metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­[μ-S-hexyl 3-(2-oxido­benzyl­­idene)di­thio­carbazato-κ4O,N3,S:O]dicopper(II)

aDepartment of Chemistry, Rajshahi University, Rajshahi-6205, Bangladesh, bDepartment of Applied Chemistry, Faculty of Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan, cCenter for Environmental Conservation and Research Safety, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan, and dDepartment of Chemical and Pharmaceutical Sciences, via Giorgieri 1, 34127, Trieste, Italy
*Correspondence e-mail: mbhhowlader@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 16 November 2015; accepted 30 November 2015; online 9 December 2015)

The title compound, [Cu2(C14H18N2OS2)2], is a binuclear copper(II) complex of an oxybenzyl­idenedi­thio­carbazate ligand. The ligand coordinates in a tridentate manner through N-, S- and O-donor atoms. Each O atom also bridges to a second CuII ion to form the binuclear species. It has a central Cu2O2 rhomboid moiety and a metal-to-metal separation of 2.9923 (6) Å. In the crystal, the binuclear complexes stack along the a axis with all the hexyl chains located side-by-side, forming a hydro­phobic region. The complexes are linked via C—H⋯N hydrogen bonds, forming chains along the c-axis direction. One CuII atom has the S atom of a symmetry-related complex located approximately in the apical position at 2.9740 (11) Å. This weak inter­action links the chains to form slabs parallel to the ac plane.

1. Related literature

For details of the bioactivities of metal complexes of bidentate Schiff bases of S-methyl or S-benzyl di­thio­carbazate ligands, see: Chan et al. (2008[Chan, M. E., Crouse, K. A., Tahir, M. I. M., Rosli, R., Umar-Tsafe, N. & Cowley, A. R. (2008). Polyhedron, 27, 1141-1149.]); How et al. (2008[How, F. N. F., Crouse, K. A., Tahir, M. I. M., Tarafder, M. T. H. & Cowley, A. R. (2008). Polyhedron, 27, 3325-3329.]); Ali et al. (2002[Ali, M. A., Mirza, A. H., Butcher, R. J., Tarafder, M. T. H., Keat, T. B. & Ali, A. M. (2002). J. Inorg. Biochem. 92, 141-148.]); Chew et al. (2004[Chew, K. B., Tarafder, M. T. H., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H. K. (2004). Polyhedron, 23, 1385-1392.]). For square-planar metal complexes of di­thio­carbazate ligands coordinating in a bidentate manner, see: Tarafder et al. (2008[Tarafder, M. T. H., Islam, M. T., Islam, M. A. A. A. A., Chantrapromma, S. & Fun, H.-K. (2008). Acta Cryst. E64, m416-m417.]); Howlader et al. (2015[Howlader, M. B. H., Begum, M. S., Sheikh, M. C., Miyatake, R. & Zangrando, E. (2015). Acta Cryst. E71, m26-m27.]); Begum et al. (2015[Begum, M. S., Howlader, M. B. H., Sheikh, M. C., Miyatake, R. & Zangrando, E. (2015). Acta Cryst. E71, m63-m64.]). For Cu—N and Cu—S bond lengths in mononuclear bis-chelated species, see: Zangrando, Begum et al. (2015[Zangrando, E., Begum, M. S., Miyatake, R., Sheikh, M. C. & Hossain, M. M. (2015). Acta Cryst. E71, 706-708.]); Zangrando, Islam et al. (2015[Zangrando, E., Islam, M. T., Islam, M. A. A. A., Sheikh, M. C., Tarafder, M. T. H., Miyatake, R., Zahan, R. & Hossain, M. A. (2015). Inorg. Chim. Acta, 427, 278-284.]). For copper(II) complexes of similar ligands, see: Ali, Tan et al. (2012[Ali, M. A., Tan, A. L., Mirza, A. H., Santos, J. H. & Abdullah, A. H. H. (2012). Transition Met. Chem. 37, 651-659.]); Ali, Mirza et al. (2012[Ali, Md. A., Mirza, A. H., Ting, W. Y., Hamid, M. H. S. A., Bernhardt, P. V. & Butcher, R. J. (2012). Polyhedron, 48, 167-173.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Cu2(C14H18N2OS2)2]

  • Mr = 715.93

  • Monoclinic, C c

  • a = 7.2792 (4) Å

  • b = 37.7252 (16) Å

  • c = 11.3443 (5) Å

  • β = 94.701 (2)°

  • V = 3104.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.67 mm−1

  • T = 173 K

  • 0.36 × 0.34 × 0.03 mm

2.2. Data collection

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.723, Tmax = 0.951

  • 12702 measured reflections

  • 5278 independent reflections

  • 5114 reflections with I > 2σ(I)

  • Rint = 0.025

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.066

  • S = 1.06

  • 5278 reflections

  • 361 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.29 e Å−3

  • Absolute structure: Flack x determined using 2223 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])

  • Absolute structure parameter: 0.006 (6)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C19—H19⋯N2i 0.95 2.52 3.457 (5) 167
Symmetry code: (i) x, y, z+1.

Data collection: RAPID-AUTO (Rigaku, 2001[Rigaku (2001). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comments top

Metal complexes of bidentate Schiff bases of S-methyl or S-benzyl di­thio­carbaza­tes have received considerable attention for their possible bioactivities (Chan et al., 2008; How et al., 2008; Ali et al., 2002; Chew et al., 2004). In square planar metal complexes reported so far di­thio­carbazato ligands coordinate in a bidentate manner through the N,S donors leading to bis­chelated species with a trans (Howlader et al., 2015) or cis (Begum et al., 2015) configuration. The presence of an oxo­benzyl­idene moiety is expected to induce the ligand to coordinate to the metal through the N,S,O donors. Continuing our studies on S-containing Schiff bases (Howlader et al., 2015; Begum et al., 2015), we report herein on the crystal structure of an unexpected binuclear copper(II) complex of the ligand S-hexyl-β-N-(2-hy­droxy­benzyl­idene)di­thio­carbazate.

In the title compound, Fig. 1, the presence of the oxo­benzyl­idene moiety in the Schiff base ligand has induced it to coordinate to the metal through the N, S, and O donor atoms, with formation of five- and six-membered chelate rings. Each oxygen atom bridges to a second copper(II) ion to form a binuclear species having a central Cu2O2 rhomboid moiety. The bridging angles Cu1—O1—Cu2 and Cu1—O2—Cu2 of 99.23 (12) and 99.69 (12) °, respectively, lead to a metal-metal separation of 2.9923 (6) Å. The Cu—N bond distances of 1.919 (4) and 1.931 (4) Å, and the Cu—S bond distances of 2.2171 (10) and 2.2352 (11) Å, appear slightly shorter by ca. 0.02-0.04 Å than those observed in mononuclear bis­chelated species (Zangrando, Begum, et al., 2015; Zangrando, Islam, et al., 2015; Tarafder et al., 2008). This feature can be ascribed to the double deprotonated ligand in the present case. With exception of the alkyl chains the two chelating ligands have almost coplanar atoms and their mean plane forms a dihedral angle of 34.45 (9)°. It is worth noting that the alkyl chain C23—C28 presents all methyl­ene groups in an anti conformation, while the other chain presents a torsion angle C10—C11—C12—C13 of 62.1 (6)°, likely induced by packing requirements. To the best of our knowledge the present complex represents a unique example of a binuclear species with similar tridentate S,N,O ligands derived from S-alkyl­dithio­carbazate, although copper complexes of similar ligands have been reported (Ali, Tan et al., 2012; Ali, Mirza et al., 2012).

In the crystal, the binuclear complexes stack along the a axis with all the hexyl chains located side-by-side forming a hydro­phobic region. The complexes are linked via C—H···N hydrogen bonds forming chains along the c axis direction (Table 1). Atom Cu2 has the sulfur atom, S2i [code: (i) x - 1/2, -y + 3/2, z+ 1/2], of a symmetry-related complex located approximately in the apical position at 2.9740 (11) Å (Fig. 2). This weak inter­action links the chains to form slabs parallel to the ac plane.

Synthesis and crystallization top

A solution of Cu(CH3COO)2.H2O (0.11 g, 0.5 mmol, 15 ml methanol) was added to a solution of the S-hexyl-β-N-(2-hy­droxy­benzyl­idene)di­thio­carbazate (1.0 mmol, 10 ml methanol). The resulting mixture was stirred at room temperature for 5 h. A dark reddish brown precipitate was formed, filtered off, washed with methanol and dried in vacuo over anhydrous CaCl2. Dark reddish brown single crystals suitable for X-ray diffraction were obtained by slow evaporation from a mixture of di­chloro­methane and aceto­nitrile (3:1); m.p. 443 K.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were fixed geometrically (C—H = 0.95 - 0.99 Å) and refined as riding with Uiso(H) = 1.2Ueq(C).

Related literature top

For details of the bioactivities of metal complexes of bidentate Schiff bases of S-methyl or S-benzyl dithiocarbazate ligands, see: Chan et al. (2008); How et al. (2008); Ali et al. (2002); Chew et al. (2004). For square-planar metal complexes of dithiocarbazate ligands coordinating in a bidentate manner, see: Tarafder et al. (2008); Howlader et al. (2015); Begum et al. (2015). For Cu—N and Cu—S bond lengths in mononuclear bis-chelated species, see: Zangrando, Begum et al. (2015); Zangrando, Islam et al. (2015). For copper complexes of similar ligands, see: Ali, Tan et al. (2012); Ali, Mirza et al. (2012).

Structure description top

Metal complexes of bidentate Schiff bases of S-methyl or S-benzyl di­thio­carbaza­tes have received considerable attention for their possible bioactivities (Chan et al., 2008; How et al., 2008; Ali et al., 2002; Chew et al., 2004). In square planar metal complexes reported so far di­thio­carbazato ligands coordinate in a bidentate manner through the N,S donors leading to bis­chelated species with a trans (Howlader et al., 2015) or cis (Begum et al., 2015) configuration. The presence of an oxo­benzyl­idene moiety is expected to induce the ligand to coordinate to the metal through the N,S,O donors. Continuing our studies on S-containing Schiff bases (Howlader et al., 2015; Begum et al., 2015), we report herein on the crystal structure of an unexpected binuclear copper(II) complex of the ligand S-hexyl-β-N-(2-hy­droxy­benzyl­idene)di­thio­carbazate.

In the title compound, Fig. 1, the presence of the oxo­benzyl­idene moiety in the Schiff base ligand has induced it to coordinate to the metal through the N, S, and O donor atoms, with formation of five- and six-membered chelate rings. Each oxygen atom bridges to a second copper(II) ion to form a binuclear species having a central Cu2O2 rhomboid moiety. The bridging angles Cu1—O1—Cu2 and Cu1—O2—Cu2 of 99.23 (12) and 99.69 (12) °, respectively, lead to a metal-metal separation of 2.9923 (6) Å. The Cu—N bond distances of 1.919 (4) and 1.931 (4) Å, and the Cu—S bond distances of 2.2171 (10) and 2.2352 (11) Å, appear slightly shorter by ca. 0.02-0.04 Å than those observed in mononuclear bis­chelated species (Zangrando, Begum, et al., 2015; Zangrando, Islam, et al., 2015; Tarafder et al., 2008). This feature can be ascribed to the double deprotonated ligand in the present case. With exception of the alkyl chains the two chelating ligands have almost coplanar atoms and their mean plane forms a dihedral angle of 34.45 (9)°. It is worth noting that the alkyl chain C23—C28 presents all methyl­ene groups in an anti conformation, while the other chain presents a torsion angle C10—C11—C12—C13 of 62.1 (6)°, likely induced by packing requirements. To the best of our knowledge the present complex represents a unique example of a binuclear species with similar tridentate S,N,O ligands derived from S-alkyl­dithio­carbazate, although copper complexes of similar ligands have been reported (Ali, Tan et al., 2012; Ali, Mirza et al., 2012).

In the crystal, the binuclear complexes stack along the a axis with all the hexyl chains located side-by-side forming a hydro­phobic region. The complexes are linked via C—H···N hydrogen bonds forming chains along the c axis direction (Table 1). Atom Cu2 has the sulfur atom, S2i [code: (i) x - 1/2, -y + 3/2, z+ 1/2], of a symmetry-related complex located approximately in the apical position at 2.9740 (11) Å (Fig. 2). This weak inter­action links the chains to form slabs parallel to the ac plane.

For details of the bioactivities of metal complexes of bidentate Schiff bases of S-methyl or S-benzyl dithiocarbazate ligands, see: Chan et al. (2008); How et al. (2008); Ali et al. (2002); Chew et al. (2004). For square-planar metal complexes of dithiocarbazate ligands coordinating in a bidentate manner, see: Tarafder et al. (2008); Howlader et al. (2015); Begum et al. (2015). For Cu—N and Cu—S bond lengths in mononuclear bis-chelated species, see: Zangrando, Begum et al. (2015); Zangrando, Islam et al. (2015). For copper complexes of similar ligands, see: Ali, Tan et al. (2012); Ali, Mirza et al. (2012).

Synthesis and crystallization top

A solution of Cu(CH3COO)2.H2O (0.11 g, 0.5 mmol, 15 ml methanol) was added to a solution of the S-hexyl-β-N-(2-hy­droxy­benzyl­idene)di­thio­carbazate (1.0 mmol, 10 ml methanol). The resulting mixture was stirred at room temperature for 5 h. A dark reddish brown precipitate was formed, filtered off, washed with methanol and dried in vacuo over anhydrous CaCl2. Dark reddish brown single crystals suitable for X-ray diffraction were obtained by slow evaporation from a mixture of di­chloro­methane and aceto­nitrile (3:1); m.p. 443 K.

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were fixed geometrically (C—H = 0.95 - 0.99 Å) and refined as riding with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2001); cell refinement: RAPID-AUTO (Rigaku, 2001); data reduction: RAPID-AUTO (Rigaku, 2001); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title complex, with atom labelling. The displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view along the c axis of the crystal packing of the title complex. Dotted lines indicated the Cu2—S2i distances of 2.9740 (11) Å [symmetry code: (i) x - 1/2, -y + 3/2, z + 1/2], and H atoms have been omitted for clarity.
Bis[µ-S-hexyl 3-(2-oxidobenzylidene)dithiocarbazato-κ4O,N3,S:O]dicopper(II) top
Crystal data top
[Cu2(C14H18N2OS2)2]F(000) = 1480
Mr = 715.93Dx = 1.532 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71075 Å
a = 7.2792 (4) ÅCell parameters from 701 reflections
b = 37.7252 (16) Åθ = 3.2–26.4°
c = 11.3443 (5) ŵ = 1.67 mm1
β = 94.701 (2)°T = 173 K
V = 3104.8 (3) Å3Platelet, brown
Z = 40.36 × 0.34 × 0.03 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5114 reflections with I > 2σ(I)
Detector resolution: 10.000 pixels mm-1Rint = 0.025
ω scansθmax = 25.4°, θmin = 3.2°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 88
Tmin = 0.723, Tmax = 0.951k = 4545
12702 measured reflectionsl = 1313
5278 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.027 w = 1/[σ2(Fo2) + (0.0398P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.066(Δ/σ)max = 0.001
S = 1.06Δρmax = 0.60 e Å3
5278 reflectionsΔρmin = 0.29 e Å3
361 parametersAbsolute structure: Flack x determined using 2223 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
2 restraintsAbsolute structure parameter: 0.006 (6)
Crystal data top
[Cu2(C14H18N2OS2)2]V = 3104.8 (3) Å3
Mr = 715.93Z = 4
Monoclinic, CcMo Kα radiation
a = 7.2792 (4) ŵ = 1.67 mm1
b = 37.7252 (16) ÅT = 173 K
c = 11.3443 (5) Å0.36 × 0.34 × 0.03 mm
β = 94.701 (2)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5278 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
5114 reflections with I > 2σ(I)
Tmin = 0.723, Tmax = 0.951Rint = 0.025
12702 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.066Δρmax = 0.60 e Å3
S = 1.06Δρmin = 0.29 e Å3
5278 reflectionsAbsolute structure: Flack x determined using 2223 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
361 parametersAbsolute structure parameter: 0.006 (6)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.15703 (6)0.75915 (2)0.15440 (4)0.02305 (13)
Cu20.17703 (6)0.81382 (2)0.34616 (4)0.02522 (13)
S10.26421 (15)0.70459 (3)0.13607 (8)0.0267 (2)
S20.29460 (14)0.66844 (3)0.10024 (8)0.0271 (2)
S30.29144 (15)0.86872 (3)0.36366 (9)0.0318 (2)
S40.39250 (16)0.90558 (3)0.58598 (10)0.0330 (2)
O10.1071 (4)0.80939 (7)0.1742 (2)0.0258 (7)
O20.1407 (4)0.76259 (7)0.3249 (2)0.0257 (7)
N10.1368 (5)0.76188 (8)0.0151 (3)0.0235 (8)
N20.1776 (5)0.73220 (9)0.0820 (3)0.0255 (7)
N30.2447 (5)0.80819 (9)0.5132 (3)0.0252 (8)
N40.3081 (5)0.83759 (9)0.5811 (3)0.0282 (7)
C10.0484 (6)0.83258 (10)0.0903 (4)0.0249 (8)
C20.0068 (6)0.86690 (10)0.1209 (4)0.0298 (9)
H20.00440.87330.20200.036*
C30.0638 (6)0.89129 (10)0.0367 (4)0.0328 (9)
H30.09950.91430.06020.039*
C40.0704 (6)0.88291 (11)0.0835 (4)0.0347 (10)
H40.10930.90000.14170.042*
C50.0199 (6)0.84966 (11)0.1157 (4)0.0296 (9)
H50.02460.84380.19740.036*
C60.0393 (6)0.82360 (11)0.0312 (3)0.0252 (8)
C70.0854 (6)0.78960 (10)0.0771 (3)0.0252 (9)
H70.07760.78710.16070.030*
C80.2370 (5)0.70578 (10)0.0176 (3)0.0221 (8)
C90.3329 (6)0.63379 (10)0.0105 (4)0.0285 (9)
H9A0.45340.63750.05590.034*
H9B0.23550.63490.06650.034*
C100.3300 (7)0.59759 (10)0.0491 (4)0.0332 (9)
H10A0.42130.59710.10910.040*
H10B0.20650.59320.08990.040*
C110.3752 (7)0.56854 (11)0.0424 (4)0.0384 (10)
H11A0.50400.57160.07610.046*
H11B0.29390.57130.10760.046*
C120.3525 (8)0.53115 (12)0.0078 (5)0.0502 (13)
H12A0.37590.51400.05760.060*
H12B0.22300.52800.04030.060*
C130.4783 (9)0.52245 (13)0.1038 (6)0.0617 (16)
H13A0.60740.52730.07390.074*
H13B0.44770.53810.17260.074*
C140.4620 (10)0.48402 (14)0.1440 (7)0.075 (2)
H14A0.54570.47970.20580.113*
H14B0.49470.46830.07660.113*
H14C0.33490.47920.17530.113*
C150.1172 (6)0.73824 (10)0.4088 (3)0.0234 (8)
C160.0434 (6)0.70501 (11)0.3792 (4)0.0266 (8)
H160.01000.69960.29850.032*
C170.0179 (6)0.67982 (11)0.4649 (3)0.0283 (9)
H170.03240.65730.44230.034*
C180.0653 (7)0.68710 (11)0.5843 (4)0.0333 (10)
H180.04920.66960.64300.040*
C190.1349 (6)0.71952 (10)0.6152 (3)0.0292 (9)
H190.16610.72460.69640.035*
C200.1624 (6)0.74617 (10)0.5296 (4)0.0266 (8)
C210.2290 (6)0.77955 (11)0.5743 (3)0.0272 (9)
H210.26510.78090.65660.033*
C220.3282 (6)0.86546 (11)0.5167 (4)0.0282 (9)
C230.4128 (7)0.89347 (12)0.7416 (4)0.0357 (10)
H23A0.30090.88060.76150.043*
H23B0.52050.87770.75870.043*
C240.4365 (7)0.92718 (12)0.8150 (4)0.0399 (11)
H24A0.55350.93880.79850.048*
H24B0.33450.94370.79130.048*
C250.4385 (7)0.91990 (12)0.9463 (4)0.0394 (11)
H25A0.32410.90710.96140.047*
H25B0.54370.90410.96980.047*
C260.4533 (9)0.95249 (13)1.0232 (5)0.0572 (15)
H26A0.35230.96900.99700.069*
H26B0.57140.96461.01200.069*
C270.4440 (12)0.94475 (19)1.1539 (5)0.076 (2)
H27A0.33290.93021.16340.091*
H27B0.55270.93031.18140.091*
C280.4381 (15)0.9760 (2)1.2308 (7)0.112 (3)
H28A0.43220.96831.31300.168*
H28B0.54920.99031.22450.168*
H28C0.32880.99021.20640.168*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0294 (3)0.0239 (2)0.0163 (2)0.00168 (19)0.00456 (18)0.00053 (18)
Cu20.0311 (3)0.0258 (2)0.0191 (2)0.0010 (2)0.00362 (19)0.00153 (18)
S10.0357 (6)0.0258 (5)0.0190 (4)0.0041 (4)0.0043 (4)0.0001 (4)
S20.0330 (5)0.0255 (5)0.0233 (5)0.0004 (4)0.0064 (4)0.0035 (4)
S30.0355 (6)0.0315 (5)0.0288 (5)0.0062 (4)0.0043 (4)0.0002 (4)
S40.0333 (6)0.0303 (5)0.0352 (5)0.0036 (4)0.0025 (4)0.0060 (4)
O10.0368 (18)0.0231 (13)0.0182 (14)0.0014 (11)0.0060 (13)0.0001 (10)
O20.0404 (19)0.0221 (13)0.0152 (13)0.0010 (12)0.0062 (13)0.0000 (10)
N10.0246 (18)0.0249 (17)0.0211 (17)0.0009 (14)0.0033 (14)0.0018 (13)
N20.0339 (19)0.0258 (17)0.0175 (16)0.0003 (15)0.0058 (14)0.0034 (13)
N30.0249 (19)0.0290 (17)0.0217 (17)0.0006 (14)0.0025 (14)0.0062 (14)
N40.0288 (18)0.0293 (17)0.0262 (17)0.0000 (15)0.0004 (15)0.0040 (14)
C10.022 (2)0.030 (2)0.0228 (18)0.0012 (16)0.0031 (15)0.0006 (16)
C20.032 (2)0.030 (2)0.029 (2)0.0007 (17)0.0068 (18)0.0032 (16)
C30.035 (2)0.026 (2)0.038 (2)0.0032 (18)0.0027 (19)0.0031 (18)
C40.037 (2)0.031 (2)0.035 (2)0.0037 (19)0.0043 (19)0.0069 (18)
C50.034 (2)0.030 (2)0.0239 (19)0.0007 (17)0.0023 (17)0.0022 (17)
C60.023 (2)0.031 (2)0.0218 (19)0.0015 (17)0.0021 (16)0.0003 (16)
C70.024 (2)0.032 (2)0.0196 (18)0.0026 (17)0.0035 (16)0.0001 (16)
C80.0188 (19)0.0265 (19)0.0219 (19)0.0012 (15)0.0067 (15)0.0016 (15)
C90.030 (2)0.027 (2)0.030 (2)0.0011 (17)0.0087 (17)0.0014 (17)
C100.038 (2)0.024 (2)0.039 (2)0.0020 (17)0.0107 (19)0.0021 (17)
C110.038 (3)0.031 (2)0.047 (3)0.0040 (19)0.004 (2)0.005 (2)
C120.048 (3)0.030 (2)0.072 (3)0.001 (2)0.006 (3)0.010 (2)
C130.062 (4)0.038 (3)0.088 (4)0.001 (3)0.022 (3)0.010 (3)
C140.077 (5)0.040 (3)0.110 (6)0.004 (3)0.006 (4)0.022 (3)
C150.023 (2)0.025 (2)0.0232 (19)0.0055 (15)0.0076 (16)0.0023 (15)
C160.028 (2)0.031 (2)0.0214 (18)0.0040 (17)0.0047 (16)0.0016 (16)
C170.030 (2)0.027 (2)0.028 (2)0.0006 (17)0.0053 (17)0.0007 (16)
C180.039 (3)0.034 (2)0.028 (2)0.0077 (19)0.0099 (19)0.0101 (17)
C190.034 (2)0.035 (2)0.0196 (18)0.0064 (18)0.0042 (16)0.0023 (16)
C200.028 (2)0.032 (2)0.0205 (19)0.0081 (17)0.0069 (16)0.0001 (16)
C210.026 (2)0.038 (2)0.0183 (18)0.0055 (18)0.0022 (16)0.0006 (17)
C220.020 (2)0.034 (2)0.031 (2)0.0013 (16)0.0036 (17)0.0095 (18)
C230.039 (3)0.034 (2)0.033 (2)0.006 (2)0.002 (2)0.0093 (19)
C240.047 (3)0.034 (2)0.038 (2)0.002 (2)0.004 (2)0.010 (2)
C250.040 (3)0.037 (2)0.041 (2)0.003 (2)0.008 (2)0.011 (2)
C260.083 (4)0.040 (3)0.048 (3)0.006 (3)0.001 (3)0.015 (2)
C270.103 (6)0.078 (4)0.047 (3)0.005 (4)0.008 (4)0.016 (3)
C280.134 (8)0.128 (7)0.074 (5)0.005 (6)0.017 (5)0.048 (5)
Geometric parameters (Å, º) top
Cu1—N11.919 (4)C11—H11A0.9900
Cu1—O11.946 (3)C11—H11B0.9900
Cu1—O21.952 (3)C12—C131.515 (8)
Cu1—S12.2171 (10)C12—H12A0.9900
Cu1—Cu22.9923 (6)C12—H12B0.9900
Cu2—N31.931 (4)C13—C141.522 (7)
Cu2—O21.963 (2)C13—H13A0.9900
Cu2—O11.982 (3)C13—H13B0.9900
Cu2—S32.2352 (11)C14—H14A0.9800
S1—C81.739 (4)C14—H14B0.9800
S2—C81.762 (4)C14—H14C0.9800
S2—C91.819 (4)C15—C161.394 (6)
S3—C221.739 (4)C15—C201.415 (6)
S4—C221.751 (4)C16—C171.383 (6)
S4—C231.817 (4)C16—H160.9500
O1—C11.337 (5)C17—C181.398 (6)
O2—C151.343 (5)C17—H170.9500
N1—C71.299 (5)C18—C191.359 (6)
N1—N21.399 (5)C18—H180.9500
N2—C81.289 (5)C19—C201.423 (6)
N3—C211.293 (5)C19—H190.9500
N3—N41.406 (5)C20—C211.428 (6)
N4—C221.295 (5)C21—H210.9500
C1—C21.407 (6)C23—C241.522 (6)
C1—C61.416 (5)C23—H23A0.9900
C2—C31.366 (6)C23—H23B0.9900
C2—H20.9500C24—C251.513 (6)
C3—C41.396 (6)C24—H24A0.9900
C3—H30.9500C24—H24B0.9900
C4—C51.366 (6)C25—C261.507 (6)
C4—H40.9500C25—H25A0.9900
C5—C61.415 (6)C25—H25B0.9900
C5—H50.9500C26—C271.517 (8)
C6—C71.434 (6)C26—H26A0.9900
C7—H70.9500C26—H26B0.9900
C9—C101.524 (5)C27—C281.468 (9)
C9—H9A0.9900C27—H27A0.9900
C9—H9B0.9900C27—H27B0.9900
C10—C111.527 (6)C28—H28A0.9800
C10—H10A0.9900C28—H28B0.9800
C10—H10B0.9900C28—H28C0.9800
C11—C121.525 (6)
N1—Cu1—O193.65 (12)H11A—C11—H11B107.7
N1—Cu1—O2169.54 (14)C13—C12—C11114.5 (4)
O1—Cu1—O278.10 (11)C13—C12—H12A108.6
N1—Cu1—S187.40 (10)C11—C12—H12A108.6
O1—Cu1—S1170.18 (10)C13—C12—H12B108.6
O2—Cu1—S1101.83 (8)C11—C12—H12B108.6
N1—Cu1—Cu2133.36 (9)H12A—C12—H12B107.6
O1—Cu1—Cu240.83 (8)C12—C13—C14112.6 (5)
O2—Cu1—Cu240.28 (7)C12—C13—H13A109.1
S1—Cu1—Cu2135.36 (3)C14—C13—H13A109.1
N3—Cu2—O291.89 (13)C12—C13—H13B109.1
N3—Cu2—O1168.85 (12)C14—C13—H13B109.1
O2—Cu2—O177.02 (11)H13A—C13—H13B107.8
N3—Cu2—S387.22 (11)C13—C14—H14A109.5
O2—Cu2—S3165.65 (10)C13—C14—H14B109.5
O1—Cu2—S3103.25 (9)H14A—C14—H14B109.5
N3—Cu2—Cu1129.13 (10)C13—C14—H14C109.5
O2—Cu2—Cu140.03 (8)H14A—C14—H14C109.5
O1—Cu2—Cu139.94 (8)H14B—C14—H14C109.5
S3—Cu2—Cu1134.33 (3)O2—C15—C16120.9 (3)
C8—S1—Cu193.33 (13)O2—C15—C20120.6 (3)
C8—S2—C9103.67 (19)C16—C15—C20118.5 (4)
C22—S3—Cu292.80 (14)C17—C16—C15121.3 (4)
C22—S4—C23102.5 (2)C17—C16—H16119.3
C1—O1—Cu1127.4 (3)C15—C16—H16119.3
C1—O1—Cu2133.4 (2)C16—C17—C18120.6 (4)
Cu1—O1—Cu299.23 (12)C16—C17—H17119.7
C15—O2—Cu1132.7 (2)C18—C17—H17119.7
C15—O2—Cu2127.6 (2)C19—C18—C17119.0 (4)
Cu1—O2—Cu299.69 (12)C19—C18—H18120.5
C7—N1—N2114.5 (3)C17—C18—H18120.5
C7—N1—Cu1125.6 (3)C18—C19—C20122.0 (4)
N2—N1—Cu1119.9 (2)C18—C19—H19119.0
C8—N2—N1112.8 (3)C20—C19—H19119.0
C21—N3—N4113.9 (3)C15—C20—C19118.5 (4)
C21—N3—Cu2126.2 (3)C15—C20—C21125.1 (4)
N4—N3—Cu2119.8 (3)C19—C20—C21116.3 (4)
C22—N4—N3112.2 (3)N3—C21—C20126.1 (4)
O1—C1—C2120.5 (4)N3—C21—H21117.0
O1—C1—C6121.6 (4)C20—C21—H21117.0
C2—C1—C6117.9 (4)N4—C22—S3127.2 (3)
C3—C2—C1121.6 (4)N4—C22—S4119.1 (3)
C3—C2—H2119.2S3—C22—S4113.6 (2)
C1—C2—H2119.2C24—C23—S4108.5 (3)
C2—C3—C4121.0 (4)C24—C23—H23A110.0
C2—C3—H3119.5S4—C23—H23A110.0
C4—C3—H3119.5C24—C23—H23B110.0
C5—C4—C3118.8 (4)S4—C23—H23B110.0
C5—C4—H4120.6H23A—C23—H23B108.4
C3—C4—H4120.6C25—C24—C23112.2 (4)
C4—C5—C6122.0 (4)C25—C24—H24A109.2
C4—C5—H5119.0C23—C24—H24A109.2
C6—C5—H5119.0C25—C24—H24B109.2
C5—C6—C1118.7 (4)C23—C24—H24B109.2
C5—C6—C7116.3 (4)H24A—C24—H24B107.9
C1—C6—C7125.0 (4)C26—C25—C24114.6 (4)
N1—C7—C6126.1 (4)C26—C25—H25A108.6
N1—C7—H7117.0C24—C25—H25A108.6
C6—C7—H7117.0C26—C25—H25B108.6
N2—C8—S1126.4 (3)C24—C25—H25B108.6
N2—C8—S2113.6 (3)H25A—C25—H25B107.6
S1—C8—S2120.0 (2)C25—C26—C27113.7 (5)
C10—C9—S2110.0 (3)C25—C26—H26A108.8
C10—C9—H9A109.7C27—C26—H26A108.8
S2—C9—H9A109.7C25—C26—H26B108.8
C10—C9—H9B109.7C27—C26—H26B108.8
S2—C9—H9B109.7H26A—C26—H26B107.7
H9A—C9—H9B108.2C28—C27—C26115.6 (6)
C9—C10—C11110.3 (4)C28—C27—H27A108.4
C9—C10—H10A109.6C26—C27—H27A108.4
C11—C10—H10A109.6C28—C27—H27B108.4
C9—C10—H10B109.6C26—C27—H27B108.4
C11—C10—H10B109.6H27A—C27—H27B107.4
H10A—C10—H10B108.1C27—C28—H28A109.5
C12—C11—C10113.5 (4)C27—C28—H28B109.5
C12—C11—H11A108.9H28A—C28—H28B109.5
C10—C11—H11A108.9C27—C28—H28C109.5
C12—C11—H11B108.9H28A—C28—H28C109.5
C10—C11—H11B108.9H28B—C28—H28C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19···N2i0.952.523.457 (5)167
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19···N2i0.952.523.457 (5)167
Symmetry code: (i) x, y, z+1.
 

Acknowledgements

MSB and MBHH are grateful to the Department of Chemistry, Rajshahi University, for the provision of laboratory facilities. MCS acknowledges the Department of Applied Chemistry, Toyama University, for providing funds for single-crystal X-ray analyses.

References

First citationAli, M. A., Mirza, A. H., Butcher, R. J., Tarafder, M. T. H., Keat, T. B. & Ali, A. M. (2002). J. Inorg. Biochem. 92, 141–148.  CSD CrossRef PubMed Google Scholar
First citationAli, Md. A., Mirza, A. H., Ting, W. Y., Hamid, M. H. S. A., Bernhardt, P. V. & Butcher, R. J. (2012). Polyhedron, 48, 167–173.  Web of Science CSD CrossRef CAS Google Scholar
First citationAli, M. A., Tan, A. L., Mirza, A. H., Santos, J. H. & Abdullah, A. H. H. (2012). Transition Met. Chem. 37, 651–659.  Web of Science CSD CrossRef CAS Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBegum, M. S., Howlader, M. B. H., Sheikh, M. C., Miyatake, R. & Zangrando, E. (2015). Acta Cryst. E71, m63–m64.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChan, M. E., Crouse, K. A., Tahir, M. I. M., Rosli, R., Umar-Tsafe, N. & Cowley, A. R. (2008). Polyhedron, 27, 1141–1149.  Web of Science CSD CrossRef CAS Google Scholar
First citationChew, K. B., Tarafder, M. T. H., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H. K. (2004). Polyhedron, 23, 1385–1392.  Web of Science CSD CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHow, F. N. F., Crouse, K. A., Tahir, M. I. M., Tarafder, M. T. H. & Cowley, A. R. (2008). Polyhedron, 27, 3325–3329.  Web of Science CSD CrossRef CAS Google Scholar
First citationHowlader, M. B. H., Begum, M. S., Sheikh, M. C., Miyatake, R. & Zangrando, E. (2015). Acta Cryst. E71, m26–m27.  CSD CrossRef IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (2001). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTarafder, M. T. H., Islam, M. T., Islam, M. A. A. A. A., Chantrapromma, S. & Fun, H.-K. (2008). Acta Cryst. E64, m416–m417.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationZangrando, E., Begum, M. S., Miyatake, R., Sheikh, M. C. & Hossain, M. M. (2015). Acta Cryst. E71, 706–708.  CSD CrossRef IUCr Journals Google Scholar
First citationZangrando, E., Islam, M. T., Islam, M. A. A. A., Sheikh, M. C., Tarafder, M. T. H., Miyatake, R., Zahan, R. & Hossain, M. A. (2015). Inorg. Chim. Acta, 427, 278–284.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds