organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 4,4′-[(1,3,5,7-tetra­oxo-1,3,3a,4,4a,5,7,7a,8,8a-deca­hydro-4,8-etheno­pyrrolo­[3,4-f]iso­indole-2,6-di­yl)bis­­(methyl­ene)]bis­­(pyridin-1-ium) dinitrate

aSchool of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, People's Republic of China
*Correspondence e-mail: luckzhmliu@sxu.edu.cn

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 6 November 2015; accepted 20 November 2015; online 25 November 2015)

In the title salt, C24H22N4O42+·2NO3, the cation is U-shaped with the two iso­indole dione rings inclined to one another by 60.41 (13)°, while the two outer pyridine rings are inclined to one another by 2.77 (12)°. The dihedral angles between the pyridine ring and the adjacent iso­indole dione ring are 71.82 (12) and 86.44 (13)°. In the crystal, each nitrate anion is linked to a protonated pyridine ring by N—H⋯O hydrogen bonds. These units are linked by a series of C—H⋯O hydrogen bonds, forming a three-dimensional structure.

1. Related literature

For the crystal structures of compounds with similar ligands, see: Yu et al. (2012[Yu, Z.-Q., Pan, M., Jiang, J.-J., Liu, Z.-M. & Su, C.-Y. (2012). Cryst. Growth Des. 12, 2389-2396.]); Li et al. (2011[Li, G.-B., Liu, J.-M., Cai, Y.-P. & Su, C.-Y. (2011). Cryst. Growth Des. 11, 2763-2772.], 2012a[Li, G.-B., He, J.-R., Liu, J.-M. & Su, C.-Y. (2012a). CrystEngComm, 14, 2152-2158.],b[Li, G.-B., He, J.-R., Pan, M., Deng, H.-Y., Liu, J.-M. & Su, C.-Y. (2012b). Dalton Trans. 41, 4626-4633.]). For the synthetic method used to prepare 2,6-bis­(pyridin-4-ylmeth­yl)-3a,4,4a,7a,8,8a-hexa­hydro-4,8-etheno­pyrrolo­[3,4-f]iso­indole-1,3,5,7(2H,6H)-tetra­one, see: Liu et al. (2007[Liu, Z.-M., Liu, Y., Zheng, S.-R., Yu, Z.-Q., Pan, M. & Su, C.-Y. (2007). Inorg. Chem. 46, 5814-5816.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C24H22N4O42+·2NO3

  • Mr = 554.48

  • Monoclinic, P 21 /c

  • a = 13.0706 (6) Å

  • b = 14.3587 (5) Å

  • c = 12.9893 (5) Å

  • β = 104.861 (4)°

  • V = 2356.25 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 153 K

  • 0.30 × 0.25 × 0.20 mm

2.2. Data collection

  • Bruker MWPC diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). FRAMBO, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsion, USA.]) Tmin = 0.963, Tmax = 0.976

  • 13323 measured reflections

  • 4555 independent reflections

  • 2623 reflections with I > 2σ(I)

  • Rint = 0.031

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.146

  • S = 1.00

  • 4555 reflections

  • 361 parameters

  • 8 restraints

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O6i 0.86 2.40 3.096 (3) 138
N1—H1A⋯O7i 0.86 1.90 2.728 (3) 161
N4—H4A⋯O9ii 0.86 1.93 2.771 (3) 164
C6—H6B⋯O3iii 0.97 2.57 3.386 (3) 142
C8—H8A⋯O8 0.98 2.30 3.155 (3) 145
C11—H11A⋯O5iv 0.98 2.48 3.386 (3) 153
C13—H13A⋯O5v 0.93 2.30 3.121 (3) 147
C14—H14A⋯O2iv 0.98 2.54 3.403 (3) 147
C19—H19A⋯O6vi 0.97 2.55 3.246 (3) 129
C21—H21A⋯O6vi 0.93 2.56 3.362 (3) 145
C22—H22A⋯O2vii 0.93 2.43 3.257 (3) 149
C23—H23A⋯O7v 0.93 2.56 3.345 (3) 143
Symmetry codes: (i) -x, -y, -z+1; (ii) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (v) x, y, z-1; (vi) -x, -y+1, -z+1; (vii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: FRAMBO (Bruker, 2004[Bruker (2004). FRAMBO, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsion, USA.]); cell refinement: FRAMBO and SAINT (Bruker, 2004[Bruker (2004). FRAMBO, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsion, USA.]); data reduction: SAINT (Bruker, 2004[Bruker (2004). FRAMBO, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsion, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, complexes with terminal pyridyl-substituted ligands have been used to construct various metal-organic frameworks (MOFs). MOFs have aroused considerable inter­ests not only owing to their novel topological structures and for their potential applications (Li et al., 2011, 2012a,b; Yu et al., 2012). The title salt was synthesized from the reaction of

2,6-bis­(pyridin-4-yl­methyl)-3a,4,4a,7a,8,8a-hexa­hydro-4,8-etheno­pyrrolo­[3,4-f]iso­indole-1,3,5,7(2H,6H)-tetra­one and nitric acid in chloro­form.

In the title salt, Fig. 1, the cation has two terminal protonated pyridine N atoms, N1 and N4. The backbone of the cation has essentially a cis-U conformation. The two iso­indole dione rings (N2/C7—C10 and N3/C15—C18) are inclined to one another by 60.41 (13) °, while the two outer pyridine rings (N1/C1—C5 and N4/C20—C24) are inclined to one another by 2.77 (12) °. The dihedral angles between the pyridine ring and the adjacent iso­indole dione ring are 86.44 (13) ° for rings N1/C1—C5 and N2/C7—C10, and 71.82 (12)° for rings N4/C20—C24 and N3/C15—C18. The bond angles C3—C6—N2 and C20—C19—N3 are 114.1 (2) and 113.52 (19) °, respectively, larger than normal (109 °)

In the crystal, each anion is linked to a protonated pyridine ring by N—H···O hydrogen bonds (Table 1). These units are linked by a series of C—H···O hydrogen bonds forming a three-dimensional structure (Table 1 and Fig. 2).

Synthesis and crystallization top

The compound 2,6-bis­(pyridin-4-yl­methyl)-3a,4,4a,7a,8,8a-hexa­hydro-4,8-etheno­pyrrolo­[3,4-f]iso­indole-1,3,5,7(2H,6H)-tetra­one (L) was prepared according to a reported procedure (Liu et al., 2007). L (1 mmol, 0.43g) was added to CHCl3 (5 ml) under vigorous stirring. The clear solution was combined with nitric(V) acid (0.1 M, 1 ml) and stirred for 20 min. The resulting solution was left to crystallize at ambient temperature. After two weeks, large block-shaped yellow single crystals of the title salt suitable for X-ray diffraction analysis were obtained [yield: 73%; based on the 4-(amino­methyl)-pyridine].

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 2. The H atoms were placed in calculated positions and refined in a riding-model approximation: N—H = 0.86 Å and C—H = 0.93-0.98 Å with Uiso(H) = 1.2Ueq(N,C).

Related literature top

For the crystal structures of compounds with similar ligands, see: Yu et al. (2012); Li et al. (2011, 2012a,b). For the synthetic method used to prepare 2,6-bis(pyridin-4-ylmethyl)-3a,4,4a,7a,8,8a-hexahydro-4,8-ethenopyrrolo[3,4-f]isoindole-1,3,5,7(2H,6H)-tetraone, see: Liu et al. (2007).

Structure description top

In recent years, complexes with terminal pyridyl-substituted ligands have been used to construct various metal-organic frameworks (MOFs). MOFs have aroused considerable inter­ests not only owing to their novel topological structures and for their potential applications (Li et al., 2011, 2012a,b; Yu et al., 2012). The title salt was synthesized from the reaction of

2,6-bis­(pyridin-4-yl­methyl)-3a,4,4a,7a,8,8a-hexa­hydro-4,8-etheno­pyrrolo­[3,4-f]iso­indole-1,3,5,7(2H,6H)-tetra­one and nitric acid in chloro­form.

In the title salt, Fig. 1, the cation has two terminal protonated pyridine N atoms, N1 and N4. The backbone of the cation has essentially a cis-U conformation. The two iso­indole dione rings (N2/C7—C10 and N3/C15—C18) are inclined to one another by 60.41 (13) °, while the two outer pyridine rings (N1/C1—C5 and N4/C20—C24) are inclined to one another by 2.77 (12) °. The dihedral angles between the pyridine ring and the adjacent iso­indole dione ring are 86.44 (13) ° for rings N1/C1—C5 and N2/C7—C10, and 71.82 (12)° for rings N4/C20—C24 and N3/C15—C18. The bond angles C3—C6—N2 and C20—C19—N3 are 114.1 (2) and 113.52 (19) °, respectively, larger than normal (109 °)

In the crystal, each anion is linked to a protonated pyridine ring by N—H···O hydrogen bonds (Table 1). These units are linked by a series of C—H···O hydrogen bonds forming a three-dimensional structure (Table 1 and Fig. 2).

For the crystal structures of compounds with similar ligands, see: Yu et al. (2012); Li et al. (2011, 2012a,b). For the synthetic method used to prepare 2,6-bis(pyridin-4-ylmethyl)-3a,4,4a,7a,8,8a-hexahydro-4,8-ethenopyrrolo[3,4-f]isoindole-1,3,5,7(2H,6H)-tetraone, see: Liu et al. (2007).

Synthesis and crystallization top

The compound 2,6-bis­(pyridin-4-yl­methyl)-3a,4,4a,7a,8,8a-hexa­hydro-4,8-etheno­pyrrolo­[3,4-f]iso­indole-1,3,5,7(2H,6H)-tetra­one (L) was prepared according to a reported procedure (Liu et al., 2007). L (1 mmol, 0.43g) was added to CHCl3 (5 ml) under vigorous stirring. The clear solution was combined with nitric(V) acid (0.1 M, 1 ml) and stirred for 20 min. The resulting solution was left to crystallize at ambient temperature. After two weeks, large block-shaped yellow single crystals of the title salt suitable for X-ray diffraction analysis were obtained [yield: 73%; based on the 4-(amino­methyl)-pyridine].

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 2. The H atoms were placed in calculated positions and refined in a riding-model approximation: N—H = 0.86 Å and C—H = 0.93-0.98 Å with Uiso(H) = 1.2Ueq(N,C).

Computing details top

Data collection: FRAMBO (Bruker, 2004); cell refinement: FRAMBO and SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title salt, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Crystal packing of the title salt, viewed along the c axis. hydrogen bonds are shown as dashed lines (see Table 1).
4,4'-[(1,3,5,7-Tetraoxo-1,3,3a,4,4a,5,7,7a,8,8a-decahydro-4,8-ethenopyrrolo[3,4-f]isoindole-2,6-diyl)bis(methylene)]bis(pyridin-1-ium) dinitrate top
Crystal data top
C24H22N4O42+·2NO3F(000) = 1152
Mr = 554.48Dx = 1.563 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4348 reflections
a = 13.0706 (6) Åθ = 2.8–29.7°
b = 14.3587 (5) ŵ = 0.12 mm1
c = 12.9893 (5) ÅT = 153 K
β = 104.861 (4)°Block, yellow
V = 2356.25 (16) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker MWPC
diffractometer
4555 independent reflections
Radiation source: fine-focus sealed tube2623 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 16.08 pixels mm-1θmax = 26.0°, θmin = 2.8°
phi and ω scansh = 1612
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
k = 1717
Tmin = 0.963, Tmax = 0.976l = 1516
13323 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0861P)2]
where P = (Fo2 + 2Fc2)/3
4555 reflections(Δ/σ)max < 0.001
361 parametersΔρmax = 0.23 e Å3
8 restraintsΔρmin = 0.28 e Å3
Crystal data top
C24H22N4O42+·2NO3V = 2356.25 (16) Å3
Mr = 554.48Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.0706 (6) ŵ = 0.12 mm1
b = 14.3587 (5) ÅT = 153 K
c = 12.9893 (5) Å0.30 × 0.25 × 0.20 mm
β = 104.861 (4)°
Data collection top
Bruker MWPC
diffractometer
4555 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2623 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.976Rint = 0.031
13323 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0438 restraints
wR(F2) = 0.146H-atom parameters constrained
S = 1.00Δρmax = 0.23 e Å3
4555 reflectionsΔρmin = 0.28 e Å3
361 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.50387 (14)0.20676 (12)0.21910 (13)0.0393 (5)
O30.28425 (13)0.55976 (12)0.17390 (13)0.0359 (4)
O40.11752 (14)0.46314 (12)0.42145 (14)0.0405 (5)
N60.70026 (17)0.29400 (14)0.54704 (17)0.0345 (5)
O20.38605 (14)0.12774 (12)0.50720 (13)0.0383 (4)
N30.18131 (15)0.52033 (12)0.28596 (15)0.0274 (5)
N40.16669 (16)0.40594 (14)0.05847 (16)0.0330 (5)
H4A0.21960.37250.02560.040*
O100.75841 (16)0.28012 (13)0.63718 (15)0.0479 (5)
C70.47472 (18)0.21943 (16)0.29881 (19)0.0288 (5)
N20.44842 (15)0.14774 (12)0.36012 (15)0.0273 (5)
O90.68040 (16)0.22794 (12)0.48063 (15)0.0507 (5)
C200.00046 (18)0.51242 (16)0.16821 (19)0.0281 (5)
C140.37646 (18)0.37073 (15)0.26654 (17)0.0256 (5)
H14A0.40470.38760.20610.031*
C150.35286 (18)0.45870 (16)0.32628 (17)0.0265 (5)
H15A0.41820.49320.35730.032*
O80.66218 (15)0.37204 (12)0.52061 (15)0.0505 (5)
C30.36003 (19)0.00449 (16)0.27263 (18)0.0292 (6)
C230.0807 (2)0.36424 (18)0.1159 (2)0.0365 (6)
H23A0.07730.29960.11850.044*
C100.41200 (19)0.17942 (17)0.44436 (18)0.0282 (5)
C90.40865 (18)0.28479 (15)0.44104 (18)0.0264 (5)
H9A0.45140.31090.50800.032*
C40.2756 (2)0.05567 (19)0.21382 (19)0.0345 (6)
H4B0.27800.12040.21610.041*
C60.46021 (19)0.04991 (15)0.3381 (2)0.0307 (6)
H6A0.48350.01690.40520.037*
H6B0.51510.04350.30050.037*
C110.2933 (2)0.32076 (15)0.41775 (19)0.0297 (6)
H11A0.25860.30000.47230.036*
C180.29907 (18)0.42838 (14)0.41363 (17)0.0246 (5)
H18A0.33790.45310.48300.030*
C20.3535 (2)0.09187 (16)0.2683 (2)0.0348 (6)
H2A0.40780.12810.30920.042*
C130.27571 (19)0.31613 (15)0.23084 (19)0.0295 (6)
H13A0.24490.30260.15960.035*
C170.1902 (2)0.47097 (15)0.37992 (19)0.0305 (6)
C210.09112 (18)0.55362 (17)0.10493 (19)0.0326 (6)
H21A0.09600.61810.09970.039*
C80.45595 (18)0.31102 (16)0.34811 (18)0.0262 (5)
H8A0.52280.34460.37440.031*
N10.18676 (18)0.08144 (16)0.14709 (18)0.0438 (6)
H1A0.13270.10850.10620.053*
C160.27339 (19)0.51993 (16)0.2524 (2)0.0295 (5)
C120.23399 (18)0.28860 (15)0.30875 (19)0.0305 (6)
H12A0.17310.25240.29680.037*
C240.0034 (2)0.41598 (17)0.1715 (2)0.0393 (7)
H24A0.06360.38620.21190.047*
C50.1890 (2)0.01172 (19)0.1526 (2)0.0392 (6)
H5A0.13150.04630.11460.047*
C190.08681 (19)0.57240 (16)0.2337 (2)0.0316 (6)
H19A0.10560.61910.18790.038*
H19B0.06060.60460.28750.038*
C220.1736 (2)0.49923 (17)0.0501 (2)0.0365 (6)
H22A0.23410.52680.00740.044*
C10.2658 (2)0.1332 (2)0.2030 (2)0.0454 (7)
H1B0.26180.19770.19790.055*
N50.01934 (18)0.21064 (14)0.97829 (19)0.0381 (5)
O70.03711 (16)0.15681 (13)1.01790 (16)0.0491 (5)
O60.01019 (17)0.23019 (13)0.88230 (16)0.0542 (6)
O50.10141 (15)0.24289 (15)1.03608 (17)0.0569 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0449 (11)0.0410 (10)0.0353 (10)0.0081 (9)0.0161 (9)0.0021 (8)
O30.0375 (10)0.0340 (9)0.0353 (10)0.0000 (8)0.0075 (8)0.0069 (8)
O40.0428 (11)0.0357 (10)0.0486 (11)0.0037 (9)0.0220 (9)0.0010 (9)
N60.0299 (12)0.0288 (11)0.0384 (13)0.0005 (10)0.0030 (10)0.0065 (10)
O20.0471 (11)0.0318 (9)0.0365 (10)0.0004 (9)0.0115 (9)0.0056 (8)
N30.0234 (11)0.0213 (10)0.0335 (11)0.0013 (8)0.0002 (8)0.0004 (9)
N40.0269 (11)0.0307 (11)0.0383 (12)0.0027 (9)0.0028 (10)0.0045 (10)
O100.0567 (13)0.0399 (11)0.0374 (11)0.0075 (10)0.0058 (10)0.0023 (9)
C70.0241 (13)0.0294 (13)0.0296 (13)0.0005 (11)0.0009 (11)0.0015 (11)
N20.0266 (11)0.0220 (10)0.0308 (11)0.0004 (8)0.0025 (9)0.0005 (8)
O90.0549 (13)0.0311 (10)0.0512 (12)0.0098 (9)0.0139 (10)0.0130 (9)
C200.0240 (13)0.0282 (13)0.0323 (13)0.0001 (10)0.0073 (10)0.0018 (11)
C140.0291 (13)0.0238 (11)0.0235 (12)0.0006 (10)0.0059 (10)0.0016 (10)
C150.0224 (12)0.0247 (11)0.0279 (12)0.0040 (9)0.0014 (9)0.0011 (10)
O80.0499 (12)0.0259 (10)0.0589 (13)0.0104 (9)0.0169 (10)0.0041 (9)
C30.0328 (14)0.0267 (12)0.0293 (13)0.0033 (11)0.0101 (11)0.0057 (11)
C230.0309 (15)0.0273 (13)0.0459 (16)0.0012 (11)0.0001 (12)0.0039 (12)
C100.0266 (13)0.0311 (13)0.0245 (13)0.0029 (11)0.0022 (11)0.0040 (11)
C90.0302 (14)0.0238 (12)0.0242 (12)0.0007 (10)0.0051 (10)0.0001 (10)
C40.0341 (15)0.0364 (14)0.0313 (14)0.0014 (12)0.0051 (12)0.0025 (11)
C60.0338 (15)0.0209 (12)0.0356 (14)0.0036 (11)0.0055 (11)0.0013 (11)
C110.0367 (15)0.0221 (11)0.0314 (14)0.0030 (11)0.0108 (11)0.0025 (10)
C180.0288 (13)0.0192 (11)0.0220 (12)0.0012 (10)0.0005 (10)0.0017 (9)
C20.0405 (16)0.0255 (13)0.0420 (15)0.0034 (12)0.0171 (13)0.0030 (12)
C130.0311 (14)0.0234 (12)0.0295 (13)0.0035 (10)0.0004 (11)0.0051 (10)
C170.0372 (15)0.0212 (12)0.0322 (13)0.0012 (11)0.0074 (11)0.0024 (10)
C210.0309 (15)0.0276 (13)0.0366 (14)0.0014 (11)0.0038 (12)0.0008 (11)
C80.0249 (13)0.0258 (12)0.0261 (12)0.0008 (10)0.0034 (10)0.0027 (10)
N10.0359 (13)0.0504 (15)0.0446 (14)0.0157 (11)0.0093 (11)0.0168 (11)
C160.0328 (14)0.0235 (12)0.0317 (14)0.0019 (11)0.0073 (11)0.0012 (11)
C120.0221 (13)0.0216 (12)0.0451 (15)0.0014 (10)0.0037 (11)0.0016 (11)
C240.0296 (15)0.0277 (14)0.0526 (17)0.0059 (11)0.0038 (12)0.0004 (12)
C50.0379 (16)0.0446 (16)0.0337 (15)0.0001 (13)0.0068 (12)0.0047 (12)
C190.0317 (14)0.0198 (12)0.0406 (14)0.0018 (10)0.0042 (11)0.0007 (10)
C220.0303 (15)0.0339 (14)0.0400 (15)0.0069 (12)0.0005 (12)0.0008 (12)
C10.0553 (19)0.0345 (15)0.0539 (18)0.0135 (14)0.0276 (15)0.0112 (13)
N50.0361 (13)0.0255 (11)0.0519 (15)0.0037 (10)0.0099 (11)0.0078 (11)
O70.0555 (13)0.0414 (11)0.0542 (12)0.0158 (10)0.0212 (10)0.0075 (9)
O60.0622 (14)0.0435 (12)0.0481 (13)0.0046 (10)0.0016 (11)0.0059 (10)
O50.0337 (12)0.0590 (13)0.0703 (14)0.0121 (10)0.0004 (10)0.0196 (11)
Geometric parameters (Å, º) top
O1—C71.205 (3)C9—C81.537 (3)
O3—C161.209 (3)C9—C111.549 (3)
O4—C171.212 (3)C9—H9A0.9800
N6—O101.238 (3)C4—C51.360 (3)
N6—O81.238 (3)C4—H4B0.9300
N6—O91.263 (2)C6—H6A0.9700
O2—C101.214 (3)C6—H6B0.9700
N3—C161.381 (3)C11—C121.502 (3)
N3—C171.390 (3)C11—C181.549 (3)
N3—C191.454 (3)C11—H11A0.9800
N4—C231.322 (3)C18—C171.507 (3)
N4—C221.345 (3)C18—H18A0.9800
N4—H4A0.8600C2—C11.373 (4)
C7—N21.397 (3)C2—H2A0.9300
C7—C81.510 (3)C13—C121.327 (3)
N2—C101.378 (3)C13—H13A0.9300
N2—C61.450 (3)C21—C221.373 (3)
C20—C241.386 (3)C21—H21A0.9300
C20—C211.389 (3)C8—H8A0.9800
C20—C191.506 (3)N1—C11.328 (4)
C14—C131.500 (3)N1—C51.339 (3)
C14—C81.540 (3)N1—H1A0.8600
C14—C151.554 (3)C12—H12A0.9300
C14—H14A0.9800C24—H24A0.9300
C15—C161.504 (3)C5—H5A0.9300
C15—C181.543 (3)C19—H19A0.9700
C15—H15A0.9800C19—H19B0.9700
C3—C41.382 (3)C22—H22A0.9300
C3—C21.387 (3)C1—H1B0.9300
C3—C61.514 (3)N5—O51.231 (3)
C23—C241.369 (3)N5—O61.239 (3)
C23—H23A0.9300N5—O71.265 (3)
C10—C91.514 (3)
O10—N6—O8120.9 (2)C12—C11—H11A111.4
O10—N6—O9119.6 (2)C9—C11—H11A111.4
O8—N6—O9119.5 (2)C18—C11—H11A111.4
C16—N3—C17113.1 (2)C17—C18—C15104.26 (18)
C16—N3—C19124.03 (19)C17—C18—C11111.34 (19)
C17—N3—C19122.77 (19)C15—C18—C11110.03 (18)
C23—N4—C22121.7 (2)C17—C18—H18A110.4
C23—N4—H4A119.1C15—C18—H18A110.4
C22—N4—H4A119.1C11—C18—H18A110.4
O1—C7—N2123.8 (2)C1—C2—C3119.3 (3)
O1—C7—C8128.1 (2)C1—C2—H2A120.4
N2—C7—C8108.02 (18)C3—C2—H2A120.4
C10—N2—C7113.26 (19)C12—C13—C14114.8 (2)
C10—N2—C6123.56 (19)C12—C13—H13A122.6
C7—N2—C6123.17 (19)C14—C13—H13A122.6
C24—C20—C21117.6 (2)O4—C17—N3122.7 (2)
C24—C20—C19122.5 (2)O4—C17—C18128.5 (2)
C21—C20—C19119.9 (2)N3—C17—C18108.77 (19)
C13—C14—C8107.79 (18)C22—C21—C20120.1 (2)
C13—C14—C15107.95 (18)C22—C21—H21A119.9
C8—C14—C15107.11 (17)C20—C21—H21A119.9
C13—C14—H14A111.3C7—C8—C9105.16 (18)
C8—C14—H14A111.3C7—C8—C14110.32 (19)
C15—C14—H14A111.3C9—C8—C14109.90 (18)
C16—C15—C18105.29 (18)C7—C8—H8A110.4
C16—C15—C14110.47 (18)C9—C8—H8A110.4
C18—C15—C14108.91 (17)C14—C8—H8A110.4
C16—C15—H15A110.7C1—N1—C5121.7 (2)
C18—C15—H15A110.7C1—N1—H1A119.1
C14—C15—H15A110.7C5—N1—H1A119.1
C4—C3—C2118.4 (2)O3—C16—N3124.4 (2)
C4—C3—C6122.3 (2)O3—C16—C15127.1 (2)
C2—C3—C6119.2 (2)N3—C16—C15108.45 (19)
N4—C23—C24120.2 (2)C13—C12—C11114.4 (2)
N4—C23—H23A119.9C13—C12—H12A122.8
C24—C23—H23A119.9C11—C12—H12A122.8
O2—C10—N2123.0 (2)C23—C24—C20120.5 (2)
O2—C10—C9128.2 (2)C23—C24—H24A119.7
N2—C10—C9108.71 (19)C20—C24—H24A119.7
C10—C9—C8104.63 (18)N1—C5—C4119.9 (3)
C10—C9—C11111.01 (19)N1—C5—H5A120.1
C8—C9—C11109.41 (18)C4—C5—H5A120.1
C10—C9—H9A110.5N3—C19—C20113.52 (19)
C8—C9—H9A110.5N3—C19—H19A108.9
C11—C9—H9A110.5C20—C19—H19A108.9
C5—C4—C3120.2 (2)N3—C19—H19B108.9
C5—C4—H4B119.9C20—C19—H19B108.9
C3—C4—H4B119.9H19A—C19—H19B107.7
N2—C6—C3114.1 (2)N4—C22—C21119.8 (2)
N2—C6—H6A108.7N4—C22—H22A120.1
C3—C6—H6A108.7C21—C22—H22A120.1
N2—C6—H6B108.7N1—C1—C2120.4 (3)
C3—C6—H6B108.7N1—C1—H1B119.8
H6A—C6—H6B107.6C2—C1—H1B119.8
C12—C11—C9108.83 (18)O5—N5—O6121.7 (2)
C12—C11—C18106.99 (19)O5—N5—O7119.3 (2)
C9—C11—C18106.61 (19)O6—N5—O7118.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O6i0.862.403.096 (3)138
N1—H1A···O7i0.861.902.728 (3)161
N4—H4A···O9ii0.861.932.771 (3)164
C6—H6B···O3iii0.972.573.386 (3)142
C8—H8A···O80.982.303.155 (3)145
C11—H11A···O5iv0.982.483.386 (3)153
C13—H13A···O5v0.932.303.121 (3)147
C14—H14A···O2iv0.982.543.403 (3)147
C19—H19A···O6vi0.972.553.246 (3)129
C21—H21A···O6vi0.932.563.362 (3)145
C22—H22A···O2vii0.932.433.257 (3)149
C23—H23A···O7v0.932.563.345 (3)143
Symmetry codes: (i) x, y, z+1; (ii) x1, y+1/2, z1/2; (iii) x+1, y1/2, z+1/2; (iv) x, y+1/2, z1/2; (v) x, y, z1; (vi) x, y+1, z+1; (vii) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O6i0.862.403.096 (3)138
N1—H1A···O7i0.861.902.728 (3)161
N4—H4A···O9ii0.861.932.771 (3)164
C6—H6B···O3iii0.972.573.386 (3)142
C8—H8A···O80.982.303.155 (3)145
C11—H11A···O5iv0.982.483.386 (3)153
C13—H13A···O5v0.932.303.121 (3)147
C14—H14A···O2iv0.982.543.403 (3)147
C19—H19A···O6vi0.972.553.246 (3)129
C21—H21A···O6vi0.932.563.362 (3)145
C22—H22A···O2vii0.932.433.257 (3)149
C23—H23A···O7v0.932.563.345 (3)143
Symmetry codes: (i) x, y, z+1; (ii) x1, y+1/2, z1/2; (iii) x+1, y1/2, z+1/2; (iv) x, y+1/2, z1/2; (v) x, y, z1; (vi) x, y+1, z+1; (vii) x, y+1/2, z+1/2.
 

References

First citationBruker (2004). FRAMBO, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsion, USA.  Google Scholar
First citationLi, G.-B., He, J.-R., Liu, J.-M. & Su, C.-Y. (2012a). CrystEngComm, 14, 2152–2158.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, G.-B., He, J.-R., Pan, M., Deng, H.-Y., Liu, J.-M. & Su, C.-Y. (2012b). Dalton Trans. 41, 4626–4633.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLi, G.-B., Liu, J.-M., Cai, Y.-P. & Su, C.-Y. (2011). Cryst. Growth Des. 11, 2763–2772.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, Z.-M., Liu, Y., Zheng, S.-R., Yu, Z.-Q., Pan, M. & Su, C.-Y. (2007). Inorg. Chem. 46, 5814–5816.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu, Z.-Q., Pan, M., Jiang, J.-J., Liu, Z.-M. & Su, C.-Y. (2012). Cryst. Growth Des. 12, 2389–2396.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds