research communications
cis-2-amino-1,2-diphenylethanol (ADE)
of racemicaSchool of Science, Tokai University, 4-1-1 Kitakaname, Hiratuka, Kanagawa 259-1292, Japan
*Correspondence e-mail: fujii@wing.ncc.u-tokai.ac.jp
In the title 14H15NO, the hydroxy and amino groups form a bent tweezer-like motif towards the phenyl groups. In the crystal, enantiomers aggregate with each other and are linked by O—H⋯N hydrogen bonds, forming chiral 21-helical columnar structures from C(5) chains along the b-axis direction. Left- and right-handed 21 helices are formed from (1S,2R)-2-amino-1,2-diphenylethanol and (1R,2S)-2-amino-1,2-diphenylethanol, respectively.
CKeywords: crystal structure; optical resolving agent; 21-helical columnar structure; intermolecular hydrogen bonding; C—H⋯π and N—H⋯π interactions.
CCDC reference: 1438134
1. Chemical context
The production of chiral compounds has great importance in the pharmaceutical industry, and diastereomer salt separation is still widely applied in the process. An optical resolving agent, chiral 2-amino-1,2-diphenylethanol (ADE) (Read & Steele, 1927), has been widely tried and used in diastereomer salt separation methods; for example, chiral discrimination of 2-arylalkanoic acids by (1R,2S)-ADE (cis-isomer) (Kinbara et al., 1998). The ADE molecule with two adjacent stereogenic centers exists as (and more, enantiomers of cis- and trans-forms), and can be purchased without difficulty. It was considered that cis- and trans-ADE have different properties and play different roles in diastereomer salt separations. In fact, structures with cis-ADE enantiomers have been found in previous reports. The racemic structure of trans-ADE has been reported (Bari et al., 2012), but that of cis-ADE has not. The of racemic cis-ADE is reported on herein.
2. Structural commentary
In the title compound (cis-ADE), Fig. 1, the hydroxy and amino groups form a tweezer-like motif. Selected geometrical parameters are given in Table 1. The dihedral angle between the phenyl rings is 50.29 (6)° and the torsion angle O1—C1—C2—N1 is 59.72 (11)°. These values are similar to those observed for trans-ADE (Bari et al., 2012), viz. 48.05 (5) and 54.01 (10)°, respectively. However, in cis-ADE the hydroxyl group against the opposed phenyl ring adopts a gauche conformation [O1—C1—C2—C9 = −67.39 (11)°] compared to a trans conformation in trans-ADE. Thus a tweezer-like motif bent against the phenyl groups is seen in cis-ADE versus a projected motif in trans-ADE. The arrangements are similar to those found in the diastereomer salts with cis-enantiomers, except for (1R,2S)-2-ammonio-1,2-diphenylethanol (Imai et al., 2008).
|
3. Supramolecular features
In the crystal, enantiomers aggregate separately and are linked by O1—H13⋯N1 = [2.7977 (16) Å] hydrogen bonds, forming chiral 21-helical columnar structures from C(5) chains along the b-axis direction (Table 2 and Fig. 2): Left- and right-handed 21 helices are formed from (1S, 2R)-ADE and (1R, 2S)-ADE, respectively. The hydrophobic columnar structures surrounded by phenyl groups are consolidated by the C—H⋯π and N—H⋯π interactions, forming slabs parallel to the ab plane (Table 2 and Fig. 2). This is in contrast to the columnar structure stacking of racemic R22(10) ring dimers from the O—H⋯N hydrogen bonds observed in the of trans-ADE (Bari et al., 2012).
4. Synthesis and crystallization
cis-Enantiomers of 2-amino-1,2-diphenylethanol (ADE) were purchased from Sigma–Aldrich Co. Ltd. Equivalent weights were mixed in a bottle. Plate-like colourless crystals of the title were obtained by vapour-phase diffusion of an aqueous ethanol solution at 297 K.
5. Refinement
Crystal data, data collection and structure . All H atoms were located in difference Fourier maps. The NH2 and OH H atoms were freely refined. The C-bound H atoms were included in calculated positions and treated as riding atoms: C—H = 0.93–0.98 Å with Uiso(H) = 1.2Ueq(C).
details are summarized in Table 3Supporting information
CCDC reference: 1438134
https://doi.org/10.1107/S2056989015022318/su5243sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989015022318/su5243Isup2.hkl
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell
CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009), publCIF (Westrip, 2010), and WinGX (Farrugia, 2012).C14H15NO | F(000) = 456 |
Mr = 213.27 | Dx = 1.240 Mg m−3 |
Monoclinic, P21/a | Cu Kα radiation, λ = 1.54178 Å |
Hall symbol: -P 2yab | Cell parameters from 25 reflections |
a = 16.7752 (17) Å | θ = 20–25° |
b = 5.7573 (10) Å | µ = 0.61 mm−1 |
c = 12.2887 (13) Å | T = 297 K |
β = 105.680 (7)° | Plate, colourless |
V = 1142.7 (3) Å3 | 0.30 × 0.30 × 0.20 mm |
Z = 4 |
Entaf–Nonius CAD-4 diffractometer | 2058 reflections with I > 2σ(I) |
Radiation source: tube sealed | Rint = 0.019 |
Graphite monochromator | θmax = 74.9°, θmin = 3.7° |
2θ–ω scan | h = −21→0 |
Absorption correction: ψ scan (North et al., 1968) | k = −7→0 |
Tmin = 0.83, Tmax = 0.90 | l = −14→15 |
2442 measured reflections | 3 standard reflections every 300 reflections |
2354 independent reflections | intensity decay: none |
Refinement on F2 | H atoms treated by a mixture of independent and constrained refinement |
Least-squares matrix: full | W = 1/[Σ2(FO2) + (0.0588P)2 + 0.2117P] WHERE P = (FO2 + 2FC2)/3 |
R[F2 > 2σ(F2)] = 0.037 | (Δ/σ)max < 0.001 |
wR(F2) = 0.105 | Δρmax = 0.22 e Å−3 |
S = 1.03 | Δρmin = −0.18 e Å−3 |
2354 reflections | Extinction correction: SHELXL2014/7 (Sheldrick, 2015), FC*=KFC[1+0.001XFC2Λ3/SIN(2Θ)]-1/4 |
158 parameters | Extinction coefficient: 0.0107 (9) |
0 restraints | Absolute structure: see text |
Hydrogen site location: mixed |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.76749 (6) | 0.89601 (14) | 0.38299 (7) | 0.0445 (3) | |
N1 | 0.85894 (7) | 0.5703 (2) | 0.53117 (9) | 0.0478 (3) | |
C1 | 0.75159 (7) | 0.65596 (19) | 0.36005 (9) | 0.0359 (3) | |
C2 | 0.83327 (6) | 0.5226 (2) | 0.40885 (9) | 0.0370 (3) | |
C3 | 0.71413 (6) | 0.60757 (19) | 0.23561 (9) | 0.0347 (3) | |
C4 | 0.67124 (8) | 0.4020 (2) | 0.20194 (10) | 0.0438 (3) | |
C5 | 0.63480 (9) | 0.3576 (2) | 0.08879 (12) | 0.0514 (4) | |
C6 | 0.64086 (8) | 0.5178 (3) | 0.00766 (10) | 0.0527 (4) | |
C7 | 0.68404 (8) | 0.7206 (3) | 0.04003 (10) | 0.0516 (4) | |
C8 | 0.72072 (7) | 0.7658 (2) | 0.15340 (10) | 0.0427 (3) | |
C9 | 0.89766 (6) | 0.57714 (19) | 0.34642 (9) | 0.0352 (3) | |
C10 | 0.91137 (8) | 0.4216 (2) | 0.26755 (11) | 0.0458 (4) | |
C11 | 0.96758 (8) | 0.4696 (3) | 0.20612 (11) | 0.0552 (4) | |
C12 | 1.01117 (8) | 0.6743 (3) | 0.22244 (11) | 0.0521 (4) | |
C13 | 0.99884 (8) | 0.8302 (2) | 0.30109 (12) | 0.0517 (4) | |
C14 | 0.94275 (8) | 0.7827 (2) | 0.36305 (11) | 0.0454 (4) | |
H1 | 0.71190 | 0.60500 | 0.40080 | 0.0430* | |
H2 | 0.82070 | 0.35640 | 0.39920 | 0.0440* | |
H3 | 0.66700 | 0.29320 | 0.25600 | 0.0530* | |
H4 | 0.60610 | 0.21950 | 0.06720 | 0.0620* | |
H5 | 0.61590 | 0.48860 | −0.06840 | 0.0630* | |
H6 | 0.68870 | 0.82810 | −0.01440 | 0.0620* | |
H7 | 0.74990 | 0.90330 | 0.17440 | 0.0510* | |
H8 | 0.88230 | 0.28220 | 0.25550 | 0.0550* | |
H9 | 0.97580 | 0.36260 | 0.15350 | 0.0660* | |
H10 | 1.04860 | 0.70720 | 0.18080 | 0.0630* | |
H11 | 1.02840 | 0.96890 | 0.31290 | 0.0620* | |
H12 | 0.93530 | 0.88950 | 0.41620 | 0.0540* | |
H13 | 0.7225 (12) | 0.959 (3) | 0.4061 (15) | 0.077 (5)* | |
H14 | 0.8637 (12) | 0.732 (4) | 0.5400 (16) | 0.085 (6)* | |
H15 | 0.9080 (12) | 0.508 (3) | 0.5611 (15) | 0.074 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0495 (5) | 0.0365 (4) | 0.0494 (5) | 0.0033 (4) | 0.0169 (4) | −0.0058 (3) |
N1 | 0.0460 (6) | 0.0600 (7) | 0.0362 (5) | −0.0006 (5) | 0.0089 (4) | 0.0094 (5) |
C1 | 0.0370 (5) | 0.0355 (5) | 0.0375 (5) | 0.0012 (4) | 0.0138 (4) | 0.0019 (4) |
C2 | 0.0378 (6) | 0.0353 (6) | 0.0381 (5) | 0.0000 (4) | 0.0106 (4) | 0.0049 (4) |
C3 | 0.0315 (5) | 0.0362 (6) | 0.0374 (5) | 0.0048 (4) | 0.0108 (4) | 0.0026 (4) |
C4 | 0.0496 (6) | 0.0368 (6) | 0.0456 (6) | −0.0001 (5) | 0.0140 (5) | 0.0032 (5) |
C5 | 0.0540 (7) | 0.0442 (7) | 0.0536 (7) | −0.0054 (6) | 0.0102 (6) | −0.0083 (6) |
C6 | 0.0535 (7) | 0.0617 (8) | 0.0390 (6) | 0.0018 (6) | 0.0059 (5) | −0.0046 (6) |
C7 | 0.0566 (7) | 0.0565 (8) | 0.0400 (6) | −0.0017 (6) | 0.0104 (5) | 0.0096 (6) |
C8 | 0.0430 (6) | 0.0419 (6) | 0.0427 (6) | −0.0041 (5) | 0.0108 (5) | 0.0047 (5) |
C9 | 0.0321 (5) | 0.0346 (5) | 0.0378 (5) | 0.0039 (4) | 0.0077 (4) | 0.0051 (4) |
C10 | 0.0417 (6) | 0.0437 (7) | 0.0525 (7) | −0.0027 (5) | 0.0138 (5) | −0.0079 (5) |
C11 | 0.0465 (7) | 0.0714 (9) | 0.0508 (7) | −0.0004 (6) | 0.0186 (6) | −0.0137 (7) |
C12 | 0.0375 (6) | 0.0719 (9) | 0.0495 (7) | 0.0009 (6) | 0.0162 (5) | 0.0087 (6) |
C13 | 0.0431 (6) | 0.0468 (7) | 0.0669 (8) | −0.0062 (5) | 0.0176 (6) | 0.0070 (6) |
C14 | 0.0453 (6) | 0.0382 (6) | 0.0548 (7) | −0.0019 (5) | 0.0171 (5) | −0.0028 (5) |
O1—C1 | 1.4213 (14) | C10—C11 | 1.386 (2) |
N1—C2 | 1.4732 (15) | C11—C12 | 1.373 (2) |
O1—H13 | 0.95 (2) | C12—C13 | 1.375 (2) |
C1—C3 | 1.5138 (15) | C13—C14 | 1.388 (2) |
N1—H15 | 0.88 (2) | C1—H1 | 0.9800 |
N1—H14 | 0.94 (2) | C2—H2 | 0.9800 |
C1—C2 | 1.5435 (16) | C4—H3 | 0.9300 |
C2—C9 | 1.5172 (15) | C5—H4 | 0.9300 |
C3—C8 | 1.3868 (16) | C6—H5 | 0.9300 |
C3—C4 | 1.3888 (16) | C7—H6 | 0.9300 |
C4—C5 | 1.3831 (19) | C8—H7 | 0.9300 |
C5—C6 | 1.382 (2) | C10—H8 | 0.9300 |
C6—C7 | 1.375 (2) | C11—H9 | 0.9300 |
C7—C8 | 1.3870 (17) | C12—H10 | 0.9300 |
C9—C14 | 1.3896 (16) | C13—H11 | 0.9300 |
C9—C10 | 1.3837 (17) | C14—H12 | 0.9300 |
C1—O1—H13 | 108.0 (11) | O1—C1—H1 | 108.00 |
O1—C1—C3 | 112.57 (9) | C2—C1—H1 | 108.00 |
C2—C1—C3 | 112.55 (9) | C3—C1—H1 | 108.00 |
H14—N1—H15 | 108.3 (17) | N1—C2—H2 | 107.00 |
O1—C1—C2 | 107.90 (9) | C1—C2—H2 | 107.00 |
C2—N1—H14 | 107.2 (12) | C9—C2—H2 | 107.00 |
C2—N1—H15 | 109.4 (12) | C3—C4—H3 | 120.00 |
N1—C2—C9 | 115.19 (9) | C5—C4—H3 | 120.00 |
C1—C2—C9 | 112.28 (9) | C4—C5—H4 | 120.00 |
N1—C2—C1 | 106.72 (9) | C6—C5—H4 | 120.00 |
C1—C3—C4 | 119.87 (10) | C5—C6—H5 | 120.00 |
C1—C3—C8 | 121.46 (10) | C7—C6—H5 | 120.00 |
C4—C3—C8 | 118.66 (10) | C6—C7—H6 | 120.00 |
C3—C4—C5 | 120.64 (11) | C8—C7—H6 | 120.00 |
C4—C5—C6 | 120.21 (12) | C3—C8—H7 | 120.00 |
C5—C6—C7 | 119.59 (12) | C7—C8—H7 | 120.00 |
C6—C7—C8 | 120.39 (13) | C9—C10—H8 | 119.00 |
C3—C8—C7 | 120.49 (12) | C11—C10—H8 | 119.00 |
C2—C9—C10 | 119.74 (10) | C10—C11—H9 | 120.00 |
C2—C9—C14 | 122.38 (10) | C12—C11—H9 | 120.00 |
C10—C9—C14 | 117.86 (11) | C11—C12—H10 | 120.00 |
C9—C10—C11 | 121.26 (12) | C13—C12—H10 | 120.00 |
C10—C11—C12 | 120.37 (13) | C12—C13—H11 | 120.00 |
C11—C12—C13 | 119.19 (13) | C14—C13—H11 | 120.00 |
C12—C13—C14 | 120.66 (12) | C9—C14—H12 | 120.00 |
C9—C14—C13 | 120.65 (11) | C13—C14—H12 | 120.00 |
O1—C1—C2—N1 | 59.72 (11) | C1—C3—C8—C7 | −178.29 (12) |
O1—C1—C2—C9 | −67.39 (11) | C4—C3—C8—C7 | 0.98 (18) |
C3—C1—C2—N1 | −175.47 (9) | C3—C4—C5—C6 | 0.1 (2) |
C3—C1—C2—C9 | 57.42 (12) | C4—C5—C6—C7 | 0.6 (2) |
O1—C1—C3—C4 | −159.70 (11) | C5—C6—C7—C8 | −0.6 (2) |
O1—C1—C3—C8 | 19.56 (15) | C6—C7—C8—C3 | −0.2 (2) |
C2—C1—C3—C4 | 78.10 (13) | C2—C9—C10—C11 | 177.69 (11) |
C2—C1—C3—C8 | −102.65 (12) | C14—C9—C10—C11 | −0.64 (18) |
N1—C2—C9—C10 | 136.09 (11) | C2—C9—C14—C13 | −177.49 (11) |
N1—C2—C9—C14 | −45.66 (15) | C10—C9—C14—C13 | 0.80 (18) |
C1—C2—C9—C10 | −101.48 (12) | C9—C10—C11—C12 | 0.0 (2) |
C1—C2—C9—C14 | 76.77 (13) | C10—C11—C12—C13 | 0.5 (2) |
C1—C3—C4—C5 | 178.33 (12) | C11—C12—C13—C14 | −0.4 (2) |
C8—C3—C4—C5 | −0.94 (19) | C12—C13—C14—C9 | −0.3 (2) |
CgA and CgB are the centroids of rings C3–C8 and C9–C14, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H13···N1i | 0.95 (2) | 1.86 (2) | 2.7977 (16) | 173.1 (16) |
N1—H15···CgBii | 0.88 (2) | 2.670 (19) | 3.5125 (14) | 160.3 (15) |
C12—H10···CgAiii | 0.93 | 2.80 | 3.6780 (17) | 158 |
Symmetry codes: (i) −x+3/2, y+1/2, −z+1; (ii) −x+2, −y+1, −z+1; (iii) x+1/2, −y+3/2, z. |
Acknowledgements
The author thanks Tokai University for a research grant, which partially supported this work.
References
Bari, A., Al-Obaid, A. M. & Ng, S. W. (2012). Acta Cryst. E68, o491. Web of Science CSD CrossRef IUCr Journals Google Scholar
Enraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
Imai, Y., Kawaguchi, K., Matsuno, H., Sato, T., Kuroda, R. & Matsubara, Y. (2008). Tetrahedron, 64, 4585–4589. Web of Science CSD CrossRef CAS Google Scholar
Kinbara, K., Kobayashi, Y. & Saigo, K. (1998). J. Chem. Soc. Perkin Trans. 2, pp. 1767–1776. Web of Science CSD CrossRef Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Read, J. & Steele, C. C. (1927). J. Chem. Soc. pp. 910–918. CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.