organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2-(4-meth­­oxy­phen­yl)-6-nitro­imidazo[1,2-a]pyridine-3-carbaldehyde

aLaboratoire de Chimie Appliquée et Environnement (LCAE), Faculté des Sciences, Université Mohammed Premier, BP 524, 60000-Oujda, Morocco, bObservatoire de la Lagune Marchica de Nador et Région Limitrophe, Université Mohammed Premier, Faculté Pluridisciplinaire de Nador, BP 300, Selouane 62702 Nador, Morocco, and cLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: a_elaatiaoui@yahoo.fr

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 13 November 2015; accepted 17 November 2015; online 21 November 2015)

In the title compound, C15H11N3O4, the imidazo[1,2-a] pyridine ring system is almost planar [r.m.s. deviation = 0.028 (2) Å]. Its mean plane makes dihedral angles of 33.92 (7) and 34.56 (6)° with the meth­oxy­phenyl ring and the nitro group, respectively. The cohesion of the crystal structure is ensured by C—H⋯N and C—H⋯O hydrogen bonds, forming layers almost parallel to the ac plane.

1. Related literature

For biological activities of derivatives of the title compound, see: Rupert et al. (2003[Rupert, K. C., Henry, J. R., Dodd, J. H., Wadsworth, S. A., Cavender, D. E., Olini, G. C., Fahmy, B. & Siekierka, J. J. (2003). Bioorg. Med. Chem. Lett. 13, 347-350.]); Hranjec et al. (2007[Hranjec, M., Kralj, M., Piantanida, I., Sedić, M., Šuman, L., Pavelić, K. & Karminski-Zamola, G. (2007). J. Med. Chem. 50, 5696-5711.]); Hamdouchi et al. (1999[Hamdouchi, C., de Blas, J., del Prado, M., Gruber, J., Heinz, B. A. & Vance, L. (1999). J. Med. Chem. 42, 50-59.]); Rival et al. (1992[Rival, Y., Grassy, G. & Michel, G. (1992). Chem. Pharm. Bull. 40, 1170-1176.]); Scribner et al. (2008[Scribner, A., Dennis, R., Lee, S., Ouvry, G., Perrey, D., Fisher, M., Wyvratt, M., Leavitt, P., Liberator, P., Gurnett, A., Brown, C., Mathew, J., Thompson, D., Schmatz, D. & Biftu, T. (2008). Eur. J. Med. Chem. 43, 1123-1151.]); Bode et al. (2011[Bode, M. L., Gravestock, D., Moleele, S. S., van der Westhuyzen, C. W., Pelly, S. C., Steenkamp, P. A., Hoppe, H. C., Khan, T. & Nkabinde, L. A. (2011). Bioorg. Med. Chem. 19, 4227-4237.]). For the synthesis of similar compounds, see: Sumalatha et al. (2009[Sumalatha, Y., Reddy, T. R., Reddy, P. P. & Satyanarayana, B. (2009). Arkivoc, pp. 315-320.]); Elaatiaoui et al. (2014[Elaatiaoui, A., Koudad, M., Saddik, R., Benchat, N. & El Ammari, L. (2014). Acta Cryst. E70, o1189-o1190.], 2015[Elaatiaoui, A., Saddik, R., Benchat, N., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, o803-o804.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C15H11N3O4

  • Mr = 297.27

  • Monoclinic, P 21 /c

  • a = 10.8516 (6) Å

  • b = 12.0710 (6) Å

  • c = 10.2631 (5) Å

  • β = 93.200 (2)°

  • V = 1342.26 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 K

  • 0.42 × 0.31 × 0.26 mm

2.2. Data collection

  • Bruker X8 APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.673, Tmax = 0.746

  • 25892 measured reflections

  • 3472 independent reflections

  • 2139 reflections with I > 2σ(I)

  • Rint = 0.060

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.120

  • S = 1.02

  • 3472 reflections

  • 200 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯N3i 0.93 2.53 3.412 (2) 158
C15—H15A⋯O3ii 0.96 2.52 3.423 (2) 158
C14—H14⋯O1iii 0.93 2.50 3.425 (2) 177
Symmetry codes: (i) -x, -y+1, -z; (ii) [-x+1, y+{\script{1\over 2}}, -z-{\script{1\over 2}}]; (iii) -x, -y, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Structural commentary top

Imidazo[1,2-a]pyridines are a very inter­esting class of heterocyclic compounds because of their wide use in medicinal chemistry for the production of various pharmacologically active agents. In addition, various derivatives of imidazo[1,2-a]pyridine show a wide range of biological activities such as anti-inflammatory (Rupert et al., 2003), anti­tumor (Hranjec et al., 2007), anti­viral (Hamdouchi et al., 1999), anti­bacterial (Rival et al., 1992), anti­parasitic (Scribner et al., 2008) and anti-HIV (Bode et al., 2011). The access to the imidazo[1,2-a]pyridine scaffold is generally made by condensation of 2-amino­pyridine with a specifically chosen α-halo ketone (Sumalatha et al., 2009). The present paper is a continuation of our research devoted to the development of imidazo[1,2-a]pyridines derivatives with potential pharmacological activities (Elaatiaoui et al., 2014;2015).

In the title compound, Fig. 1, the fused five- and six-membered rings of the imidazo[1,2-a]pyridine moiety are virtually coplanar, with a maximum deviation of 0.028 (2) Å for atom C3. Its mean plane makes dihedral angles of 33.92 (7) and 34.56 (6)° with the meth­oxy­phenyl ring and the nitro group, respectively.

In the crystal, molecules are linked by C4–H4···N3, C15–H15A···O3 and C14–H14···O1 hydrogen bonds (Table 1), building layers parallel to (101), as shown in Fig. 2.

Synthesis and crystallization top

Phospho­rus oxychloride (3.06 g, 0.02 mol) was added to a solution of 2-(4-meth­oxy­phenyl)-5-nitro­imidazo[1,2-a]pyridine (2.69 g, 0.01 mol) in DMF (25 ml) at room temperature under stirring. The mixture was heated to 353 K for 5 h. The resulting solution was evaporated to dryness in vacuo, and the residue was treated with cold water, filtered, and crystallized from methanol to give pure product (yield 74%, Rf = 0.45 (silica, CH2Cl2/MeOH, 9/1).

Spectral data: 1H NMR (300 MHz, DMSO, δ(p.p.m.)): 10.40 (s, 1H, C5H); 10.09 (s, 1H, CH=O); 8.36 (dd, 1H, C7H, J=2.4 Hz); 7.96 (m, 3H,C8H, CphH, CphH, J= 28.2 Hz); 7.10 (d, 2H, CphH, CphH, J=9 Hz); 3.83 (s, 3H, OCH3). 13C NMR (75 MHz, DMSO) δ(p.p.m.): 180.84; 161.64; 158.81; 147.76; 138.75; 131.75; 128.32; 125.06; 124.05; 121.11; 117.04; 115.02; 55.87. m/z (M+1): 298.09.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. H atoms were located in a difference Fourier map and treated as riding: C–H = 0.93-0.96 Å with Uiso(H) = 1.5 Ueq for methyl H atoms and 1.2 Ueq for other H atoms. The reflection (100) affected by the beam-stop was removed during refinement.

Related literature top

For biological activities of derivatives of the title compound, see: Rupert et al. (2003); Hranjec et al. (2007); Hamdouchi et al. (1999); Rival et al. (1992); Scribner et al. (2008); Bode et al. (2011). For the synthesis of similar compounds, see: Sumalatha et al. (2009); Elaatiaoui et al. (2014, 2015).

Structure description top

Imidazo[1,2-a]pyridines are a very inter­esting class of heterocyclic compounds because of their wide use in medicinal chemistry for the production of various pharmacologically active agents. In addition, various derivatives of imidazo[1,2-a]pyridine show a wide range of biological activities such as anti-inflammatory (Rupert et al., 2003), anti­tumor (Hranjec et al., 2007), anti­viral (Hamdouchi et al., 1999), anti­bacterial (Rival et al., 1992), anti­parasitic (Scribner et al., 2008) and anti-HIV (Bode et al., 2011). The access to the imidazo[1,2-a]pyridine scaffold is generally made by condensation of 2-amino­pyridine with a specifically chosen α-halo ketone (Sumalatha et al., 2009). The present paper is a continuation of our research devoted to the development of imidazo[1,2-a]pyridines derivatives with potential pharmacological activities (Elaatiaoui et al., 2014;2015).

In the title compound, Fig. 1, the fused five- and six-membered rings of the imidazo[1,2-a]pyridine moiety are virtually coplanar, with a maximum deviation of 0.028 (2) Å for atom C3. Its mean plane makes dihedral angles of 33.92 (7) and 34.56 (6)° with the meth­oxy­phenyl ring and the nitro group, respectively.

In the crystal, molecules are linked by C4–H4···N3, C15–H15A···O3 and C14–H14···O1 hydrogen bonds (Table 1), building layers parallel to (101), as shown in Fig. 2.

For biological activities of derivatives of the title compound, see: Rupert et al. (2003); Hranjec et al. (2007); Hamdouchi et al. (1999); Rival et al. (1992); Scribner et al. (2008); Bode et al. (2011). For the synthesis of similar compounds, see: Sumalatha et al. (2009); Elaatiaoui et al. (2014, 2015).

Synthesis and crystallization top

Phospho­rus oxychloride (3.06 g, 0.02 mol) was added to a solution of 2-(4-meth­oxy­phenyl)-5-nitro­imidazo[1,2-a]pyridine (2.69 g, 0.01 mol) in DMF (25 ml) at room temperature under stirring. The mixture was heated to 353 K for 5 h. The resulting solution was evaporated to dryness in vacuo, and the residue was treated with cold water, filtered, and crystallized from methanol to give pure product (yield 74%, Rf = 0.45 (silica, CH2Cl2/MeOH, 9/1).

Spectral data: 1H NMR (300 MHz, DMSO, δ(p.p.m.)): 10.40 (s, 1H, C5H); 10.09 (s, 1H, CH=O); 8.36 (dd, 1H, C7H, J=2.4 Hz); 7.96 (m, 3H,C8H, CphH, CphH, J= 28.2 Hz); 7.10 (d, 2H, CphH, CphH, J=9 Hz); 3.83 (s, 3H, OCH3). 13C NMR (75 MHz, DMSO) δ(p.p.m.): 180.84; 161.64; 158.81; 147.76; 138.75; 131.75; 128.32; 125.06; 124.05; 121.11; 117.04; 115.02; 55.87. m/z (M+1): 298.09.

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 1. H atoms were located in a difference Fourier map and treated as riding: C–H = 0.93-0.96 Å with Uiso(H) = 1.5 Ueq for methyl H atoms and 1.2 Ueq for other H atoms. The reflection (100) affected by the beam-stop was removed during refinement.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial view of the crystal packing of the title compound, showing molecules linked by hydrogen bonds (dashed lines; Table 1), forming layers parallel to (101).
2-(4-Methoxyphenyl)-6-nitroimidazo[1,2-a]pyridine-3-carbaldehyde top
Crystal data top
C15H11N3O4F(000) = 616
Mr = 297.27Dx = 1.471 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.8516 (6) ÅCell parameters from 3472 reflections
b = 12.0710 (6) Åθ = 2.5–28.7°
c = 10.2631 (5) ŵ = 0.11 mm1
β = 93.200 (2)°T = 296 K
V = 1342.26 (12) Å3Block, colourless
Z = 40.42 × 0.31 × 0.26 mm
Data collection top
Bruker X8 APEX
diffractometer
3472 independent reflections
Radiation source: fine-focus sealed tube2139 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
φ and ω scansθmax = 28.7°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1414
Tmin = 0.673, Tmax = 0.746k = 1616
25892 measured reflectionsl = 1310
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.044 w = 1/[σ2(Fo2) + (0.0468P)2 + 0.3011P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.120(Δ/σ)max < 0.001
S = 1.02Δρmax = 0.21 e Å3
3472 reflectionsΔρmin = 0.16 e Å3
200 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0038 (11)
Crystal data top
C15H11N3O4V = 1342.26 (12) Å3
Mr = 297.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.8516 (6) ŵ = 0.11 mm1
b = 12.0710 (6) ÅT = 296 K
c = 10.2631 (5) Å0.42 × 0.31 × 0.26 mm
β = 93.200 (2)°
Data collection top
Bruker X8 APEX
diffractometer
3472 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2139 reflections with I > 2σ(I)
Tmin = 0.673, Tmax = 0.746Rint = 0.060
25892 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 1.02Δρmax = 0.21 e Å3
3472 reflectionsΔρmin = 0.16 e Å3
200 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.02574 (15)0.14080 (13)0.14955 (15)0.0384 (4)
H10.01160.06500.15590.046*
C20.11433 (16)0.19026 (13)0.21703 (15)0.0396 (4)
C30.13789 (17)0.30501 (14)0.21067 (18)0.0479 (4)
H30.19790.33660.26010.057*
C40.07141 (17)0.36854 (14)0.13112 (18)0.0479 (4)
H40.08670.44420.12420.058*
C50.02062 (16)0.31952 (12)0.05933 (16)0.0397 (4)
C60.14059 (15)0.18113 (12)0.00409 (15)0.0369 (4)
C70.20276 (17)0.07630 (13)0.00131 (16)0.0423 (4)
H70.27460.06940.04330.051*
C80.17220 (16)0.28204 (13)0.05971 (15)0.0377 (4)
C90.27357 (16)0.30700 (13)0.14343 (15)0.0389 (4)
C100.33469 (18)0.40926 (14)0.12918 (18)0.0490 (5)
H100.31040.45950.06680.059*
C110.42963 (19)0.43593 (15)0.20600 (19)0.0547 (5)
H110.46980.50360.19450.066*
C120.46660 (17)0.36275 (15)0.30113 (17)0.0467 (4)
C130.40815 (17)0.26118 (14)0.31569 (16)0.0435 (4)
H130.43300.21110.37790.052*
C140.31262 (17)0.23437 (13)0.23732 (16)0.0422 (4)
H140.27380.16600.24790.051*
C150.5928 (2)0.32902 (19)0.4794 (2)0.0685 (6)
H15A0.65820.36330.52410.103*
H15B0.62040.25880.44490.103*
H15C0.52280.31800.53940.103*
N10.18828 (14)0.11943 (13)0.29732 (14)0.0482 (4)
N20.04176 (12)0.20585 (10)0.07215 (12)0.0356 (3)
N30.09779 (14)0.36523 (11)0.02137 (14)0.0438 (4)
O10.17708 (14)0.01936 (11)0.28788 (14)0.0623 (4)
O20.25834 (15)0.16393 (13)0.37021 (15)0.0741 (5)
O30.16791 (13)0.00450 (9)0.06039 (13)0.0548 (4)
O40.55866 (13)0.39871 (12)0.37535 (13)0.0631 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0429 (9)0.0298 (7)0.0421 (9)0.0019 (7)0.0011 (8)0.0014 (7)
C20.0425 (10)0.0377 (8)0.0385 (9)0.0045 (7)0.0019 (8)0.0010 (7)
C30.0515 (11)0.0395 (9)0.0532 (11)0.0025 (8)0.0086 (9)0.0072 (8)
C40.0546 (11)0.0304 (8)0.0594 (11)0.0055 (8)0.0083 (9)0.0021 (8)
C50.0467 (10)0.0270 (7)0.0448 (9)0.0014 (7)0.0011 (8)0.0011 (7)
C60.0396 (9)0.0325 (8)0.0385 (8)0.0008 (7)0.0011 (7)0.0006 (7)
C70.0463 (10)0.0350 (8)0.0456 (10)0.0034 (7)0.0036 (8)0.0010 (7)
C80.0432 (9)0.0326 (8)0.0370 (8)0.0001 (7)0.0026 (7)0.0012 (6)
C90.0436 (9)0.0351 (8)0.0378 (9)0.0004 (7)0.0009 (7)0.0040 (7)
C100.0588 (12)0.0380 (9)0.0506 (10)0.0050 (8)0.0070 (9)0.0049 (8)
C110.0641 (13)0.0406 (9)0.0603 (12)0.0170 (9)0.0103 (10)0.0053 (8)
C120.0479 (10)0.0484 (10)0.0441 (10)0.0087 (8)0.0035 (8)0.0026 (8)
C130.0490 (11)0.0428 (9)0.0386 (9)0.0031 (8)0.0015 (8)0.0022 (7)
C140.0504 (11)0.0342 (8)0.0418 (9)0.0074 (7)0.0004 (8)0.0010 (7)
C150.0619 (14)0.0834 (16)0.0622 (13)0.0196 (12)0.0228 (11)0.0136 (11)
N10.0485 (9)0.0496 (9)0.0465 (8)0.0048 (7)0.0042 (7)0.0000 (7)
N20.0399 (8)0.0277 (6)0.0388 (7)0.0004 (5)0.0002 (6)0.0000 (5)
N30.0514 (9)0.0316 (7)0.0487 (8)0.0017 (6)0.0044 (7)0.0039 (6)
O10.0686 (10)0.0432 (7)0.0765 (10)0.0044 (6)0.0153 (8)0.0124 (7)
O20.0803 (11)0.0707 (10)0.0752 (10)0.0053 (8)0.0386 (9)0.0078 (8)
O30.0638 (9)0.0343 (6)0.0676 (8)0.0080 (6)0.0155 (7)0.0104 (6)
O40.0654 (9)0.0664 (9)0.0593 (8)0.0241 (7)0.0201 (7)0.0072 (7)
Geometric parameters (Å, º) top
C1—C21.354 (2)C9—C141.386 (2)
C1—N21.360 (2)C9—C101.405 (2)
C1—H10.9300C10—C111.370 (3)
C2—C31.409 (2)C10—H100.9300
C2—N11.459 (2)C11—C121.392 (3)
C3—C41.357 (2)C11—H110.9300
C3—H30.9300C12—O41.361 (2)
C4—C51.405 (2)C12—C131.385 (2)
C4—H40.9300C13—C141.385 (2)
C5—N31.330 (2)C13—H130.9300
C5—N21.3961 (19)C14—H140.9300
C6—N21.395 (2)C15—O41.424 (2)
C6—C81.396 (2)C15—H15A0.9600
C6—C71.434 (2)C15—H15B0.9600
C7—O31.2197 (19)C15—H15C0.9600
C7—H70.9300N1—O11.2184 (19)
C8—N31.360 (2)N1—O21.220 (2)
C8—C91.464 (2)
C2—C1—N2117.71 (14)C11—C10—H10119.6
C2—C1—H1121.1C9—C10—H10119.6
N2—C1—H1121.1C10—C11—C12120.65 (17)
C1—C2—C3122.79 (16)C10—C11—H11119.7
C1—C2—N1117.32 (15)C12—C11—H11119.7
C3—C2—N1119.88 (16)O4—C12—C13124.62 (17)
C4—C3—C2118.83 (16)O4—C12—C11116.07 (16)
C4—C3—H3120.6C13—C12—C11119.30 (17)
C2—C3—H3120.6C12—C13—C14119.81 (16)
C3—C4—C5119.67 (16)C12—C13—H13120.1
C3—C4—H4120.2C14—C13—H13120.1
C5—C4—H4120.2C13—C14—C9121.56 (15)
N3—C5—N2111.14 (14)C13—C14—H14119.2
N3—C5—C4129.99 (15)C9—C14—H14119.2
N2—C5—C4118.85 (15)O4—C15—H15A109.5
N2—C6—C8104.88 (13)O4—C15—H15B109.5
N2—C6—C7122.83 (14)H15A—C15—H15B109.5
C8—C6—C7131.31 (16)O4—C15—H15C109.5
O3—C7—C6124.53 (17)H15A—C15—H15C109.5
O3—C7—H7117.7H15B—C15—H15C109.5
C6—C7—H7117.7O1—N1—O2123.60 (16)
N3—C8—C6111.25 (15)O1—N1—C2118.41 (15)
N3—C8—C9119.68 (14)O2—N1—C2118.00 (15)
C6—C8—C9128.98 (15)C1—N2—C6131.33 (13)
C14—C9—C10117.84 (16)C1—N2—C5122.11 (14)
C14—C9—C8123.12 (15)C6—N2—C5106.55 (13)
C10—C9—C8119.04 (15)C5—N3—C8106.16 (13)
C11—C10—C9120.81 (17)C12—O4—C15117.45 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···N3i0.932.533.412 (2)158
C15—H15A···O3ii0.962.523.423 (2)158
C14—H14···O1iii0.932.503.425 (2)177
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1/2, z1/2; (iii) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···N3i0.932.533.412 (2)158.2
C15—H15A···O3ii0.962.523.423 (2)157.7
C14—H14···O1iii0.932.503.425 (2)176.6
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1/2, z1/2; (iii) x, y, z.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationBode, M. L., Gravestock, D., Moleele, S. S., van der Westhuyzen, C. W., Pelly, S. C., Steenkamp, P. A., Hoppe, H. C., Khan, T. & Nkabinde, L. A. (2011). Bioorg. Med. Chem. 19, 4227–4237.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationElaatiaoui, A., Koudad, M., Saddik, R., Benchat, N. & El Ammari, L. (2014). Acta Cryst. E70, o1189–o1190.  CSD CrossRef IUCr Journals Google Scholar
First citationElaatiaoui, A., Saddik, R., Benchat, N., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, o803–o804.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHamdouchi, C., de Blas, J., del Prado, M., Gruber, J., Heinz, B. A. & Vance, L. (1999). J. Med. Chem. 42, 50–59.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHranjec, M., Kralj, M., Piantanida, I., Sedić, M., Šuman, L., Pavelić, K. & Karminski-Zamola, G. (2007). J. Med. Chem. 50, 5696–5711.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRival, Y., Grassy, G. & Michel, G. (1992). Chem. Pharm. Bull. 40, 1170–1176.  CrossRef PubMed CAS Google Scholar
First citationRupert, K. C., Henry, J. R., Dodd, J. H., Wadsworth, S. A., Cavender, D. E., Olini, G. C., Fahmy, B. & Siekierka, J. J. (2003). Bioorg. Med. Chem. Lett. 13, 347–350.  Web of Science CrossRef PubMed CAS Google Scholar
First citationScribner, A., Dennis, R., Lee, S., Ouvry, G., Perrey, D., Fisher, M., Wyvratt, M., Leavitt, P., Liberator, P., Gurnett, A., Brown, C., Mathew, J., Thompson, D., Schmatz, D. & Biftu, T. (2008). Eur. J. Med. Chem. 43, 1123–1151.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSumalatha, Y., Reddy, T. R., Reddy, P. P. & Satyanarayana, B. (2009). Arkivoc, pp. 315–320.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds