organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 4-bromo-2-(1H-imidazo[4,5-b]pyridin-2-yl)phenol

aLaboratoire d'Electrochimie, d'Ingénierie Moléculaire et de Catalyse Redox, Faculty of Technology, University of Ferhat Abbas Sétif-1, 19000 Sétif, Algeria
*Correspondence e-mail: k_ouari@yahoo.fr

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 6 November 2015; accepted 19 November 2015; online 28 November 2015)

In the title compound, C12H8BrN3O, the 4-bromo­phenol ring is coplanar with the planar imidazo[4,5-b]pyridine moiety (r.m.s deviation = 0.015 Å), making a dihedral angle of 1.8 (2)°. There is an intra­molecular O—H⋯N hydrogen bond forming an S(6) ring motif. In the crystal, mol­ecules are linked via N—H⋯N and O—H⋯Br hydrogen bonds, forming undulating sheets parallel to (10-2). The sheets are linked by ππ inter­actions [inter-centroid distance = 3.7680 (17) Å], involving inversion-related mol­ecules, forming a three-dimensional structure.

1. Related literature

For some recent examples of transition metal complexes of Schiff bases, see: Ouari et al. (2015b[Ouari, K., Bendia, S., Weiss, J. & Bailly, C. (2015b). Spectrochim. Acta A Mol. Biomol. Spectrosc. 135, 624-631.]); Benghanem et al. (2012[Benghanem, F., Keraghel, S., Chahmana, S., Ourari, A. & Brelot, L. (2012). Acta Cryst. E68, o2188-o2189.]); Basu et al. (2010[Basu, S., Gupta, G., Das, B. & Rao, K. M. (2010). J. Organomet. Chem. 695, 2098-2104.]). For the biological activity of Schiff bases, see: Yıldız et al. (2015[Yıldız, M., Karpuz, Ö., Özge, , Zeyrek, C. T., Boyacıoğlu, B., Dal, H., Demir, N., Yıldırım, N. & Ünver, H. (2015). J. Mol. Struct. 1094, 148-160.]); Salama et al. (2015[Salama, H. E., Saad, G. R. & Sabaa, M. W. (2015). Int. J. Biol. Macromol. 79, 996-1003.]); Zayed et al. (2015[Zayed, E. M. & Zayed, M. A. (2015). Spectrochim. Acta A Mol. Biomol. Spectrosc. 143, 81-90.]). For the photoluminescence of the title compound, see: Köse et al. (2015[Köse, M., Ceyhan, G., Tümer, M., Demirtaş, İ., Gönül, İ. & McKee, V. (2015). Spectrochim. Acta Part A, 137, 477-485.]); Pal et al. (2015[Pal, M. K., Kushwah, N., Wadawale, A. P., Manna, D., Sudarsan, V., Ghanty, T. K. & Jain, V. K. (2015). J. Organomet. Chem. 776, 98-106.]); Ray et al. (2014[Ray, S., Konar, S., Jana, A., Das, K., Dhara, A., Chatterjee, S. & Kar, S. K. (2014). J. Mol. Struct. 1058, 213-220.]). For the literature method used to prepare the title compound, see: Ouari et al. (2015a[Ouari, K., Bendia, S., Merzougui, M. & Bailly, C. (2015a). Acta Cryst. E71, o51-o52.]). For the crystal structure of a related compound, see: Belguedj et al. (2015[Belguedj, R., Bouacida, S., Merazig, H., Chibani, A. & Bouraiou, A. (2015). Acta Cryst. E71, o131-o132.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C12H8BrN3O

  • Mr = 290.12

  • Monoclinic, P 21 /c

  • a = 5.5906 (3) Å

  • b = 12.9032 (7) Å

  • c = 14.7622 (6) Å

  • β = 102.836 (3)°

  • V = 1038.28 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.94 mm−1

  • T = 193 K

  • 0.25 × 0.20 × 0.05 mm

2.2. Data collection

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (MULABS in PLATON; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) Tmin = 0.457, Tmax = 0.721

  • 8584 measured reflections

  • 3017 independent reflections

  • 1977 reflections with I > 2σ(I)

  • Rint = 0.066

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.111

  • S = 1.02

  • 3017 reflections

  • 159 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.84 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N2 0.84 1.90 2.640 (3) 147
O1—H1⋯Br1i 0.84 2.91 3.478 (2) 127
N1—H1N⋯N3ii 0.92 (4) 2.11 (4) 3.010 (4) 168 (3)
Symmetry codes: (i) [x-1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) -x+2, -y+2, -z+2.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT and DENZO. Nonius BV. Delft, The Netherlands.]); cell refinement: DENZO (Nonius, 1998[Nonius (1998). COLLECT and DENZO. Nonius BV. Delft, The Netherlands.]); data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Coordination chemistry of transition metal complexes with Schiff base ligands is an important and fascinating branch of chemistry (Ouari et al., 2015b; Benghanem et al., 2012; Basu et al., 2010). A literature survey revealed that this kind of compound possesses diverse biological activities such as anti­biotic (Yıldız et al., 2015) and anti­microbial (Salama et al., 2015; Zayed et al., 2015). The photoluminescence of the title compound has been reported (Köse et al., 2015; Pal et al., 2015; Ray et al., 2014).

The molecular structure of the title compound is shown in Fig. 1. The bond distances and angles are normal and similar to those in related compounds (Belguedj et al., 2015).

In the crystal, molecules are linked via N—H···N and O—H···Br hydrogen bonds forming undulating sheets parallel to (102); see Table 1 and Fig. 2. The sheets are linked by π-π inter­actions [Cg2···Cg3i = 3.7680 (17) Å, Cg2 and Cg3 are the centroids of rings N3/C8—C12 and C1—C6, symmetry code: (i) - x + 1, - y + 2, - z + 2], forming a three-dimensional structure.

Synthesis and crystallisation top

The title compound was prepared following a literature method (Ouari et al., 2015a). To a MeOH solution (15 ml) of 5-bromo­salicyl­aldehyde (0.122 g, 1 mmol) was added drop wise to a MeOH solution (5 ml) of 2,3-di­amino­pyridine (0.109 g, 1 mmol). The mixture was refluxed with constant stirring under a nitro­gen atmosphere for 3 h, yielding an abundant orange precipitate that was collected by filtration. The product was washed with methanol (3 × 5 ml) then with di­ethyl ether (3 × 5 ml) and dried under vacuum for 4 h. Orange crystals of the title compound, suitable for X-ray diffraction analysis, were obtained after two weeks by slow evaporation of the DMSO solvent (yield: 70%; m.p.: 528-531 K).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. The iminium H atom was located from a difference Fourier map and freely refined. The OH and C-bound H atoms were included in calculated positions and treated as riding atoms: O—H = 0.82 Å, C—H = 0.95-0.99 Å with Uiso(H) = 1.5Ueq(O) and 1.2Ueq(C).

Related literature top

For some recent examples of transition metal complexes of Schiff bases, see: Ouari et al. (2015b); Benghanem et al. (2012); Basu et al. (2010). For the biological activity of Schiff bases, see: Yıldız et al. (2015); Salama et al. (2015); Zayed et al. (2015). For the photoluminescence of the title compound, see: Köse et al. (2015); Pal et al. (2015); Ray et al. (2014). For the literature method used to prepare the title compound, see: Ouari et al. (2015a). For a related compounds, see: Belguedj et al. (2015).

Structure description top

Coordination chemistry of transition metal complexes with Schiff base ligands is an important and fascinating branch of chemistry (Ouari et al., 2015b; Benghanem et al., 2012; Basu et al., 2010). A literature survey revealed that this kind of compound possesses diverse biological activities such as anti­biotic (Yıldız et al., 2015) and anti­microbial (Salama et al., 2015; Zayed et al., 2015). The photoluminescence of the title compound has been reported (Köse et al., 2015; Pal et al., 2015; Ray et al., 2014).

The molecular structure of the title compound is shown in Fig. 1. The bond distances and angles are normal and similar to those in related compounds (Belguedj et al., 2015).

In the crystal, molecules are linked via N—H···N and O—H···Br hydrogen bonds forming undulating sheets parallel to (102); see Table 1 and Fig. 2. The sheets are linked by π-π inter­actions [Cg2···Cg3i = 3.7680 (17) Å, Cg2 and Cg3 are the centroids of rings N3/C8—C12 and C1—C6, symmetry code: (i) - x + 1, - y + 2, - z + 2], forming a three-dimensional structure.

For some recent examples of transition metal complexes of Schiff bases, see: Ouari et al. (2015b); Benghanem et al. (2012); Basu et al. (2010). For the biological activity of Schiff bases, see: Yıldız et al. (2015); Salama et al. (2015); Zayed et al. (2015). For the photoluminescence of the title compound, see: Köse et al. (2015); Pal et al. (2015); Ray et al. (2014). For the literature method used to prepare the title compound, see: Ouari et al. (2015a). For a related compounds, see: Belguedj et al. (2015).

Synthesis and crystallization top

The title compound was prepared following a literature method (Ouari et al., 2015a). To a MeOH solution (15 ml) of 5-bromo­salicyl­aldehyde (0.122 g, 1 mmol) was added drop wise to a MeOH solution (5 ml) of 2,3-di­amino­pyridine (0.109 g, 1 mmol). The mixture was refluxed with constant stirring under a nitro­gen atmosphere for 3 h, yielding an abundant orange precipitate that was collected by filtration. The product was washed with methanol (3 × 5 ml) then with di­ethyl ether (3 × 5 ml) and dried under vacuum for 4 h. Orange crystals of the title compound, suitable for X-ray diffraction analysis, were obtained after two weeks by slow evaporation of the DMSO solvent (yield: 70%; m.p.: 528-531 K).

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 2. The iminium H atom was located from a difference Fourier map and freely refined. The OH and C-bound H atoms were included in calculated positions and treated as riding atoms: O—H = 0.82 Å, C—H = 0.95-0.99 Å with Uiso(H) = 1.5Ueq(O) and 1.2Ueq(C).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Nonius, 1998); data reduction: DENZO (Nonius, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. The intramolecular O-H···N hydrogen bond is shown as a dashed line (see Table 1).
[Figure 2] Fig. 2. A view along the c axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines (see Table 1), and H atoms not involved in these interactions have been omitted for clarity.
4-Bromo-2-(1H-imidazo[4,5-b]pyridin-2-yl)phenol top
Crystal data top
C12H8BrN3OF(000) = 576
Mr = 290.12Dx = 1.856 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4475 reflections
a = 5.5906 (3) Åθ = 1.0–30.0°
b = 12.9032 (7) ŵ = 3.94 mm1
c = 14.7622 (6) ÅT = 193 K
β = 102.836 (3)°Plate, orange
V = 1038.28 (9) Å30.25 × 0.20 × 0.05 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
3017 independent reflections
Radiation source: sealed tube1977 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.066
phi and ω scansθmax = 30.0°, θmin = 2.1°
Absorption correction: multi-scan
(MULABS in PLATON; Spek, 2009)
h = 74
Tmin = 0.457, Tmax = 0.721k = 1718
8584 measured reflectionsl = 2019
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.045P)2 + 0.5334P]
where P = (Fo2 + 2Fc2)/3
3017 reflections(Δ/σ)max = 0.002
159 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.84 e Å3
Crystal data top
C12H8BrN3OV = 1038.28 (9) Å3
Mr = 290.12Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.5906 (3) ŵ = 3.94 mm1
b = 12.9032 (7) ÅT = 193 K
c = 14.7622 (6) Å0.25 × 0.20 × 0.05 mm
β = 102.836 (3)°
Data collection top
Nonius KappaCCD
diffractometer
3017 independent reflections
Absorption correction: multi-scan
(MULABS in PLATON; Spek, 2009)
1977 reflections with I > 2σ(I)
Tmin = 0.457, Tmax = 0.721Rint = 0.066
8584 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.52 e Å3
3017 reflectionsΔρmin = 0.84 e Å3
159 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.83482 (7)0.58489 (3)1.18198 (2)0.03255 (13)
O10.0419 (4)0.75774 (17)0.87477 (15)0.0274 (5)
H10.08910.81040.85020.041*
N10.7079 (5)0.9288 (2)0.95213 (18)0.0226 (6)
N20.3311 (5)0.91524 (19)0.85876 (18)0.0249 (6)
N30.8399 (5)1.09033 (19)0.89394 (18)0.0242 (6)
C10.4545 (6)0.7733 (2)0.9701 (2)0.0231 (7)
C20.6365 (6)0.7295 (2)1.0408 (2)0.0248 (7)
H20.79170.76251.05920.030*
C30.5911 (6)0.6389 (2)1.0835 (2)0.0245 (7)
C40.3660 (6)0.5889 (2)1.0569 (2)0.0276 (7)
H40.33620.52661.08680.033*
C50.1866 (6)0.6303 (3)0.9869 (2)0.0299 (8)
H50.03330.59590.96840.036*
C60.2276 (6)0.7220 (2)0.9429 (2)0.0247 (7)
C70.4972 (6)0.8720 (2)0.9272 (2)0.0229 (7)
C80.6765 (6)1.0143 (2)0.8952 (2)0.0222 (6)
C90.4404 (6)1.0061 (2)0.8373 (2)0.0233 (7)
C100.3592 (6)1.0841 (2)0.7730 (2)0.0265 (7)
H100.19971.08340.73360.032*
C110.5249 (7)1.1633 (2)0.7697 (2)0.0287 (7)
H110.47961.21820.72640.034*
C120.7572 (6)1.1635 (3)0.8290 (2)0.0281 (7)
H120.86471.21890.82330.034*
H1N0.843 (8)0.912 (3)0.998 (3)0.034 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0314 (2)0.0314 (2)0.0320 (2)0.00049 (16)0.00116 (14)0.00779 (15)
O10.0181 (12)0.0281 (12)0.0317 (12)0.0034 (9)0.0036 (9)0.0059 (10)
N10.0197 (14)0.0238 (14)0.0231 (13)0.0013 (11)0.0025 (11)0.0028 (11)
N20.0211 (14)0.0251 (14)0.0264 (13)0.0024 (12)0.0010 (11)0.0003 (11)
N30.0236 (14)0.0224 (14)0.0270 (14)0.0024 (11)0.0063 (11)0.0007 (11)
C10.0212 (17)0.0236 (16)0.0258 (16)0.0015 (12)0.0079 (13)0.0015 (13)
C20.0195 (17)0.0261 (17)0.0281 (16)0.0050 (13)0.0038 (13)0.0016 (13)
C30.0252 (18)0.0223 (16)0.0253 (16)0.0027 (13)0.0037 (13)0.0003 (13)
C40.0292 (18)0.0198 (15)0.0343 (18)0.0048 (14)0.0079 (14)0.0019 (14)
C50.0261 (19)0.0254 (18)0.0381 (19)0.0082 (14)0.0070 (15)0.0064 (15)
C60.0212 (17)0.0274 (17)0.0257 (16)0.0006 (13)0.0055 (13)0.0049 (13)
C70.0192 (16)0.0259 (16)0.0235 (15)0.0018 (13)0.0044 (13)0.0017 (13)
C80.0212 (16)0.0251 (16)0.0211 (15)0.0012 (13)0.0067 (12)0.0042 (13)
C90.0220 (17)0.0248 (16)0.0235 (15)0.0014 (13)0.0056 (13)0.0007 (13)
C100.0232 (17)0.0309 (17)0.0232 (15)0.0006 (15)0.0004 (12)0.0014 (14)
C110.035 (2)0.0248 (17)0.0261 (17)0.0003 (15)0.0066 (14)0.0036 (14)
C120.0287 (18)0.0255 (17)0.0315 (18)0.0025 (14)0.0100 (14)0.0014 (14)
Geometric parameters (Å, º) top
Br1—C31.891 (3)C2—H20.9500
O1—C61.356 (4)C3—C41.391 (5)
O1—H10.8400C4—C51.378 (5)
N1—C71.366 (4)C4—H40.9500
N1—C81.375 (4)C5—C61.393 (5)
N1—H1N0.92 (4)C5—H50.9500
N2—C71.333 (4)C8—C91.407 (4)
N2—C91.390 (4)C9—C101.390 (4)
N3—C81.344 (4)C10—C111.387 (5)
N3—C121.352 (4)C10—H100.9500
C1—C21.405 (4)C11—C121.395 (5)
C1—C61.408 (4)C11—H110.9500
C1—C71.465 (4)C12—H120.9500
C2—C31.378 (4)
C6—O1—H1109.5O1—C6—C5117.2 (3)
C7—N1—C8106.2 (3)O1—C6—C1123.0 (3)
C7—N1—H1N126 (2)C5—C6—C1119.9 (3)
C8—N1—H1N127 (2)N2—C7—N1113.2 (3)
C7—N2—C9104.9 (3)N2—C7—C1122.6 (3)
C8—N3—C12113.1 (3)N1—C7—C1124.3 (3)
C2—C1—C6118.7 (3)N3—C8—N1126.8 (3)
C2—C1—C7120.7 (3)N3—C8—C9126.6 (3)
C6—C1—C7120.6 (3)N1—C8—C9106.6 (3)
C3—C2—C1120.3 (3)C10—C9—N2132.3 (3)
C3—C2—H2119.8C10—C9—C8118.7 (3)
C1—C2—H2119.8N2—C9—C8109.0 (3)
C2—C3—C4120.8 (3)C11—C10—C9116.0 (3)
C2—C3—Br1119.4 (2)C11—C10—H10122.0
C4—C3—Br1119.9 (2)C9—C10—H10122.0
C5—C4—C3119.6 (3)C10—C11—C12121.0 (3)
C5—C4—H4120.2C10—C11—H11119.5
C3—C4—H4120.2C12—C11—H11119.5
C4—C5—C6120.7 (3)N3—C12—C11124.6 (3)
C4—C5—H5119.6N3—C12—H12117.7
C6—C5—H5119.6C11—C12—H12117.7
C6—C1—C2—C31.1 (5)C6—C1—C7—N23.0 (5)
C7—C1—C2—C3177.2 (3)C2—C1—C7—N11.0 (5)
C1—C2—C3—C40.6 (5)C6—C1—C7—N1177.3 (3)
C1—C2—C3—Br1177.4 (2)C12—N3—C8—N1179.0 (3)
C2—C3—C4—C50.1 (5)C12—N3—C8—C90.0 (5)
Br1—C3—C4—C5178.1 (3)C7—N1—C8—N3178.5 (3)
C3—C4—C5—C60.4 (5)C7—N1—C8—C90.7 (3)
C4—C5—C6—O1179.9 (3)C7—N2—C9—C10179.5 (3)
C4—C5—C6—C10.1 (5)C7—N2—C9—C80.3 (4)
C2—C1—C6—O1179.4 (3)N3—C8—C9—C101.6 (5)
C7—C1—C6—O12.3 (5)N1—C8—C9—C10179.2 (3)
C2—C1—C6—C50.8 (5)N3—C8—C9—N2178.6 (3)
C7—C1—C6—C5177.5 (3)N1—C8—C9—N20.6 (4)
C9—N2—C7—N10.2 (4)N2—C9—C10—C11178.4 (3)
C9—N2—C7—C1179.6 (3)C8—C9—C10—C111.9 (4)
C8—N1—C7—N20.6 (4)C9—C10—C11—C120.8 (5)
C8—N1—C7—C1179.2 (3)C8—N3—C12—C111.3 (5)
C2—C1—C7—N2178.7 (3)C10—C11—C12—N30.9 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N20.841.902.640 (3)147
O1—H1···Br1i0.842.913.478 (2)127
N1—H1N···N3ii0.92 (4)2.11 (4)3.010 (4)168 (3)
Symmetry codes: (i) x1, y+3/2, z1/2; (ii) x+2, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N20.841.902.640 (3)146.7
O1—H1···Br1i0.842.913.478 (2)127.2
N1—H1N···N3ii0.92 (4)2.11 (4)3.010 (4)168 (3)
Symmetry codes: (i) x1, y+3/2, z1/2; (ii) x+2, y+2, z+2.
 

Acknowledgements

The author gratefully acknowledges financial support from the Algerian Ministry of Higher Education and Scientific Research. He also acknowledges the help of Dr Jean Weiss (CLAC) at the University of Strasbourg, France.

References

First citationBasu, S., Gupta, G., Das, B. & Rao, K. M. (2010). J. Organomet. Chem. 695, 2098–2104.  Web of Science CSD CrossRef CAS Google Scholar
First citationBelguedj, R., Bouacida, S., Merazig, H., Chibani, A. & Bouraiou, A. (2015). Acta Cryst. E71, o131–o132.  CSD CrossRef IUCr Journals Google Scholar
First citationBenghanem, F., Keraghel, S., Chahmana, S., Ourari, A. & Brelot, L. (2012). Acta Cryst. E68, o2188–o2189.  CSD CrossRef IUCr Journals Google Scholar
First citationSalama, H. E., Saad, G. R. & Sabaa, M. W. (2015). Int. J. Biol. Macromol. 79, 996–1003.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKöse, M., Ceyhan, G., Tümer, M., Demirtaş, İ., Gönül, İ. & McKee, V. (2015). Spectrochim. Acta Part A, 137, 477–485.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNonius (1998). COLLECT and DENZO. Nonius BV. Delft, The Netherlands.  Google Scholar
First citationOuari, K., Bendia, S., Merzougui, M. & Bailly, C. (2015a). Acta Cryst. E71, o51–o52.  CSD CrossRef IUCr Journals Google Scholar
First citationOuari, K., Bendia, S., Weiss, J. & Bailly, C. (2015b). Spectrochim. Acta A Mol. Biomol. Spectrosc. 135, 624–631.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationPal, M. K., Kushwah, N., Wadawale, A. P., Manna, D., Sudarsan, V., Ghanty, T. K. & Jain, V. K. (2015). J. Organomet. Chem. 776, 98–106.  Web of Science CSD CrossRef CAS Google Scholar
First citationRay, S., Konar, S., Jana, A., Das, K., Dhara, A., Chatterjee, S. & Kar, S. K. (2014). J. Mol. Struct. 1058, 213–220.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYıldız, M., Karpuz, Ö., Özge, , Zeyrek, C. T., Boyacıoğlu, B., Dal, H., Demir, N., Yıldırım, N. & Ünver, H. (2015). J. Mol. Struct. 1094, 148–160.  Google Scholar
First citationZayed, E. M. & Zayed, M. A. (2015). Spectrochim. Acta A Mol. Biomol. Spectrosc. 143, 81–90.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds