion-related mol­ecules are supported by C3—H3⋯I1 hydrogen bonds, Table 1[link], to link mol­ecules in a head-to tail-fashion, stacking them along c, Fig. 3[link]. In addition, the iodine atoms act as bifurcated acceptors, forming weak C2—H2⋯I1 and C11—H112⋯I1 hydrogen bonds generating R21(6) ring motifs (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). These contacts link the mol­ecules into zigzag chains along [101], Fig. 4[link]. These contacts combine to link stacked columns of mol­ecules through weak C—H⋯I hydrogen bonds and generate a three dimensional network structure, Fig. 5[link].

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯I1i 0.95 3.38 4.046 (2) 129
C11—H112⋯I1ii 0.99 3.33 4.179 (2) 145
C2—H2⋯I1ii 0.95 3.36 4.257 (2) 158
Symmetry codes: (i) [x, -y+1, z-{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].
[Figure 3]
Figure 3
ππ stacking inter­actions (green dotted lines) supported by C—H⋯I hydrogen bonds for (I)[link]. Hydrogen bonds in this and subsequent figures are drawn as blue dashed lines.
[Figure 4]
Figure 4
Chains of mol­ecules of (I)[link] in [101].
[Figure 5]
Figure 5
Overall packing for (I)[link] viewed along the c-axis direction.

3.2. Crystal packing for (II)

In the crystal of (II)[link], C11—H11B⋯I1 hydrogen bonds, Table 2[link], form a column supported by a series of C31—H31BCg1 contacts. C31—H31A⋯I3 hydrogen bonds link these in an obverse fashion, forming double chains along b, Fig. 6[link]. C5—H5⋯I1 hydrogen bonds, Fig. 7[link], link the double chains into sheets in the ab plane. An extensive series of I1⋯I3 halogen bonds Fig. 8[link], I1⋯I3v,vi = 3.8662 (2) Å; symmetry codes: (v) = −[{1\over 2}] + x, [{1\over 2}] − y, [{1\over 2}] + z; (vi) = [{1\over 2}] + x, [{1\over 2}] − y, −[{1\over 2}] + z (Desiraju et al., 2013[Desiraju, G. R., Ho, P. S., Kloo, L., Legon, A. C., Marquardt, R., Metrangolo, P., Politzer, P., Resnati, G. & Rissanen, K. (2013). Pure Appl. Chem. 85, 1711-1713.]; Metrangolo et al., 2008[Metrangolo, P., Resnati, G., Pilati, T. & Biella, S. (2008). In Halogen Bonding: Fundamentals and Applications, edited by P. Metrangolo, & G. Resnati. Berlin: Springer-Verlag.]), extend the structure in the third dimension, Fig. 9[link]. The angles C11—I1—I3 = 117° and C31—I3—I1 = 165° characterize this halogen bond as type II (Pedireddi et al., 1994[Pedireddi, V. R., Reddy, D. S., Goud, B. S., Craig, D. C., Rae, A. D. & Desiraju, G. R. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 2353-2360.]).

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

Cg is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11B⋯I1i 0.99 3.22 4.060 (3) 144
C5—H5⋯I1ii 0.95 3.25 4.078 (3) 147
C31—H31A⋯I3iii 0.99 3.27 4.224 (3) 162
C31—H31ACgiv 0.99 2.84 3.453 (3) 121
Symmetry codes: (i) x, y-1, z; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) x, y+1, z.
[Figure 6]
Figure 6
Double chains of mol­ecules of (II)[link] formed by a series of C31—H31BCg1 contacts (green dotted lines) linked by C—H⋯I hydrogen bonds.
[Figure 7]
Figure 7
Sheets of mol­ecules of (II)[link] in the ab plane formed by C—H⋯I. hydrogen bonds.
[Figure 8]
Figure 8
Sheets of mol­ecules of (II)[link] in the (101) plane formed by I⋯I halogen bonds, blue dashed lines, supported by C—H⋯I hydrogen bonds.
[Figure 9]
Figure 9
Overall packing for (II)[link] viewed along the b-axis direction.

4. Database survey

A search of the Cambridge Structural Database (Version 5.36 with three updates; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) for mol­ecules incorporating a C6CH2I fragment surprisingly generated only five hits for iodo­methyl­benzene derivatives. One of these is the isomeric 1,4-bis­(iodo­meth­yl)benzene reported by us previously (McAdam et al., 2009[McAdam, C. J., Hanton, L. R., Moratti, S. C. & Simpson, J. (2009). Acta Cryst. E65, o1573-o1574.]), while two others are the organic compounds 2-(iodo­meth­yl)-1,3,5-tri­methyl­benzene (Bats, 2014[Bats, J. W. (2014). Private Communication (deposition number 1000209). CCDC Union Road, Cambridge, England.]) and 3′-iodo-5′-(iodo­meth­yl)biphenyl-4-carbo­nitrile (He et al., 2013[He, Y., Zhang, X.-Y., Cui, L.-Y. & Fan, X.-S. (2013). Chem. Asian J. 8, 717-722.]). The other two entries are metal complexes (Martínez-García et al., 2010[Martínez-García, H., Morales, D., Pérez, J., Puerto, M. & Miguel, D. (2010). Inorg. Chem. 49, 6974-6985.]; Rivada-Wheelaghan et al., 2012[Rivada-Wheelaghan, O., Ortuño, M. A., Díez, J., García-Garrido, S. E., Maya, C., Lledós, A. & Conejero, S. (2012). J. Am. Chem. Soc. 134, 15261-15264.]). In one of these, the iodine atom of the iodo­methyl unit was found to act as a ligand to a platinum(II) nucleus (Rivada-Wheelaghan et al., 2012[Rivada-Wheelaghan, O., Ortuño, M. A., Díez, J., García-Garrido, S. E., Maya, C., Lledós, A. & Conejero, S. (2012). J. Am. Chem. Soc. 134, 15261-15264.]). The structures of both the chloro- and bromo-analogues of 1,2-bis­(iodo­meth­yl)benzene (Basaran et al., 1992[Basaran, R., Dou, S.-Q. & Weiss, A. (1992). Ber. Bunsenges. Phys. Chem. 96, 1688-1698.]; Jones & Kus, 2007[Jones, P. G. & Kus, P. (2007). Z. Naturforsch. Teil B, 62, 725-731.]) and 1,3-bis­(iodo­meth­yl)benzene (Sanders et al., 2013[Sanders, M. B., Leon, D., Ndichie, E. I. & Chan, B. C. (2013). Acta Cryst. E69, o1150.]; Li et al., 2006[Li, Q.-X., Cai, L., Wang, X.-F. & Shen, Y.-J. (2006). Acta Cryst. E62, o5726-o5727.]; Jones & Kus, 2007[Jones, P. G. & Kus, P. (2007). Z. Naturforsch. Teil B, 62, 725-731.]) have also been reported. Inter­estingly, 1,3-bis(bromo­meth­yl)benzene is isostructural with (II)[link] and the packing features for the two compounds are identical, apart from somewhat increased distances for the iodo compound. For example I1⋯I3 = 3.8662 (2) Å for (II)[link] but the equivalent Br⋯Br distance is 3.6742 (3) Å for the meta-di­bromo analogue (Jones & Kus, 2007[Jones, P. G. & Kus, P. (2007). Z. Naturforsch. Teil B, 62, 725-731.]). Similar isostructural behaviour is observed for para-bis­(iodo­meth­yl)benzene (McAdam et al., 2009[McAdam, C. J., Hanton, L. R., Moratti, S. C. & Simpson, J. (2009). Acta Cryst. E65, o1573-o1574.]) and its di­bromo analogue (Jones & Kus, 2007[Jones, P. G. & Kus, P. (2007). Z. Naturforsch. Teil B, 62, 725-731.]). However, in contrast, despite (I)[link] and the ortho-di­bromo analogue both displaying twofold symmetry, compound (I)[link] crystallizes in the monoclinic space group C2/c while that for the di­bromo counterpart is found to be ortho­rhom­bic, Fdd2 (Jones & Kus, 2007[Jones, P. G. & Kus, P. (2007). Z. Naturforsch. Teil B, 62, 725-731.]).

5. Synthesis and crystallization

Preparation of the title compounds was based on literature methods (Moore & Stupp, 1986[Moore, J. S. & Stupp, S. I. (1986). Macromolecules, 19, 1815-1824.]; Kida et al., 2005[Kida, T., Kikuzawa, A., Higashimoto, H., Nakatsuji, Y. & Akashi, M. (2005). Tetrahedron, 61, 5763-5768.]). The appropriate bis­(bromo­meth­yl)benzene (1.32 g, 5 mmol) was refluxed for 7 h with sodium iodide (2.25 g, 15 mmol) in acetone (25 ml). The solution was allowed to cool overnight, the crystals that developed were rinsed gently with water to remove sodium bromide and air dried. The product was recrystallized a second time from acetone to give X-ray quality crystals. Confirmation of the metathesised (iodo) product was by microanalysis and mass spectroscopy. 13C NMR spectra of the di­iodo compounds are distinct from those of their di­bromo precursors.

Compound (I)[link]: Analysis calculated for C8H8I2: C, 26.84; H, 2.25%. Found: C, 26.86; H, 2.14%. 13C NMR (δ p.p.m.): 137.4, 130.8, 129.0, 1.8.

Compound (II)[link]: Analysis calculated for C8H8I2: C, 26.84; H, 2.25%. Found: C, 26.63; H, 2.19%. 13C NMR (δ p.p.m.): 140.0, 129.4, 129.0, 128.4, 4.9.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms were refined using a riding model with d(C—H) = 0.95 Å, Uiso = 1.2Ueq(C) for aromatic and 0.99 Å, Uiso = 1.2Ueq(C) for CH2 H atoms. For (I)[link], a low-angle reflection with Fo << Fc, that may have been affected by the beam-stop, was omitted from the final refinement cycles.

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula C8H8I2 C8H8I2
Mr 357.94 357.94
Crystal system, space group Monoclinic, C2/c Monoclinic, P21/n
Temperature (K) 90 90
a, b, c (Å) 14.5485 (5), 8.0461 (3), 8.0582 (3) 13.5323 (3), 4.5464 (1), 15.6269 (4)
β (°) 101.637 (2) 95.203 (1)
V3) 923.89 (6) 957.46 (4)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 6.74 6.50
Crystal size (mm) 0.31 × 0.17 × 0.15 0.45 × 0.06 × 0.05
 
Data collection
Diffractometer Bruker APEXII CCD area detector Bruker APEXII CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.534, 1.000 0.569, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 8422, 1667, 1552 16804, 3435, 2826
Rint 0.030 0.033
(sin θ/λ)max−1) 0.775 0.775
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.018, 0.044, 1.15 0.024, 0.048, 1.06
No. of reflections 1667 3435
No. of parameters 46 91
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.52, −1.23 1.24, −0.77
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), TITAN2000 (Hunter & Simpson, 1999[Hunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both compounds, data collection: APEX2 (Bruker, 2013); cell refinement: APEX2 and SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b) and TITAN2000 (Hunter & Simpson, 1999); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b), enCIFer (Allen et al., 2004), PLATON (Spek, 2009), publCIF (Westrip, 2010) and WinGX (Farrugia, 2012).

(I) 1,2-Bis(iodomethyl)benzene top
Crystal data top
C8H8I2F(000) = 648
Mr = 357.94Dx = 2.573 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 14.5485 (5) ÅCell parameters from 5091 reflections
b = 8.0461 (3) Åθ = 2.6–32.9°
c = 8.0582 (3) ŵ = 6.74 mm1
β = 101.637 (2)°T = 90 K
V = 923.89 (6) Å3Block, colourless
Z = 40.31 × 0.17 × 0.15 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1552 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.030
ω scansθmax = 33.4°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
h = 2121
Tmin = 0.534, Tmax = 1.000k = 1112
8422 measured reflectionsl = 1210
1667 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.018H-atom parameters constrained
wR(F2) = 0.044 w = 1/[σ2(Fo2) + (0.0175P)2 + 1.2212P]
where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max = 0.002
1667 reflectionsΔρmax = 0.52 e Å3
46 parametersΔρmin = 1.23 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. One low angle reflection with Fo << Fc was omitted from the final refinement cycles.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.31503 (2)0.11885 (2)0.75250 (2)0.01529 (5)
C110.41526 (13)0.2215 (2)0.6102 (3)0.0142 (3)
H1110.46510.13860.60700.017*
H1120.38260.24330.49210.017*
C10.45886 (13)0.3782 (2)0.6864 (2)0.0111 (3)
C20.41839 (13)0.5301 (2)0.6268 (3)0.0136 (3)
H20.36230.53070.54270.016*
C30.45882 (14)0.6802 (2)0.6886 (3)0.0156 (4)
H30.43040.78230.64700.019*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.01370 (7)0.01474 (7)0.01747 (8)0.00335 (4)0.00325 (5)0.00078 (4)
C110.0139 (8)0.0163 (8)0.0132 (9)0.0016 (6)0.0044 (7)0.0027 (7)
C10.0115 (8)0.0123 (8)0.0102 (8)0.0008 (5)0.0039 (6)0.0001 (6)
C20.0131 (8)0.0158 (8)0.0122 (9)0.0026 (6)0.0035 (7)0.0011 (7)
C30.0212 (9)0.0122 (8)0.0153 (9)0.0026 (7)0.0085 (7)0.0031 (7)
Geometric parameters (Å, º) top
I1—C112.1902 (19)C1—C1i1.410 (4)
C11—C11.487 (3)C2—C31.391 (3)
C11—H1110.9900C2—H20.9500
C11—H1120.9900C3—C3i1.392 (4)
C1—C21.399 (3)C3—H30.9500
C1—C11—I1112.15 (13)C1i—C1—C11121.93 (11)
C1—C11—H111109.2C3—C2—C1121.16 (18)
I1—C11—H111109.2C3—C2—H2119.4
C1—C11—H112109.2C1—C2—H2119.4
I1—C11—H112109.2C2—C3—C3i119.72 (12)
H111—C11—H112107.9C2—C3—H3120.1
C2—C1—C1i119.10 (11)C3i—C3—H3120.1
C2—C1—C11118.94 (18)
I1—C11—C1—C293.41 (19)C11—C1—C2—C3177.12 (17)
I1—C11—C1—C1i88.3 (2)C1—C2—C3—C3i0.2 (3)
C1i—C1—C2—C31.2 (3)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···I1ii0.953.384.046 (2)129
C11—H112···I1iii0.993.334.179 (2)145
C2—H2···I1iii0.953.364.257 (2)158
Symmetry codes: (ii) x, y+1, z1/2; (iii) x+1/2, y+1/2, z+1.
(II) 1,3-Bis(iodomethyl)benzene top
Crystal data top
C8H8I2F(000) = 648
Mr = 357.94Dx = 2.483 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 13.5323 (3) Åθ = 2.6–33.0°
b = 4.5464 (1) ŵ = 6.50 mm1
c = 15.6269 (4) ÅT = 90 K
β = 95.203 (1)°Needle, colourless
V = 957.46 (4) Å30.45 × 0.06 × 0.05 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2826 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.033
ω scansθmax = 33.4°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
h = 2020
Tmin = 0.569, Tmax = 1.000k = 65
16804 measured reflectionsl = 2324
3435 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.048 w = 1/[σ2(Fo2) + (0.0109P)2 + 1.4343P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.002
3435 reflectionsΔρmax = 1.24 e Å3
91 parametersΔρmin = 0.77 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.35561 (2)0.36401 (4)0.46514 (2)0.01445 (4)
C110.4498 (2)0.1469 (6)0.37746 (17)0.0197 (5)
H11A0.51930.14610.40340.024*
H11B0.42820.05990.36900.024*
C10.44471 (19)0.2984 (6)0.29275 (16)0.0152 (5)
C20.51858 (18)0.4993 (5)0.27547 (16)0.0138 (5)
H20.57070.54190.31850.017*
C30.51650 (18)0.6379 (5)0.19574 (16)0.0128 (4)
C310.59593 (19)0.8514 (6)0.17788 (17)0.0175 (5)
H31A0.62610.93520.23260.021*
H31B0.56671.01480.14210.021*
I30.71036 (2)0.63230 (4)0.11079 (2)0.01692 (5)
C40.43920 (19)0.5755 (6)0.13244 (16)0.0171 (5)
H40.43690.66960.07800.021*
C50.36591 (19)0.3753 (6)0.14961 (17)0.0179 (5)
H50.31380.33220.10660.022*
C60.36832 (19)0.2379 (6)0.22919 (18)0.0178 (5)
H60.31770.10210.24040.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.01484 (7)0.01475 (9)0.01451 (8)0.00033 (6)0.00534 (5)0.00083 (6)
C110.0223 (12)0.0167 (13)0.0216 (12)0.0064 (11)0.0091 (10)0.0020 (11)
C10.0174 (11)0.0125 (12)0.0167 (11)0.0032 (10)0.0065 (9)0.0003 (9)
C20.0149 (11)0.0112 (12)0.0155 (11)0.0011 (9)0.0035 (9)0.0025 (9)
C30.0139 (10)0.0097 (11)0.0153 (10)0.0010 (9)0.0044 (8)0.0013 (9)
C310.0191 (12)0.0131 (13)0.0215 (12)0.0020 (10)0.0083 (10)0.0037 (10)
I30.01582 (8)0.01765 (9)0.01833 (8)0.00134 (6)0.00728 (6)0.00027 (6)
C40.0184 (11)0.0182 (13)0.0148 (11)0.0024 (10)0.0016 (9)0.0005 (10)
C50.0152 (11)0.0191 (13)0.0190 (12)0.0004 (10)0.0012 (9)0.0044 (10)
C60.0153 (11)0.0147 (13)0.0243 (13)0.0029 (10)0.0057 (10)0.0010 (11)
Geometric parameters (Å, º) top
I1—C112.189 (3)C3—C311.493 (3)
I1—I3i3.8662 (2)C31—I32.187 (2)
C11—C11.488 (4)C31—H31A0.9900
C11—H11A0.9900C31—H31B0.9900
C11—H11B0.9900C4—C51.390 (4)
C1—C61.394 (4)C4—H40.9500
C1—C21.399 (3)C5—C61.390 (4)
C2—C31.394 (3)C5—H50.9500
C2—H20.9500C6—H60.9500
C3—C41.402 (3)
C11—I1—I3i117.47 (7)C3—C31—I3110.27 (16)
C1—C11—I1111.45 (17)C3—C31—H31A109.6
C1—C11—H11A109.3I3—C31—H31A109.6
I1—C11—H11A109.3C3—C31—H31B109.6
C1—C11—H11B109.3I3—C31—H31B109.6
I1—C11—H11B109.3H31A—C31—H31B108.1
H11A—C11—H11B108.0C5—C4—C3119.7 (2)
C6—C1—C2119.2 (2)C5—C4—H4120.1
C6—C1—C11120.9 (2)C3—C4—H4120.1
C2—C1—C11119.9 (2)C6—C5—C4120.5 (2)
C3—C2—C1120.7 (2)C6—C5—H5119.7
C3—C2—H2119.6C4—C5—H5119.7
C1—C2—H2119.6C5—C6—C1120.3 (2)
C2—C3—C4119.5 (2)C5—C6—H6119.9
C2—C3—C31120.3 (2)C1—C6—H6119.9
C4—C3—C31120.2 (2)
I1—C11—C1—C683.6 (3)C4—C3—C31—I383.7 (3)
I1—C11—C1—C297.9 (2)C2—C3—C4—C50.3 (4)
C6—C1—C2—C30.1 (4)C31—C3—C4—C5179.7 (2)
C11—C1—C2—C3178.4 (2)C3—C4—C5—C60.4 (4)
C1—C2—C3—C40.2 (4)C4—C5—C6—C10.3 (4)
C1—C2—C3—C31179.8 (2)C2—C1—C6—C50.2 (4)
C2—C3—C31—I396.4 (2)C11—C1—C6—C5178.4 (2)
Symmetry code: (i) x1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C11—H11B···I1ii0.993.224.060 (3)144
C5—H5···I1iii0.953.254.078 (3)147
C31—H31A···I3iv0.993.274.224 (3)162
C31—H31A···Cgv0.992.843.453 (3)121
Symmetry codes: (ii) x, y1, z; (iii) x+1/2, y1/2, z+1/2; (iv) x+3/2, y+1/2, z+1/2; (v) x, y+1, z.
 

Acknowledgements

We thank the NZ Ministry of Business, Innovation and Employment Science Investment Fund (grant No. UOO-X1206), for support of this work and the University of Otago for the purchase of the diffractometer. JS thanks the Department of Chemistry, University of Otago, for support of his work.

References

First citationAbreu, A. R., Pereira, M. M. & Bayón, J. C. (2010). Tetrahedron, 66, 743–749.  Web of Science CrossRef CAS Google Scholar
First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBasaran, R., Dou, S.-Q. & Weiss, A. (1992). Ber. Bunsenges. Phys. Chem. 96, 1688–1698.  CrossRef CAS Google Scholar
First citationBats, J. W. (2014). Private Communication (deposition number 1000209). CCDC Union Road, Cambridge, England.  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. R., Ho, P. S., Kloo, L., Legon, A. C., Marquardt, R., Metrangolo, P., Politzer, P., Resnati, G. & Rissanen, K. (2013). Pure Appl. Chem. 85, 1711–1713.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationHe, Y., Zhang, X.-Y., Cui, L.-Y. & Fan, X.-S. (2013). Chem. Asian J. 8, 717–722.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationHunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.  Google Scholar
First citationJones, P. G. & Kus, P. (2007). Z. Naturforsch. Teil B, 62, 725–731.  CAS Google Scholar
First citationKida, T., Kikuzawa, A., Higashimoto, H., Nakatsuji, Y. & Akashi, M. (2005). Tetrahedron, 61, 5763–5768.  Web of Science CrossRef CAS Google Scholar
First citationLi, Q.-X., Cai, L., Wang, X.-F. & Shen, Y.-J. (2006). Acta Cryst. E62, o5726–o5727.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMartínez-García, H., Morales, D., Pérez, J., Puerto, M. & Miguel, D. (2010). Inorg. Chem. 49, 6974–6985.  Web of Science PubMed Google Scholar
First citationMcAdam, C. J., Hanton, L. R., Moratti, S. C. & Simpson, J. (2009). Acta Cryst. E65, o1573–o1574.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMetrangolo, P., Resnati, G., Pilati, T. & Biella, S. (2008). In Halogen Bonding: Fundamentals and Applications, edited by P. Metrangolo, & G. Resnati. Berlin: Springer-Verlag.  Google Scholar
First citationMoore, J. S. & Stupp, S. I. (1986). Macromolecules, 19, 1815–1824.  CrossRef CAS Web of Science Google Scholar
First citationPandya, A. & Gibson, H. W. (1991). Polym. Bull. 25, 17–24.  CAS Google Scholar
First citationPedireddi, V. R., Reddy, D. S., Goud, B. S., Craig, D. C., Rae, A. D. & Desiraju, G. R. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 2353–2360.  CSD CrossRef Web of Science Google Scholar
First citationRamming, M. & Gleiter, R. (1997). J. Org. Chem. 62, 5821–5829.  CrossRef CAS Web of Science Google Scholar
First citationRivada-Wheelaghan, O., Ortuño, M. A., Díez, J., García-Garrido, S. E., Maya, C., Lledós, A. & Conejero, S. (2012). J. Am. Chem. Soc. 134, 15261–15264.  Web of Science CAS PubMed Google Scholar
First citationSanders, M. B., Leon, D., Ndichie, E. I. & Chan, B. C. (2013). Acta Cryst. E69, o1150.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTakahashi, T., Li, S., Huang, W., Kong, F., Nakajima, K., Shen, B., Ohe, T. & Kanno, K. (2006). J. Org. Chem. 71, 7967–7977.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWang, J.-G., Wang, M., Xiang, J.-C., Zhu, Y.-P., Xue, W.-J. & Wu, A.-X. (2012). Org. Lett. 14, 6060–6063.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds