research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 3-O-benzyl-4(R)-C-(1-benzyl-1H-1,2,3-triazol-4-yl)-1,2-O-iso­propyl­­idene-α-D-erythro­furan­ose

aInstitute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena 3/7, Riga, LV-1048, Latvia, and bLatvian Institute of Organic Synthesis, Str. Aizkraukles 21, Riga, LV 1006, Latvia
*Correspondence e-mail: d_stepanovs@osi.lv, maris_turks@ktf.rtu.lv

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 15 November 2015; accepted 24 November 2015; online 28 November 2015)

The title compound, C23H25N3O4, {systematic name: 1-benzyl-4-[(3aR,5R,6R,6aR)-6-benz­yloxy-2,2-di­methyl­tetra­hydro­furo[2,3-d][1,3]dioxol-5-yl]-1H-1,2,3-triazole}, consists of a substituted 2,2-di­methyl­tetra­hydro­furo[2,3-d][1,3]dioxole. The furan­ose ring adopts an envelope conformation close to C3-exo, where the C atom substituted by the benz­yloxy group is the flap. The fused dioxolane ring also adopts an envelope conformation, with the methyl­ene C atom as the flap. In the crystal, mol­ecules are linked by weak C—H⋯O hydrogen bonds, forming zigzag chains along [010].

1. Chemical context

The title compound, (1), was obtained in a one-pot multicomponent click reaction (Rostovtsev et al., 2002[Rostovtsev, V. V., Green, L. G., Fokin, V. V. & Sharpless, K. B. (2002). Angew. Chem. Int. Ed. 41, 2596-2599.]; Kumar et al., 2009[Kumar, D., Reddy, V. B. & Varma, R. S. (2009). Tetrahedron Lett. 50, 2065-2068.]) of alkyne (2), sodium azide, and benzyl bromide (3), in the presence of copper(II) sulfate and sodium ascorbate in THF solution at 323 K (Fig. 1[link]). Similar C(4)-linked carbo­hydrate-1,2,3-triazole conjugates have been synthesized under different reaction conditions (Dururgkar et al., 2009[Dururgkar, K. A., Gonnade, R. G. & Ramana, C. V. (2009). Tetrahedron, 65, 3974-3979.]; Kaliappan et al., 2009[Kaliappan, K. P., Kalanidhi, P. & Mahapatra, S. (2009). Synlett, pp. 2162-2166.]; Strakova et al., 2011[Strakova, I., Kumpiņa, I., Rjabovs, V., Lugiņina, J., Belyakov, S. & Turks, M. (2011). Tetrahedron Asymmetry, 22, 728-739.]). Many carbohydrate-triazole conjugates have been probed as glycosidase inhibitors (Rjabova et al., 2012[Rjabova, J., Rjabovs, V., Moreno Vargas, A. J., Clavijo, E. M. & Turks, M. (2012). Cent. Eur. J. Chem. 10, 386-394.]), galectin inhibitors (Mackeviča et al., 2014[Mackeviča, J., Ostrovskis, P., Leffler, H., Nilsson, U. J., Rudovica, V., Viksna, A., Belyakov, S. & Turks, M. (2014). ARKIVOC, (III), 90-112.]), and anti­microbial agents (Jana et al., 2014[Jana, S. K., Löppenberg, M., Daniliuc, C. G. & Holl, R. (2014). Tetrahedron, 70, 6569-6577.]; Reddy et al., 2014[Reddy, P. V., Saquib, M., Mishra, N. N., Shukla, P. K. & Shaw, A. K. (2014). ARKIVOC, (IV), 170-182.]). Starting alkyne (2) and similar carbo­hydrate alkynes have been studied previously as precursors for triazole syntheses (Ciunik & Jarosz, 1998[Ciunik, Z. & Jarosz, S. (1998). J. Mol. Struct. 442, 115-119.]; Jarosz, 1988[Jarosz, S. (1988). Tetrahedron Lett. 29, 1193-1196.]; Rjabovs et al., 2015[Rjabovs, V., Ostrovskis, P., Posevins, D., Kiselovs, G., Kumpiņš, V., Mishnev, A. & Turks, M. (2015). Eur. J. Org. Chem. pp. 5572-5584.]; Strakova et al., 2011[Strakova, I., Kumpiņa, I., Rjabovs, V., Lugiņina, J., Belyakov, S. & Turks, M. (2011). Tetrahedron Asymmetry, 22, 728-739.]).

[Scheme 1]
[Figure 1]
Figure 1
Synthesis of the title compound (1).

2. Structural commentary

The title compound, Fig. 2[link], consists of a tetra­hydro­furan core fused with a dioxolane ring, and substituted with benzyl and (1-benz­yl)-1H-1,2,3-triazol-4-yl moieties. The furan­ose ring adopts an envelope conformation close to C3-exo, where atom C3 deviates from the mean plane through atoms O1/C1/C2/C4 by 0.577 (4) Å. The fused dioxolane ring also adopts an envelope conformation, where atom C2 deviates from the mean plane through the four near planar atoms (O17/C18/O19/C1) by 0.364 (4) Å. The dihedral angle between the mean planes of the fragments of these rings is 69.3 (1)°.

[Figure 2]
Figure 2
The mol­ecular structure of compound (1), showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, weak C—H⋯O hydrogen bonds (Table 1[link]) link the mol­ecules, forming zigzag chains along the b-axis direction. There are no other significant inter­molecular inter­actions present.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C21—H21C⋯O19i 0.96 2.53 3.285 (3) 136
Symmetry code: (i) [-x+3, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

4. Database survey

A search of the Cambridge Structural Database (Version 5.36; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) for substituted 3a,5,6,6a-tetra­hydro­furo[2,3-d][1,3]dioxoles gave 485 hits (excluding organomet­allics). Three of them are triazoles: (4R)-4-(2-allyl-2H-1,2,3-triazol-4-yl)-1,2-O-iso­propyl­idene-L-threose (LOHTIM; Jenkinson et al., 2008[Jenkinson, S. F., Best, D., Wilson, F. X., Fleet, G. W. J. & Watkin, D. J. (2008). Acta Cryst. E64, o2361.]) and 5-({5-[6-(benz­yloxy)-2,2-di­methyl­tetra­hydro­furo[2,3-d][1,3]dioxol-5-yl]-1H-1,2,3-triazol-1-yl}meth­yl)-2,2-di­methyl­tetra­hydro­furo[2,3-d][1,3]dioxol-6-ol (DOPVAH01 and DOPVEL01, two stereoisomers; Kayet et al., 2014[Kayet, A., Datta, D., Kumar, G., Ghosh, A. S. & Pathak, T. (2014). RSC Adv. 4, 63036-63038.]).

5. Synthesis and crystallization

The synthesis of the title compound is illustrated in Fig. 1[link]. Sodium azide (98 mg, 1.5 mmol, 3 eq.) was added to a solution of alkyne (2) (140 mg, 0.5 mmol, 1 eq.) in THF (10 ml). The mixture was cooled to 273 K and benzyl bromide (3) (70 µl, 0.6 mmol, 1.2 eq.) was added. After 20 min solutions of copper(II) sulfate penta­hydrate (12 mg, 10 mol%) in water (0.5 ml) and sodium ascorbate (20 mg, 20 mol%) in water (0.5 ml) were added and the resulting reaction mixture was warmed to 323 K. After 3 h the solvent was evaporated under reduced pressure, the residue was dissolved in EtOAc (20 ml). The organic layer was washed with a saturated aqueous solution of NaHCO3 (3 × 5 ml) and brine (3 × 5 ml), dried over Na2SO4, filtered and evaporated. The solid residue was purified by column chromatography on silica gel eluting with hexa­nes/EtOAc giving a white crystalline solid (yield: 132 mg, 65%; m.p. 430-431 K). Colourless plate-like crystals were obtained by slow evaporation of a di­chloro­methane solution at ambient temperature.

Spectroscopic data: IR (KBr, cm−1): 3125, 3085, 2985, 2895, 1495, 1455, 1385, 1370, 1230, 1145, 1100, 1075, 1040, 995. 1H NMR (CDCl3, 300 MHz): δ 7.37 (m, 4H), 7.28–7.16 (m, 6H), 5.83 (d, J = 3.6 Hz, 1H), 5.54 (d, AB syst., J = 14.8 Hz, 1H), 5.47 (d, AB syst., J = 14.8 Hz, 1H), 5.13 (d, J = 9.0 Hz, 1H), 4.64 (m, 2H), 4.55 (d, AB syst., J = 12.2 Hz, 1H), 4.25 (dd, J = 8.0, 4.0 Hz, 1H), 1.63 (s, 3H), 1.37 (s, 3H). 13C NMR (CDCl3, 75 MHz): 13C NMR (75 MHz, CDCl3) δ 145.12, 137.64, 134.54, 129.28, 128.96, 128.43, 128.27, 128.12, 127.98, 123.26, 113.14, 103.98, 81.43, 77.93, 72.59, 72.57, 54.31, 26.92, 26.54.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The C-bound H atoms were positioned geometrically and refined as riding on their parent atoms: C—H = 0.93–0.98Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms. Reflection (0,0,2) whose intensity was affected by the beam-stop was removed from the final refinement. In the final cycles of refinement, in the absence of significant anomalous scattering effects, Friedel pairs were merged and Δf′′ set to zero.

Table 2
Experimental details

Crystal data
Chemical formula C23H25N3O4
Mr 407.46
Crystal system, space group Orthorhombic, P212121
Temperature (K) 173
a, b, c (Å) 9.5276 (2), 10.0030 (2), 21.9495 (7)
V3) 2091.89 (9)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.31 × 0.17 × 0.12
 
Data collection
Diffractometer Nonius KappaCCD
Absorption correction
No. of measured, independent and observed [I > 2σ(I)] reflections 5878, 3423, 1983
Rint 0.070
(sin θ/λ)max−1) 0.705
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.106, 1.02
No. of reflections 3423
No. of parameters 273
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.19, −0.20
Computer programs: KappaCCD Server Software (Nonius, 1997[Nonius (1997). KappaCCD Server Software. Nonius BV, Delft, The Netherlands.]), DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SIR2011 (Burla et al., 2012[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357-361.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2011 (Burla et al., 2012); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

3-O-Benzyl-4(R)-C-(1-benzyl-1H-1,2,3-triazol-4-yl)-1,2-O-isopropylidene-α-D-erythrofuranose top
Crystal data top
C23H25N3O4Dx = 1.294 Mg m3
Mr = 407.46Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 11742 reflections
a = 9.5276 (2) Åθ = 1.0–30.0°
b = 10.0030 (2) ŵ = 0.09 mm1
c = 21.9495 (7) ÅT = 173 K
V = 2091.89 (9) Å3Plate, colourless
Z = 40.31 × 0.17 × 0.12 mm
F(000) = 864
Data collection top
Nonius KappaCCD
diffractometer
1983 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.070
Graphite monochromatorθmax = 30.1°, θmin = 2.2°
φ and ω scanh = 1313
5878 measured reflectionsk = 1414
3423 independent reflectionsl = 3030
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0425P)2]
where P = (Fo2 + 2Fc2)/3
3423 reflections(Δ/σ)max < 0.001
273 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.20 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.16295 (19)0.88874 (17)0.19794 (8)0.0303 (4)
C11.2698 (3)0.9325 (2)0.23846 (11)0.0257 (6)
H11.28021.02990.23670.031*
C21.2262 (3)0.8879 (2)0.30203 (12)0.0264 (6)
H21.24840.95350.33380.032*
C31.0704 (3)0.8622 (2)0.29521 (11)0.0249 (6)
H31.01900.94680.29830.030*
C41.0612 (3)0.8090 (2)0.23003 (11)0.0255 (6)
H41.09140.71530.22950.031*
C50.9254 (3)0.8207 (2)0.19804 (11)0.0247 (6)
C60.8620 (3)0.9299 (3)0.17250 (11)0.0281 (7)
H60.89431.01760.17240.034*
N70.8440 (3)0.7120 (2)0.18755 (10)0.0330 (6)
N80.7314 (3)0.7502 (2)0.15626 (10)0.0340 (6)
N90.7435 (2)0.8834 (2)0.14768 (9)0.0281 (5)
C100.6401 (3)0.9530 (3)0.11021 (12)0.0347 (7)
H10A0.65241.04870.11500.042*
H10B0.54660.93040.12430.042*
C110.6530 (3)0.9172 (2)0.04351 (12)0.0278 (6)
C120.7666 (4)0.9615 (3)0.00985 (13)0.0424 (8)
H120.83401.01600.02780.051*
C130.7797 (4)0.9242 (3)0.05091 (14)0.0509 (9)
H130.85630.95360.07350.061*
C140.6808 (4)0.8446 (3)0.07767 (14)0.0507 (9)
H140.69080.81910.11820.061*
C150.5672 (4)0.8026 (3)0.04496 (15)0.0511 (9)
H150.49870.75020.06350.061*
C160.5537 (3)0.8380 (3)0.01595 (14)0.0402 (8)
H160.47700.80780.03820.048*
O171.29867 (19)0.76405 (16)0.30941 (8)0.0286 (5)
C181.4170 (3)0.7600 (2)0.26879 (11)0.0278 (6)
O191.3983 (2)0.86916 (16)0.22727 (8)0.0308 (5)
C201.5517 (3)0.7802 (3)0.30359 (13)0.0360 (7)
H20A1.54770.86360.32520.054*
H20B1.62920.78160.27570.054*
H20C1.56390.70840.33210.054*
C211.4123 (3)0.6299 (2)0.23368 (12)0.0364 (7)
H21A1.48580.62910.20380.055*
H21B1.32300.62160.21370.055*
H21C1.42500.55640.26130.055*
O3'1.0121 (2)0.76803 (16)0.33605 (8)0.0283 (4)
C4'0.9967 (4)0.8185 (3)0.39562 (13)0.0497 (9)
H4'10.94050.89920.39450.060*
H4'21.08830.84130.41190.060*
C5'0.9281 (3)0.7180 (2)0.43610 (12)0.0303 (7)
C6'0.9439 (4)0.7281 (3)0.49853 (14)0.0446 (8)
H6'0.99650.79760.51500.054*
C7'0.8820 (4)0.6357 (3)0.53642 (13)0.0495 (9)
H7'0.89240.64370.57840.059*
C8'0.8054 (4)0.5322 (3)0.51301 (15)0.0500 (9)
H8'0.76480.46920.53880.060*
C9'0.7889 (4)0.5223 (3)0.45101 (15)0.0480 (9)
H9'0.73600.45280.43480.058*
C10'0.8498 (3)0.6139 (3)0.41277 (12)0.0360 (7)
H10'0.83830.60580.37090.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0293 (11)0.0383 (10)0.0232 (9)0.0053 (9)0.0004 (9)0.0065 (8)
C10.0310 (17)0.0218 (14)0.0244 (14)0.0016 (13)0.0007 (13)0.0025 (11)
C20.0315 (16)0.0208 (13)0.0267 (14)0.0026 (12)0.0007 (13)0.0005 (11)
C30.0319 (16)0.0216 (12)0.0211 (13)0.0002 (13)0.0030 (13)0.0002 (10)
C40.0318 (17)0.0212 (13)0.0235 (13)0.0007 (13)0.0046 (13)0.0038 (10)
C50.0325 (16)0.0231 (12)0.0185 (13)0.0036 (13)0.0028 (13)0.0020 (11)
C60.0304 (17)0.0298 (14)0.0242 (14)0.0049 (13)0.0024 (13)0.0029 (11)
N70.0321 (14)0.0315 (13)0.0354 (14)0.0074 (12)0.0046 (12)0.0026 (10)
N80.0346 (14)0.0320 (13)0.0354 (13)0.0103 (12)0.0012 (12)0.0013 (11)
N90.0278 (14)0.0283 (13)0.0281 (12)0.0003 (11)0.0023 (11)0.0025 (10)
C100.0305 (17)0.0389 (15)0.0347 (16)0.0069 (15)0.0020 (14)0.0042 (13)
C110.0285 (16)0.0281 (14)0.0268 (14)0.0061 (13)0.0068 (13)0.0018 (12)
C120.042 (2)0.0478 (19)0.0371 (18)0.0066 (17)0.0070 (16)0.0003 (14)
C130.053 (2)0.061 (2)0.0384 (19)0.0017 (19)0.0041 (18)0.0066 (17)
C140.071 (3)0.053 (2)0.0280 (17)0.0107 (19)0.0061 (19)0.0054 (15)
C150.061 (3)0.0497 (18)0.043 (2)0.0042 (19)0.016 (2)0.0110 (15)
C160.0359 (19)0.0394 (17)0.0452 (19)0.0010 (15)0.0034 (17)0.0013 (14)
O170.0303 (11)0.0232 (9)0.0324 (10)0.0064 (8)0.0054 (9)0.0073 (8)
C180.0317 (16)0.0252 (13)0.0266 (14)0.0049 (13)0.0040 (13)0.0039 (11)
O190.0279 (11)0.0299 (9)0.0346 (10)0.0030 (9)0.0061 (9)0.0087 (8)
C200.0371 (18)0.0359 (16)0.0350 (16)0.0024 (14)0.0021 (15)0.0045 (13)
C210.0406 (19)0.0271 (14)0.0415 (17)0.0033 (15)0.0032 (16)0.0038 (12)
O3'0.0390 (11)0.0255 (9)0.0203 (9)0.0023 (9)0.0070 (8)0.0003 (8)
C4'0.080 (3)0.0394 (17)0.0298 (17)0.0144 (19)0.0176 (18)0.0088 (13)
C5'0.0356 (18)0.0296 (14)0.0258 (15)0.0002 (14)0.0070 (13)0.0038 (11)
C6'0.050 (2)0.0518 (19)0.0317 (17)0.0111 (18)0.0060 (16)0.0077 (14)
C7'0.060 (2)0.064 (2)0.0240 (16)0.003 (2)0.0109 (17)0.0030 (15)
C8'0.061 (3)0.0463 (19)0.043 (2)0.0046 (18)0.0200 (18)0.0107 (15)
C9'0.053 (2)0.0410 (17)0.050 (2)0.0119 (17)0.0146 (19)0.0063 (16)
C10'0.0406 (18)0.0404 (17)0.0270 (15)0.0024 (16)0.0031 (14)0.0011 (13)
Geometric parameters (Å, º) top
O1—C11.421 (3)C14—H140.9300
O1—C41.439 (3)C15—C161.389 (4)
C1—O191.400 (3)C15—H150.9300
C1—C21.523 (3)C16—H160.9300
C1—H10.9800O17—C181.438 (3)
C2—O171.428 (3)C18—O191.433 (3)
C2—C31.514 (4)C18—C201.507 (4)
C2—H20.9800C18—C211.513 (3)
C3—O3'1.414 (3)C20—H20A0.9600
C3—C41.529 (3)C20—H20B0.9600
C3—H30.9800C20—H20C0.9600
C4—C51.477 (4)C21—H21A0.9600
C4—H40.9800C21—H21B0.9600
C5—N71.355 (3)C21—H21C0.9600
C5—C61.369 (3)O3'—C4'1.409 (3)
C6—N91.337 (3)C4'—C5'1.492 (4)
C6—H60.9300C4'—H4'10.9700
N7—N81.330 (3)C4'—H4'20.9700
N8—N91.351 (3)C5'—C10'1.379 (4)
N9—C101.460 (3)C5'—C6'1.382 (4)
C10—C111.513 (3)C6'—C7'1.376 (4)
C10—H10A0.9700C6'—H6'0.9300
C10—H10B0.9700C7'—C8'1.367 (4)
C11—C161.374 (4)C7'—H7'0.9300
C11—C121.383 (4)C8'—C9'1.373 (4)
C12—C131.391 (4)C8'—H8'0.9300
C12—H120.9300C9'—C10'1.371 (4)
C13—C141.366 (4)C9'—H9'0.9300
C13—H130.9300C10'—H10'0.9300
C14—C151.365 (5)
C1—O1—C4110.29 (18)C13—C14—H14120.0
O19—C1—O1112.16 (19)C14—C15—C16120.0 (3)
O19—C1—C2105.47 (19)C14—C15—H15120.0
O1—C1—C2106.7 (2)C16—C15—H15120.0
O19—C1—H1110.8C11—C16—C15120.5 (3)
O1—C1—H1110.8C11—C16—H16119.8
C2—C1—H1110.8C15—C16—H16119.8
O17—C2—C3109.7 (2)C2—O17—C18109.46 (17)
O17—C2—C1103.1 (2)O19—C18—O17105.97 (19)
C3—C2—C1103.1 (2)O19—C18—C20109.0 (2)
O17—C2—H2113.3O17—C18—C20110.5 (2)
C3—C2—H2113.3O19—C18—C21109.1 (2)
C1—C2—H2113.3O17—C18—C21108.4 (2)
O3'—C3—C2115.8 (2)C20—C18—C21113.5 (2)
O3'—C3—C4109.82 (19)C1—O19—C18110.00 (19)
C2—C3—C4102.0 (2)C18—C20—H20A109.5
O3'—C3—H3109.6C18—C20—H20B109.5
C2—C3—H3109.6H20A—C20—H20B109.5
C4—C3—H3109.6C18—C20—H20C109.5
O1—C4—C5108.25 (19)H20A—C20—H20C109.5
O1—C4—C3103.10 (19)H20B—C20—H20C109.5
C5—C4—C3117.9 (2)C18—C21—H21A109.5
O1—C4—H4109.1C18—C21—H21B109.5
C5—C4—H4109.1H21A—C21—H21B109.5
C3—C4—H4109.1C18—C21—H21C109.5
N7—C5—C6108.5 (2)H21A—C21—H21C109.5
N7—C5—C4121.3 (2)H21B—C21—H21C109.5
C6—C5—C4130.2 (2)C4'—O3'—C3113.00 (19)
N9—C6—C5105.2 (2)O3'—C4'—C5'110.9 (2)
N9—C6—H6127.4O3'—C4'—H4'1109.5
C5—C6—H6127.4C5'—C4'—H4'1109.5
N8—N7—C5108.6 (2)O3'—C4'—H4'2109.5
N7—N8—N9106.6 (2)C5'—C4'—H4'2109.5
C6—N9—N8111.0 (2)H4'1—C4'—H4'2108.0
C6—N9—C10129.3 (2)C10'—C5'—C6'118.8 (3)
N8—N9—C10119.5 (2)C10'—C5'—C4'121.6 (2)
N9—C10—C11112.1 (2)C6'—C5'—C4'119.5 (3)
N9—C10—H10A109.2C7'—C6'—C5'120.2 (3)
C11—C10—H10A109.2C7'—C6'—H6'119.9
N9—C10—H10B109.2C5'—C6'—H6'119.9
C11—C10—H10B109.2C8'—C7'—C6'120.7 (3)
H10A—C10—H10B107.9C8'—C7'—H7'119.7
C16—C11—C12119.2 (3)C6'—C7'—H7'119.7
C16—C11—C10120.5 (3)C7'—C8'—C9'119.2 (3)
C12—C11—C10120.3 (3)C7'—C8'—H8'120.4
C11—C12—C13119.8 (3)C9'—C8'—H8'120.4
C11—C12—H12120.1C10'—C9'—C8'120.7 (3)
C13—C12—H12120.1C10'—C9'—H9'119.7
C14—C13—C12120.4 (3)C8'—C9'—H9'119.7
C14—C13—H13119.8C9'—C10'—C5'120.4 (3)
C12—C13—H13119.8C9'—C10'—H10'119.8
C15—C14—C13120.0 (3)C5'—C10'—H10'119.8
C15—C14—H14120.0
C4—O1—C1—O19109.7 (2)N9—C10—C11—C1270.7 (3)
C4—O1—C1—C25.3 (3)C16—C11—C12—C130.8 (4)
O19—C1—C2—O1724.2 (2)C10—C11—C12—C13177.9 (3)
O1—C1—C2—O1795.2 (2)C11—C12—C13—C140.3 (5)
O19—C1—C2—C3138.4 (2)C12—C13—C14—C150.8 (5)
O1—C1—C2—C319.0 (3)C13—C14—C15—C161.6 (5)
O17—C2—C3—O3'44.2 (3)C12—C11—C16—C150.1 (4)
C1—C2—C3—O3'153.50 (19)C10—C11—C16—C15178.6 (3)
O17—C2—C3—C475.0 (2)C14—C15—C16—C111.1 (5)
C1—C2—C3—C434.3 (2)C3—C2—O17—C18131.7 (2)
C1—O1—C4—C5152.8 (2)C1—C2—O17—C1822.4 (2)
C1—O1—C4—C327.2 (3)C2—O17—C18—O1912.5 (2)
O3'—C3—C4—O1161.15 (19)C2—O17—C18—C20105.5 (2)
C2—C3—C4—O137.8 (2)C2—O17—C18—C21129.5 (2)
O3'—C3—C4—C579.7 (3)O1—C1—O19—C1898.2 (2)
C2—C3—C4—C5156.9 (2)C2—C1—O19—C1817.6 (3)
O1—C4—C5—N7136.0 (2)O17—C18—O19—C14.0 (3)
C3—C4—C5—N7107.6 (3)C20—C18—O19—C1123.0 (2)
O1—C4—C5—C641.0 (4)C21—C18—O19—C1112.5 (2)
C3—C4—C5—C675.3 (3)C2—C3—O3'—C4'74.5 (3)
N7—C5—C6—N90.4 (3)C4—C3—O3'—C4'170.7 (3)
C4—C5—C6—N9177.7 (2)C3—O3'—C4'—C5'177.0 (2)
C6—C5—N7—N80.1 (3)O3'—C4'—C5'—C10'20.4 (4)
C4—C5—N7—N8177.7 (2)O3'—C4'—C5'—C6'159.0 (3)
C5—N7—N8—N90.3 (3)C10'—C5'—C6'—C7'0.2 (5)
C5—C6—N9—N80.5 (3)C4'—C5'—C6'—C7'179.6 (3)
C5—C6—N9—C10174.5 (2)C5'—C6'—C7'—C8'0.6 (5)
N7—N8—N9—C60.5 (3)C6'—C7'—C8'—C9'0.9 (5)
N7—N8—N9—C10175.2 (2)C7'—C8'—C9'—C10'0.8 (5)
C6—N9—C10—C11103.7 (3)C8'—C9'—C10'—C5'0.3 (5)
N8—N9—C10—C1169.9 (3)C6'—C5'—C10'—C9'0.0 (5)
N9—C10—C11—C16108.0 (3)C4'—C5'—C10'—C9'179.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C21—H21C···O19i0.962.533.285 (3)136
Symmetry code: (i) x+3, y1/2, z+1/2.
 

Acknowledgements

JSC `Olainfarm' is acknowledged for the donation of diacetone-D-glucose and JSC `Grindeks' is acknowledged for the donation of organic solvents.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357–361.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCiunik, Z. & Jarosz, S. (1998). J. Mol. Struct. 442, 115–119.  Web of Science CrossRef CAS Google Scholar
First citationDururgkar, K. A., Gonnade, R. G. & Ramana, C. V. (2009). Tetrahedron, 65, 3974–3979.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationJana, S. K., Löppenberg, M., Daniliuc, C. G. & Holl, R. (2014). Tetrahedron, 70, 6569–6577.  Web of Science CSD CrossRef CAS Google Scholar
First citationJarosz, S. (1988). Tetrahedron Lett. 29, 1193–1196.  CrossRef CAS Web of Science Google Scholar
First citationJenkinson, S. F., Best, D., Wilson, F. X., Fleet, G. W. J. & Watkin, D. J. (2008). Acta Cryst. E64, o2361.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKaliappan, K. P., Kalanidhi, P. & Mahapatra, S. (2009). Synlett, pp. 2162–2166.  Web of Science CrossRef Google Scholar
First citationKayet, A., Datta, D., Kumar, G., Ghosh, A. S. & Pathak, T. (2014). RSC Adv. 4, 63036–63038.  Web of Science CSD CrossRef CAS Google Scholar
First citationKumar, D., Reddy, V. B. & Varma, R. S. (2009). Tetrahedron Lett. 50, 2065–2068.  Web of Science CrossRef CAS Google Scholar
First citationMackeviča, J., Ostrovskis, P., Leffler, H., Nilsson, U. J., Rudovica, V., Viksna, A., Belyakov, S. & Turks, M. (2014). ARKIVOC, (III), 90–112.  Google Scholar
First citationNonius (1997). KappaCCD Server Software. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationReddy, P. V., Saquib, M., Mishra, N. N., Shukla, P. K. & Shaw, A. K. (2014). ARKIVOC, (IV), 170–182.  Google Scholar
First citationRjabova, J., Rjabovs, V., Moreno Vargas, A. J., Clavijo, E. M. & Turks, M. (2012). Cent. Eur. J. Chem. 10, 386–394.  Web of Science CrossRef CAS Google Scholar
First citationRjabovs, V., Ostrovskis, P., Posevins, D., Kiselovs, G., Kumpiņš, V., Mishnev, A. & Turks, M. (2015). Eur. J. Org. Chem. pp. 5572–5584.  Web of Science CSD CrossRef Google Scholar
First citationRostovtsev, V. V., Green, L. G., Fokin, V. V. & Sharpless, K. B. (2002). Angew. Chem. Int. Ed. 41, 2596–2599.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStrakova, I., Kumpiņa, I., Rjabovs, V., Lugiņina, J., Belyakov, S. & Turks, M. (2011). Tetrahedron Asymmetry, 22, 728–739.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds