research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 7-{[bis­­(pyridin-2-ylmeth­yl)amino]­meth­yl}-5-chloro­quinolin-8-ol

aDivision of Natural Sciences, Osaka Kyoiku University, Kashiwara, Osaka 582-8582, Japan, and bOsaka Municipal Technical Research Institute, Osaka 536-8553, Japan
*Correspondence e-mail: kubono@cc.osaka-kyoiku.ac.jp

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 6 November 2015; accepted 24 November 2015; online 28 November 2015)

In the title compound, C22H19ClN4O, the quinolinol moiety is almost planar [r.m.s. deviation = 0.012 Å]. There is an intra­molecular O—H⋯N hydrogen bond involving the hy­droxy group and a pyridine N atom forming an S(9) ring motif. The dihedral angles between the planes of the quinolinol moiety and the pyridine rings are 44.15 (9) and 36.85 (9)°. In the crystal, mol­ecules are linked via C—H⋯O hydrogen bonds forming inversion dimers with an R44(10) ring motif. The dimers are linked by C—H⋯N hydrogen bonds, forming ribbons along [01-1]. The ribbons are linked by C—H⋯π and ππ inter­actions [inter-centroid distance = 3.7109 (11) Å], forming layers parallel to (01-1).

1. Chemical context

8-Quinolinol and its derivatives are well-known chelating reagents, forming fluorescent complexes with various metal ions, such as Al3+, Zn2+ and Cd2+ (Goon et al., 1953[Goon, E., Petley, J. E., McMullen, W. H. & Wiberley, S. E. (1953). Anal. Chem. 25, 608-610.]; Valeur & Leray, 2000[Valeur, B. & Leray, I. (2000). Coord. Chem. Rev. 205, 3-40.]; Pohl & Anzenbacher, 2003[Pohl, R. & Anzenbacher, P. Jr (2003). Org. Lett. 5, 2769-2772.]). Bis(pyridin-2-ylmeth­yl)amine [di-(2-picol­yl)amine (DPA)] is an excellent ligand showing high selectivity for Zn2+, which plays important roles in biological, pathological and environmental processes (Berg & Shi, 1996[Berg, J. M. & Shi, Y. (1996). Science, 271, 1081-1085.]; Bush et al., 1994[Bush, A. I., Pettingell, W. H., Multhaup, G., d Paradis, M., Vonsattel, J.-P., Gusella, J. F., Beyreuther, K., Masters, C. L. & Tanzi, R. E. (1994). Science, 265, 1464-1467.]; Callender & Rice, 2000[Callender, E. & Rice, K. C. (2000). Environ. Sci. Technol. 34, 232-238.]), and it is used to detect Zn2+ with low concentration in biological and environmental samples. Therefore, many fluorescence probes for Zn2+ bearing DPA as an ion-recognition site have been developed (Xue et al., 2008[Xue, L., Wang, H.-H., Wang, X. J. & Jiang, H. (2008). Inorg. Chem. 47, 4310-4318.]; Chen et al., 2011[Chen, W.-H., Xing, Y. & Pang, Y. (2011). Org. Lett. 13, 1362-1365.]; Kwon et al., 2012[Kwon, J. E., Lee, S., You, Y., Baek, K.-H., Ohkubo, K., Cho, J., Fukuzumi, S., Shin, I., Park, S. Y. & Nam, W. (2012). Inorg. Chem. 51, 8760-8774.]). We have synthesized a new fluorescence chemosensor, based on 8-quinolinol containing DPA via a two-step reaction, and herein we report on its synthesis and crystal structure.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound, is shown in Fig. 1[link]. There is an O—H⋯N intra­molecular hydrogen bond involving the hy­droxy group (O2—H2) and a pyridine N atom, N5, generating an S(9) ring motif (Fig. 1[link] and Table 1[link]). The N(tertiaryamine)—C—C—N(pyridine) torsion angles, N4—C17—C18—N5 and N4—C23—C24—N6 are 75.0 (2) and 152.46 (19)°, respectively. The dihedral angle between the N5- and N6-containing pyridine rings pyridine rings is 80.97 (12)°, and they make dihedral angles of 44.15 (9) and 36.85 (9)°, respectively, with the quinolinol moiety.

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 and Cg3 are the centroids of rings N5/C18–C22 and N6/C24–C28, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N5 1.04 (3) 1.66 (4) 2.689 (3) 168 (2)
C22—H22⋯O2i 0.93 2.46 3.348 (3) 160
C27—H27⋯N3ii 0.93 2.55 3.406 (3) 153
C17—H17b⋯Cg2iii 0.97 2.79 3.599 (3) 141
C23—H23ACg3iv 0.97 2.86 3.770 (3) 156
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x, y+1, z+1; (iii) -x, -y+1, -z; (iv) -x, -y+2, -z+1.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The intra­molecular O—H⋯N hydrogen bond is shown as a dashed line (see Table 1[link]).

3. Supra­molecular features

In the crystal, mol­ecules are linked via C—H⋯O hydrogen bonds, forming inversion dimers with an R44(10) ring motif (Fig. 2[link] and Table 1[link]). The dimers are linked by C—H⋯N hydrogen bonds, forming ribbons along [01[\overline{1}]]. The ribbons are linked by C—H⋯π (Table 1[link]) and slipped parallel ππ inter­actions [Cg1⋯Cg1i, = 3.7109 (11) Å; Cg1 is the centroid of ring C7–C11/C15; inter-planar distance = 3.5518 (8) Å; slippage = 1.075 Å; symmetry code: (i) −x, −y + 1, −z], forming layers parallel to (01[\overline{1}]) .

[Figure 2]
Figure 2
A view along the a axis of the crystal packing of the title compound. The hydrogen bonds (see Table 1[link]) and ππ inter­actions are shown as dashed lines. H atoms not involved in these inter­actions have been omitted for clarity.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.36; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) for 8-quinolinols gave 387 hits, and for DPA, bis­(pyridine-2-ylmeth­yl)amine gave 4535 hits. A search for the fragment 2-[bis­(pyridin-2-ylmethyl-amino)-meth­yl]phenol gave 56 hits of which none contained 8-quinolinol. In the compounds that resemble the title compound, namely 2,6-bis­[bis­(pyridine-2-ylmeth­yl)amino­meth­yl]-4-tert-butyl­phenol (I)[link] (Bjernemose & McKenzie, 2003[Bjernemose, J. K. & McKenzie, C. J. (2003). Acta Cryst. E59, o1275-o1276.]), and 3-{[bis­(pyridin-2-ylmeth­yl)amino]­meth­yl}-2-hy­droxy-5-methyl­benzaldehyde (II) (Wang et al., 2012[Wang, R.-X., Gao, D.-Z., Ye, F., Wu, Y.-F. & Zhu, D.-R. (2012). Acta Cryst. E68, o1672-o1673.]), an intra­molecular bifurcated hydrogen bond is formed. The N—C—C—N torsion angles in the related compounds are −46.9 (2) and 152.7 (2)° in (I)[link] and 48.35 (18) and −116.99 (15)° in (II), compared to 75.0 (2) and 152.46 (19)° in the title compound. The crystal structures of other compounds containing a fluorescent core and bis­(pyridine-2-ylmeth­yl)amine have been reported; for example one containing a fluorescein core (Wong et al., 2009[Wong, B. A., Friedle, S. & Lippard, S. J. (2009). J. Am. Chem. Soc. 131, 7142-7152.]), and another a coumarin core (Kobayashi et al., 2014[Kobayashi, H., Katano, K., Hashimoto, T. & Hayashita, T. (2014). Anal. Sci. 30, 1045-1050.]).

5. Synthesis and crystallization

A suspension of paraformaldehyde (0.41 g, 14 mmol) and bis­(2-pyridyl­meth­yl)amine (1.99 g, 10 mmol) in 100 ml of MeOH was stirred for 18 h at room temperature. The solvent was removed under vacuum. To the product obtained was added 100 ml of toluene and 5-chloro-8-quinolinol (1.80 g, 10 mmol), and the mixture was heated for 24 h at 353 K. The solvent was removed under vacuum to give an oily product, which was crystallized from hexa­ne–di­chloro­methane. The crude solid was recrystallized from aceto­nitrile to obtain yellow crystals of the title compound (yield 55%; m.p. 380.4–382.6 K). HRMS (m/z): [M + 1]+ calculated, 391.1326; found, 391.1271. Analysis calculated for C22H19ClN4O: C 67.60, H 4.90, N 14.33%; found: C 67.50, H 5.01, N 14.37%.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The hy­droxy H atom was located in a difference Fourier map and freely refined. The C-bound H atoms were positioned geometrically and refined using a riding model: C—H = 0.93–0.97 Å with Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C22H19ClN4O
Mr 390.86
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 8.3170 (5), 11.5993 (7), 11.6135 (6)
α, β, γ (°) 116.8473 (13), 105.2809 (13), 92.0110 (17)
V3) 948.68 (10)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.22
Crystal size (mm) 0.30 × 0.20 × 0.10
 
Data collection
Diffractometer Rigaku R-AXIS RAPID
Absorption correction Multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.769, 0.978
No. of measured, independent and observed [F2 > 2.0σ(F2)] reflections 9412, 4293, 2329
Rint 0.023
(sin θ/λ)max−1) 0.648
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.123, 1.09
No. of reflections 4293
No. of parameters 257
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.26, −0.24
Computer programs: RAPID-AUTO (Rigaku, 2006[Rigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]), SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and CrystalStructure (Rigaku, 2014[Rigaku (2014). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]).

Supporting information


Computing details top

Data collection: RAPID-AUTO (Rigaku, 2006); cell refinement: RAPID-AUTO (Rigaku, 2006); data reduction: RAPID-AUTO (Rigaku, 2006); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: CrystalStructure (Rigaku, 2014).

7-{[Bis(pyridin-2-ylmethyl)amino]methyl}-5-chloroquinolin-8-ol top
Crystal data top
C22H19ClN4OZ = 2
Mr = 390.86F(000) = 408.00
Triclinic, P1Dx = 1.368 Mg m3
a = 8.3170 (5) ÅMo Kα radiation, λ = 0.71075 Å
b = 11.5993 (7) ÅCell parameters from 5840 reflections
c = 11.6135 (6) Åθ = 3.1–27.4°
α = 116.8473 (13)°µ = 0.22 mm1
β = 105.2809 (13)°T = 296 K
γ = 92.0110 (17)°Block, yellow
V = 948.68 (10) Å30.30 × 0.20 × 0.10 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2329 reflections with F2 > 2.0σ(F2)
Detector resolution: 10.000 pixels mm-1Rint = 0.023
ω scansθmax = 27.4°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1010
Tmin = 0.769, Tmax = 0.978k = 1515
9412 measured reflectionsl = 1415
4293 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0488P)2 + 0.1777P]
where P = (Fo2 + 2Fc2)/3
4293 reflections(Δ/σ)max < 0.001
257 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.24 e Å3
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 sigma(F2) is used only for calculating R-factor (gt).

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.20020 (9)0.40251 (6)0.58501 (6)0.0724 (2)
O20.3787 (2)0.45209 (15)0.14798 (14)0.0563 (4)
N30.3767 (2)0.22221 (18)0.14868 (17)0.0560 (5)
N40.1525 (2)0.72637 (15)0.33905 (15)0.0432 (4)
N50.2432 (2)0.61932 (17)0.06500 (16)0.0500 (4)
N60.2990 (2)1.07071 (18)0.58796 (17)0.0562 (5)
C70.3408 (2)0.4468 (2)0.25274 (18)0.0444 (5)
C80.3075 (2)0.5531 (2)0.35655 (19)0.0440 (5)
C90.2637 (3)0.5344 (2)0.45812 (19)0.0488 (5)
C100.2564 (3)0.4177 (2)0.45746 (19)0.0474 (5)
C110.2949 (2)0.3074 (2)0.35528 (18)0.0451 (5)
C120.2940 (3)0.1827 (2)0.3486 (2)0.0546 (5)
C130.3335 (3)0.0841 (2)0.2454 (2)0.0642 (6)
C140.3733 (3)0.1088 (2)0.1483 (2)0.0645 (6)
C150.3387 (2)0.3236 (2)0.25179 (18)0.0439 (5)
C160.3190 (3)0.6889 (2)0.3710 (2)0.0469 (5)
C170.0484 (3)0.6472 (2)0.19651 (18)0.0453 (5)
C180.1068 (3)0.67040 (19)0.09391 (18)0.0440 (5)
C190.0266 (3)0.7400 (2)0.0336 (2)0.0542 (5)
C200.0860 (3)0.7593 (3)0.0582 (2)0.0646 (6)
C210.2264 (3)0.7087 (3)0.0865 (2)0.0637 (6)
C220.2999 (3)0.6399 (2)0.0238 (2)0.0577 (6)
C230.1681 (3)0.8665 (2)0.3842 (2)0.0549 (6)
C240.2147 (3)0.9495 (2)0.53687 (19)0.0463 (5)
C250.1679 (3)0.9048 (2)0.6174 (2)0.0563 (6)
C260.2149 (3)0.9865 (2)0.7564 (2)0.0600 (6)
C270.3044 (3)1.1103 (2)0.8101 (2)0.0570 (6)
C280.3404 (3)1.1481 (2)0.7224 (2)0.0614 (6)
H20.329 (3)0.526 (3)0.129 (3)0.098 (9)*
H90.239140.605150.527450.0585*
H120.266680.168170.414150.0655*
H130.333860.001520.239590.0771*
H140.399310.03990.078190.0774*
H16A0.385320.75150.463540.0563*
H16B0.378040.693490.311090.0563*
H17A0.066330.664260.188460.0544*
H17B0.044580.555220.172330.0544*
H190.067650.774180.054420.0651*
H200.031920.805640.100010.0776*
H210.270220.721110.146780.0764*
H220.394410.605390.043480.0692*
H23A0.061410.883880.341970.0659*
H23B0.253940.892470.353620.0659*
H250.105480.820920.578730.0676*
H260.186190.957770.812460.0720*
H270.339511.166860.903210.0684*
H280.397511.23330.758670.0737*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0990 (5)0.0762 (4)0.0553 (4)0.0150 (4)0.0451 (3)0.0312 (3)
O20.0698 (10)0.0665 (10)0.0499 (8)0.0272 (8)0.0355 (8)0.0321 (8)
N30.0734 (13)0.0579 (12)0.0446 (10)0.0263 (10)0.0282 (9)0.0247 (9)
N40.0515 (10)0.0396 (9)0.0336 (8)0.0077 (8)0.0159 (7)0.0123 (8)
N50.0525 (11)0.0546 (11)0.0389 (9)0.0099 (9)0.0180 (8)0.0169 (9)
N60.0747 (13)0.0454 (11)0.0413 (10)0.0005 (9)0.0243 (9)0.0122 (9)
C70.0422 (11)0.0567 (13)0.0350 (10)0.0116 (10)0.0153 (9)0.0206 (10)
C80.0415 (11)0.0493 (12)0.0364 (10)0.0063 (9)0.0121 (8)0.0167 (9)
C90.0504 (12)0.0543 (13)0.0336 (10)0.0101 (10)0.0165 (9)0.0125 (10)
C100.0511 (12)0.0551 (14)0.0363 (10)0.0075 (10)0.0161 (9)0.0208 (10)
C110.0416 (11)0.0543 (13)0.0347 (10)0.0079 (10)0.0108 (8)0.0181 (10)
C120.0622 (14)0.0598 (15)0.0463 (12)0.0117 (11)0.0188 (11)0.0281 (12)
C130.0846 (18)0.0573 (15)0.0593 (14)0.0216 (13)0.0287 (13)0.0308 (13)
C140.0896 (18)0.0579 (15)0.0530 (13)0.0316 (13)0.0333 (13)0.0250 (12)
C150.0437 (11)0.0522 (13)0.0352 (10)0.0132 (10)0.0143 (9)0.0192 (10)
C160.0478 (12)0.0478 (12)0.0364 (10)0.0022 (10)0.0140 (9)0.0129 (9)
C170.0450 (11)0.0461 (12)0.0361 (10)0.0051 (9)0.0135 (9)0.0122 (9)
C180.0441 (11)0.0431 (11)0.0305 (9)0.0027 (9)0.0095 (8)0.0075 (9)
C190.0544 (13)0.0585 (14)0.0441 (11)0.0130 (11)0.0146 (10)0.0201 (11)
C200.0732 (17)0.0701 (16)0.0520 (13)0.0108 (13)0.0155 (12)0.0326 (13)
C210.0717 (16)0.0737 (17)0.0466 (12)0.0020 (13)0.0214 (12)0.0288 (13)
C220.0566 (14)0.0681 (15)0.0446 (12)0.0090 (12)0.0230 (10)0.0203 (12)
C230.0801 (16)0.0432 (13)0.0376 (11)0.0105 (11)0.0217 (11)0.0144 (10)
C240.0585 (13)0.0413 (12)0.0363 (10)0.0111 (10)0.0191 (9)0.0137 (9)
C250.0781 (16)0.0463 (13)0.0465 (12)0.0078 (11)0.0280 (11)0.0193 (11)
C260.0820 (17)0.0648 (16)0.0449 (12)0.0187 (13)0.0331 (12)0.0283 (12)
C270.0613 (14)0.0620 (15)0.0355 (11)0.0108 (12)0.0189 (10)0.0113 (11)
C280.0685 (16)0.0535 (14)0.0442 (12)0.0039 (12)0.0215 (11)0.0076 (11)
Geometric parameters (Å, º) top
Cl1—C101.743 (3)C21—C221.366 (4)
O2—C71.361 (3)C23—C241.514 (3)
N3—C141.313 (4)C24—C251.382 (4)
N3—C151.368 (3)C25—C261.384 (3)
N4—C161.470 (3)C26—C271.369 (4)
N4—C171.466 (2)C27—C281.370 (4)
N4—C231.454 (3)O2—H21.04 (3)
N5—C181.349 (3)C9—H90.930
N5—C221.347 (4)C12—H120.930
N6—C241.334 (3)C13—H130.930
N6—C281.338 (3)C14—H140.930
C7—C81.381 (3)C16—H16A0.970
C7—C151.424 (4)C16—H16B0.970
C8—C91.422 (4)C17—H17A0.970
C8—C161.504 (3)C17—H17B0.970
C9—C101.349 (4)C19—H190.930
C10—C111.416 (3)C20—H200.930
C11—C121.412 (4)C21—H210.930
C11—C151.429 (4)C22—H220.930
C12—C131.359 (3)C23—H23A0.970
C13—C141.394 (5)C23—H23B0.970
C17—C181.521 (4)C25—H250.930
C18—C191.375 (4)C26—H260.930
C19—C201.384 (4)C27—H270.930
C20—C211.376 (4)C28—H280.930
C14—N3—C15117.7 (2)N6—C28—C27124.4 (2)
C16—N4—C17113.69 (15)C7—O2—H2112.4 (18)
C16—N4—C23111.51 (16)C8—C9—H9118.825
C17—N4—C23112.33 (18)C10—C9—H9118.839
C18—N5—C22117.9 (2)C11—C12—H12120.293
C24—N6—C28117.2 (2)C13—C12—H12120.294
O2—C7—C8123.5 (2)C12—C13—H13120.515
O2—C7—C15116.17 (17)C14—C13—H13120.514
C8—C7—C15120.4 (2)N3—C14—H14117.649
C7—C8—C9118.4 (2)C13—C14—H14117.655
C7—C8—C16124.0 (2)N4—C16—H16A108.956
C9—C8—C16117.66 (18)N4—C16—H16B108.959
C8—C9—C10122.34 (19)C8—C16—H16A108.959
Cl1—C10—C9119.55 (16)C8—C16—H16B108.962
Cl1—C10—C11119.4 (2)H16A—C16—H16B107.759
C9—C10—C11121.1 (2)N4—C17—H17A108.296
C10—C11—C12124.8 (2)N4—C17—H17B108.295
C10—C11—C15117.6 (2)C18—C17—H17A108.301
C12—C11—C15117.59 (18)C18—C17—H17B108.301
C11—C12—C13119.4 (3)H17A—C17—H17B107.402
C12—C13—C14119.0 (3)C18—C19—H19119.991
N3—C14—C13124.7 (2)C20—C19—H19119.983
N3—C15—C7118.2 (2)C19—C20—H20120.561
N3—C15—C11121.6 (2)C21—C20—H20120.563
C7—C15—C11120.18 (18)C20—C21—H21120.849
N4—C16—C8113.11 (17)C22—C21—H21120.854
N4—C17—C18115.94 (17)N5—C22—H22118.151
N5—C18—C17116.4 (2)C21—C22—H22118.151
N5—C18—C19121.2 (2)N4—C23—H23A108.897
C17—C18—C19122.4 (2)N4—C23—H23B108.899
C18—C19—C20120.0 (2)C24—C23—H23A108.892
C19—C20—C21118.9 (3)C24—C23—H23B108.896
C20—C21—C22118.3 (3)H23A—C23—H23B107.725
N5—C22—C21123.7 (2)C24—C25—H25120.400
N4—C23—C24113.4 (2)C26—C25—H25120.399
N6—C24—C23115.3 (2)C25—C26—H26120.492
N6—C24—C25122.17 (18)C27—C26—H26120.490
C23—C24—C25122.53 (19)C26—C27—H27121.022
C24—C25—C26119.2 (2)C28—C27—H27121.032
C25—C26—C27119.0 (3)N6—C28—H28117.816
C26—C27—C28117.95 (19)C27—C28—H28117.809
C14—N3—C15—C7179.57 (17)C8—C9—C10—C110.9 (3)
C14—N3—C15—C110.6 (3)Cl1—C10—C11—C121.0 (2)
C15—N3—C14—C130.1 (3)Cl1—C10—C11—C15179.37 (11)
C16—N4—C17—C1870.7 (2)C9—C10—C11—C12178.57 (16)
C17—N4—C16—C865.3 (2)C9—C10—C11—C151.1 (3)
C16—N4—C23—C2472.8 (2)C10—C11—C12—C13179.91 (16)
C23—N4—C16—C8166.49 (16)C10—C11—C15—N3179.63 (15)
C17—N4—C23—C24158.23 (17)C10—C11—C15—C70.7 (2)
C23—N4—C17—C1857.1 (2)C12—C11—C15—N30.7 (2)
C18—N5—C22—C210.4 (2)C12—C11—C15—C7179.66 (15)
C22—N5—C18—C17178.93 (13)C15—C11—C12—C130.3 (3)
C22—N5—C18—C190.8 (2)C11—C12—C13—C140.2 (3)
C24—N6—C28—C271.1 (3)C12—C13—C14—N30.4 (4)
C28—N6—C24—C23178.99 (18)N4—C17—C18—N575.0 (2)
C28—N6—C24—C251.3 (3)N4—C17—C18—C19104.73 (19)
O2—C7—C8—C9177.87 (14)N5—C18—C19—C200.3 (2)
O2—C7—C8—C163.8 (3)C17—C18—C19—C20179.38 (13)
O2—C7—C15—N31.0 (2)C18—C19—C20—C210.5 (3)
O2—C7—C15—C11177.99 (13)C19—C20—C21—C220.9 (3)
C8—C7—C15—N3178.35 (15)C20—C21—C22—N50.4 (3)
C8—C7—C15—C112.7 (2)N4—C23—C24—N6152.46 (19)
C15—C7—C8—C92.8 (2)N4—C23—C24—C2529.9 (3)
C15—C7—C8—C16175.54 (14)N6—C24—C25—C262.4 (4)
C7—C8—C9—C101.1 (3)C23—C24—C25—C26179.9 (2)
C7—C8—C16—N4107.8 (2)C24—C25—C26—C271.0 (4)
C9—C8—C16—N473.8 (2)C25—C26—C27—C281.2 (4)
C16—C8—C9—C10177.37 (15)C26—C27—C28—N62.3 (4)
C8—C9—C10—Cl1179.55 (14)
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of rings N5/C18–C22 and N6/C24–C28, respectively.
D—H···AD—HH···AD···AD—H···A
O2—H2···N51.04 (3)1.66 (4)2.689 (3)168 (2)
C22—H22···O2i0.932.463.348 (3)160
C27—H27···N3ii0.932.553.406 (3)153
C17—H17b···Cg2iii0.972.793.599 (3)141
C23—H23A···Cg3iv0.972.863.770 (3)156
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z+1; (iii) x, y+1, z; (iv) x, y+2, z+1.
 

Acknowledgements

This study was supported financially in part by Grants-in-Aid for Scientific Research (No. 15 K05539) from the Japan Society for the Promotion of Science.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBerg, J. M. & Shi, Y. (1996). Science, 271, 1081–1085.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBjernemose, J. K. & McKenzie, C. J. (2003). Acta Cryst. E59, o1275–o1276.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBush, A. I., Pettingell, W. H., Multhaup, G., d Paradis, M., Vonsattel, J.-P., Gusella, J. F., Beyreuther, K., Masters, C. L. & Tanzi, R. E. (1994). Science, 265, 1464–1467.  Google Scholar
First citationCallender, E. & Rice, K. C. (2000). Environ. Sci. Technol. 34, 232–238.  Web of Science CrossRef CAS Google Scholar
First citationChen, W.-H., Xing, Y. & Pang, Y. (2011). Org. Lett. 13, 1362–1365.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGoon, E., Petley, J. E., McMullen, W. H. & Wiberley, S. E. (1953). Anal. Chem. 25, 608–610.  CrossRef CAS Web of Science Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKobayashi, H., Katano, K., Hashimoto, T. & Hayashita, T. (2014). Anal. Sci. 30, 1045–1050.  CSD CrossRef CAS PubMed Google Scholar
First citationKwon, J. E., Lee, S., You, Y., Baek, K.-H., Ohkubo, K., Cho, J., Fukuzumi, S., Shin, I., Park, S. Y. & Nam, W. (2012). Inorg. Chem. 51, 8760–8774.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationPohl, R. & Anzenbacher, P. Jr (2003). Org. Lett. 5, 2769–2772.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2014). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationValeur, B. & Leray, I. (2000). Coord. Chem. Rev. 205, 3–40.  Web of Science CrossRef CAS Google Scholar
First citationWang, R.-X., Gao, D.-Z., Ye, F., Wu, Y.-F. & Zhu, D.-R. (2012). Acta Cryst. E68, o1672–o1673.  CSD CrossRef IUCr Journals Google Scholar
First citationWong, B. A., Friedle, S. & Lippard, S. J. (2009). J. Am. Chem. Soc. 131, 7142–7152.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationXue, L., Wang, H.-H., Wang, X. J. & Jiang, H. (2008). Inorg. Chem. 47, 4310–4318.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds