metal-organic compounds
μ-S-hexyl 3-(2-oxidobenzylidene)dithiocarbazato-κ4O,N3,S:O]dicopper(II)
of bis[aDepartment of Chemistry, Rajshahi University, Rajshahi-6205, Bangladesh, bDepartment of Applied Chemistry, Faculty of Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan, cCenter for Environmental Conservation and Research Safety, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan, and dDepartment of Chemical and Pharmaceutical Sciences, via Giorgieri 1, 34127, Trieste, Italy
*Correspondence e-mail: mbhhowlader@gmail.com
The title compound, [Cu2(C14H18N2OS2)2], is a binuclear copper(II) complex of an oxybenzylidenedithiocarbazate ligand. The ligand coordinates in a tridentate manner through N-, S- and O-donor atoms. Each O atom also bridges to a second CuII ion to form the binuclear species. It has a central Cu2O2 rhomboid moiety and a metal-to-metal separation of 2.9923 (6) Å. In the crystal, the binuclear complexes stack along the a axis with all the hexyl chains located side-by-side, forming a hydrophobic region. The complexes are linked via C—H⋯N hydrogen bonds, forming chains along the c-axis direction. One CuII atom has the S atom of a symmetry-related complex located approximately in the apical position at 2.9740 (11) Å. This weak interaction links the chains to form slabs parallel to the ac plane.
CCDC reference: 1439650
1. Related literature
For details of the bioactivities of metal complexes of bidentate S-methyl or S-benzyl dithiocarbazate ligands, see: Chan et al. (2008); How et al. (2008); Ali et al. (2002); Chew et al. (2004). For square-planar metal complexes of dithiocarbazate ligands coordinating in a bidentate manner, see: Tarafder et al. (2008); Howlader et al. (2015); Begum et al. (2015). For Cu—N and Cu—S bond lengths in mononuclear bis-chelated species, see: Zangrando, Begum et al. (2015); Zangrando, Islam et al. (2015). For copper(II) complexes of similar ligands, see: Ali, Tan et al. (2012); Ali, Mirza et al. (2012).
of2. Experimental
2.1. Crystal data
|
Data collection: RAPID-AUTO (Rigaku, 2001); cell RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure.
Supporting information
CCDC reference: 1439650
https://doi.org/10.1107/S2056989015022914/su5246sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989015022914/su5246Isup2.hkl
Metal complexes of bidentate β-N-(2-hydroxybenzylidene)dithiocarbazate.
of S-methyl or S-benzyl dithiocarbazates have received considerable attention for their possible bioactivities (Chan et al., 2008; How et al., 2008; Ali et al., 2002; Chew et al., 2004). In square planar metal complexes reported so far dithiocarbazato ligands coordinate in a bidentate manner through the N,S donors leading to bischelated species with a trans (Howlader et al., 2015) or cis (Begum et al., 2015) configuration. The presence of an oxobenzylidene moiety is expected to induce the ligand to coordinate to the metal through the N,S,O donors. Continuing our studies on S-containing (Howlader et al., 2015; Begum et al., 2015), we report herein on the of an unexpected binuclear copper(II) complex of the ligand S-hexyl-In the title compound, Fig. 1, the presence of the oxobenzylidene moiety in the Schiff base ligand has induced it to coordinate to the metal through the N, S, and O donor atoms, with formation of five- and six-membered chelate rings. Each oxygen atom bridges to a second copper(II) ion to form a binuclear species having a central Cu2O2 rhomboid moiety. The bridging angles Cu1—O1—Cu2 and Cu1—O2—Cu2 of 99.23 (12) and 99.69 (12) °, respectively, lead to a metal-metal separation of 2.9923 (6) Å. The Cu—N bond distances of 1.919 (4) and 1.931 (4) Å, and the Cu—S bond distances of 2.2171 (10) and 2.2352 (11) Å, appear slightly shorter by ca. 0.02-0.04 Å than those observed in mononuclear bischelated species (Zangrando, Begum, et al., 2015; Zangrando, Islam, et al., 2015; Tarafder et al., 2008). This feature can be ascribed to the double deprotonated ligand in the present case. With exception of the alkyl chains the two chelating ligands have almost coplanar atoms and their mean plane forms a dihedral angle of 34.45 (9)°. It is worth noting that the alkyl chain C23—C28 presents all methylene groups in an anti conformation, while the other chain presents a torsion angle C10—C11—C12—C13 of 62.1 (6)°, likely induced by packing requirements. To the best of our knowledge the present complex represents a unique example of a binuclear species with similar tridentate S,N,O ligands derived from S-alkyldithiocarbazate, although copper complexes of similar ligands have been reported (Ali, Tan et al., 2012; Ali, Mirza et al., 2012).
In the crystal, the binuclear complexes stack along the a axis with all the hexyl chains located side-by-side forming a hydrophobic region. The complexes are linked via C—H···N hydrogen bonds forming chains along the c axis direction (Table 1). Atom Cu2 has the sulfur atom, S2i [code: (i) x - 1/2, -y + 3/2, z+ 1/2], of a symmetry-related complex located approximately in the apical position at 2.9740 (11) Å (Fig. 2). This weak interaction links the chains to form slabs parallel to the ac plane.
A solution of Cu(CH3COO)2.H2O (0.11 g, 0.5 mmol, 15 ml methanol) was added to a solution of the S-hexyl-β-N-(2-hydroxybenzylidene)dithiocarbazate (1.0 mmol, 10 ml methanol). The resulting mixture was stirred at room temperature for 5 h. A dark reddish brown precipitate was formed, filtered off, washed with methanol and dried in vacuo over anhydrous CaCl2. Dark reddish brown single crystals suitable for X-ray diffraction were obtained by slow evaporation from a mixture of dichloromethane and acetonitrile (3:1); m.p. 443 K.
Metal complexes of bidentate β-N-(2-hydroxybenzylidene)dithiocarbazate.
of S-methyl or S-benzyl dithiocarbazates have received considerable attention for their possible bioactivities (Chan et al., 2008; How et al., 2008; Ali et al., 2002; Chew et al., 2004). In square planar metal complexes reported so far dithiocarbazato ligands coordinate in a bidentate manner through the N,S donors leading to bischelated species with a trans (Howlader et al., 2015) or cis (Begum et al., 2015) configuration. The presence of an oxobenzylidene moiety is expected to induce the ligand to coordinate to the metal through the N,S,O donors. Continuing our studies on S-containing (Howlader et al., 2015; Begum et al., 2015), we report herein on the of an unexpected binuclear copper(II) complex of the ligand S-hexyl-In the title compound, Fig. 1, the presence of the oxobenzylidene moiety in the Schiff base ligand has induced it to coordinate to the metal through the N, S, and O donor atoms, with formation of five- and six-membered chelate rings. Each oxygen atom bridges to a second copper(II) ion to form a binuclear species having a central Cu2O2 rhomboid moiety. The bridging angles Cu1—O1—Cu2 and Cu1—O2—Cu2 of 99.23 (12) and 99.69 (12) °, respectively, lead to a metal-metal separation of 2.9923 (6) Å. The Cu—N bond distances of 1.919 (4) and 1.931 (4) Å, and the Cu—S bond distances of 2.2171 (10) and 2.2352 (11) Å, appear slightly shorter by ca. 0.02-0.04 Å than those observed in mononuclear bischelated species (Zangrando, Begum, et al., 2015; Zangrando, Islam, et al., 2015; Tarafder et al., 2008). This feature can be ascribed to the double deprotonated ligand in the present case. With exception of the alkyl chains the two chelating ligands have almost coplanar atoms and their mean plane forms a dihedral angle of 34.45 (9)°. It is worth noting that the alkyl chain C23—C28 presents all methylene groups in an anti conformation, while the other chain presents a torsion angle C10—C11—C12—C13 of 62.1 (6)°, likely induced by packing requirements. To the best of our knowledge the present complex represents a unique example of a binuclear species with similar tridentate S,N,O ligands derived from S-alkyldithiocarbazate, although copper complexes of similar ligands have been reported (Ali, Tan et al., 2012; Ali, Mirza et al., 2012).
In the crystal, the binuclear complexes stack along the a axis with all the hexyl chains located side-by-side forming a hydrophobic region. The complexes are linked via C—H···N hydrogen bonds forming chains along the c axis direction (Table 1). Atom Cu2 has the sulfur atom, S2i [code: (i) x - 1/2, -y + 3/2, z+ 1/2], of a symmetry-related complex located approximately in the apical position at 2.9740 (11) Å (Fig. 2). This weak interaction links the chains to form slabs parallel to the ac plane.
For details of the bioactivities of metal complexes of bidentate
of S-methyl or S-benzyl dithiocarbazate ligands, see: Chan et al. (2008); How et al. (2008); Ali et al. (2002); Chew et al. (2004). For square-planar metal complexes of dithiocarbazate ligands coordinating in a bidentate manner, see: Tarafder et al. (2008); Howlader et al. (2015); Begum et al. (2015). For Cu—N and Cu—S bond lengths in mononuclear bis-chelated species, see: Zangrando, Begum et al. (2015); Zangrando, Islam et al. (2015). For copper complexes of similar ligands, see: Ali, Tan et al. (2012); Ali, Mirza et al. (2012).A solution of Cu(CH3COO)2.H2O (0.11 g, 0.5 mmol, 15 ml methanol) was added to a solution of the S-hexyl-β-N-(2-hydroxybenzylidene)dithiocarbazate (1.0 mmol, 10 ml methanol). The resulting mixture was stirred at room temperature for 5 h. A dark reddish brown precipitate was formed, filtered off, washed with methanol and dried in vacuo over anhydrous CaCl2. Dark reddish brown single crystals suitable for X-ray diffraction were obtained by slow evaporation from a mixture of dichloromethane and acetonitrile (3:1); m.p. 443 K.
detailsCrystal data, data collection and structure
details are summarized in Table 2. All H atoms were fixed geometrically (C—H = 0.95 - 0.99 Å) and refined as riding with Uiso(H) = 1.2Ueq(C).Data collection: RAPID-AUTO (Rigaku, 2001); cell
RAPID-AUTO (Rigaku, 2001); data reduction: RAPID-AUTO (Rigaku, 2001); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).[Cu2(C14H18N2OS2)2] | F(000) = 1480 |
Mr = 715.93 | Dx = 1.532 Mg m−3 |
Monoclinic, Cc | Mo Kα radiation, λ = 0.71075 Å |
a = 7.2792 (4) Å | Cell parameters from 701 reflections |
b = 37.7252 (16) Å | θ = 3.2–26.4° |
c = 11.3443 (5) Å | µ = 1.67 mm−1 |
β = 94.701 (2)° | T = 173 K |
V = 3104.8 (3) Å3 | Platelet, brown |
Z = 4 | 0.36 × 0.34 × 0.03 mm |
Rigaku R-AXIS RAPID diffractometer | 5114 reflections with I > 2σ(I) |
Detector resolution: 10.000 pixels mm-1 | Rint = 0.025 |
ω scans | θmax = 25.4°, θmin = 3.2° |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | h = −8→8 |
Tmin = 0.723, Tmax = 0.951 | k = −45→45 |
12702 measured reflections | l = −13→13 |
5278 independent reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.027 | w = 1/[σ2(Fo2) + (0.0398P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.066 | (Δ/σ)max = 0.001 |
S = 1.06 | Δρmax = 0.60 e Å−3 |
5278 reflections | Δρmin = −0.29 e Å−3 |
361 parameters | Absolute structure: Flack x determined using 2223 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
2 restraints | Absolute structure parameter: 0.006 (6) |
[Cu2(C14H18N2OS2)2] | V = 3104.8 (3) Å3 |
Mr = 715.93 | Z = 4 |
Monoclinic, Cc | Mo Kα radiation |
a = 7.2792 (4) Å | µ = 1.67 mm−1 |
b = 37.7252 (16) Å | T = 173 K |
c = 11.3443 (5) Å | 0.36 × 0.34 × 0.03 mm |
β = 94.701 (2)° |
Rigaku R-AXIS RAPID diffractometer | 5278 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 5114 reflections with I > 2σ(I) |
Tmin = 0.723, Tmax = 0.951 | Rint = 0.025 |
12702 measured reflections |
R[F2 > 2σ(F2)] = 0.027 | H-atom parameters constrained |
wR(F2) = 0.066 | Δρmax = 0.60 e Å−3 |
S = 1.06 | Δρmin = −0.29 e Å−3 |
5278 reflections | Absolute structure: Flack x determined using 2223 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
361 parameters | Absolute structure parameter: 0.006 (6) |
2 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt). |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.15703 (6) | 0.75915 (2) | 0.15440 (4) | 0.02305 (13) | |
Cu2 | 0.17703 (6) | 0.81382 (2) | 0.34616 (4) | 0.02522 (13) | |
S1 | 0.26421 (15) | 0.70459 (3) | 0.13607 (8) | 0.0267 (2) | |
S2 | 0.29460 (14) | 0.66844 (3) | −0.10024 (8) | 0.0271 (2) | |
S3 | 0.29144 (15) | 0.86872 (3) | 0.36366 (9) | 0.0318 (2) | |
S4 | 0.39250 (16) | 0.90558 (3) | 0.58598 (10) | 0.0330 (2) | |
O1 | 0.1071 (4) | 0.80939 (7) | 0.1742 (2) | 0.0258 (7) | |
O2 | 0.1407 (4) | 0.76259 (7) | 0.3249 (2) | 0.0257 (7) | |
N1 | 0.1368 (5) | 0.76188 (8) | −0.0151 (3) | 0.0235 (8) | |
N2 | 0.1776 (5) | 0.73220 (9) | −0.0820 (3) | 0.0255 (7) | |
N3 | 0.2447 (5) | 0.80819 (9) | 0.5132 (3) | 0.0252 (8) | |
N4 | 0.3081 (5) | 0.83759 (9) | 0.5811 (3) | 0.0282 (7) | |
C1 | 0.0484 (6) | 0.83258 (10) | 0.0903 (4) | 0.0249 (8) | |
C2 | −0.0068 (6) | 0.86690 (10) | 0.1209 (4) | 0.0298 (9) | |
H2 | −0.0044 | 0.8733 | 0.2020 | 0.036* | |
C3 | −0.0638 (6) | 0.89129 (10) | 0.0367 (4) | 0.0328 (9) | |
H3 | −0.0995 | 0.9143 | 0.0602 | 0.039* | |
C4 | −0.0704 (6) | 0.88291 (11) | −0.0835 (4) | 0.0347 (10) | |
H4 | −0.1093 | 0.9000 | −0.1417 | 0.042* | |
C5 | −0.0199 (6) | 0.84966 (11) | −0.1157 (4) | 0.0296 (9) | |
H5 | −0.0246 | 0.8438 | −0.1974 | 0.036* | |
C6 | 0.0393 (6) | 0.82360 (11) | −0.0312 (3) | 0.0252 (8) | |
C7 | 0.0854 (6) | 0.78960 (10) | −0.0771 (3) | 0.0252 (9) | |
H7 | 0.0776 | 0.7871 | −0.1607 | 0.030* | |
C8 | 0.2370 (5) | 0.70578 (10) | −0.0176 (3) | 0.0221 (8) | |
C9 | 0.3329 (6) | 0.63379 (10) | 0.0105 (4) | 0.0285 (9) | |
H9A | 0.4534 | 0.6375 | 0.0559 | 0.034* | |
H9B | 0.2355 | 0.6349 | 0.0665 | 0.034* | |
C10 | 0.3300 (7) | 0.59759 (10) | −0.0491 (4) | 0.0332 (9) | |
H10A | 0.4213 | 0.5971 | −0.1091 | 0.040* | |
H10B | 0.2065 | 0.5932 | −0.0899 | 0.040* | |
C11 | 0.3752 (7) | 0.56854 (11) | 0.0424 (4) | 0.0384 (10) | |
H11A | 0.5040 | 0.5716 | 0.0761 | 0.046* | |
H11B | 0.2939 | 0.5713 | 0.1076 | 0.046* | |
C12 | 0.3525 (8) | 0.53115 (12) | −0.0078 (5) | 0.0502 (13) | |
H12A | 0.3759 | 0.5140 | 0.0576 | 0.060* | |
H12B | 0.2230 | 0.5280 | −0.0403 | 0.060* | |
C13 | 0.4783 (9) | 0.52245 (13) | −0.1038 (6) | 0.0617 (16) | |
H13A | 0.6074 | 0.5273 | −0.0739 | 0.074* | |
H13B | 0.4477 | 0.5381 | −0.1726 | 0.074* | |
C14 | 0.4620 (10) | 0.48402 (14) | −0.1440 (7) | 0.075 (2) | |
H14A | 0.5457 | 0.4797 | −0.2058 | 0.113* | |
H14B | 0.4947 | 0.4683 | −0.0766 | 0.113* | |
H14C | 0.3349 | 0.4792 | −0.1753 | 0.113* | |
C15 | 0.1172 (6) | 0.73824 (10) | 0.4088 (3) | 0.0234 (8) | |
C16 | 0.0434 (6) | 0.70501 (11) | 0.3792 (4) | 0.0266 (8) | |
H16 | 0.0100 | 0.6996 | 0.2985 | 0.032* | |
C17 | 0.0179 (6) | 0.67982 (11) | 0.4649 (3) | 0.0283 (9) | |
H17 | −0.0324 | 0.6573 | 0.4423 | 0.034* | |
C18 | 0.0653 (7) | 0.68710 (11) | 0.5843 (4) | 0.0333 (10) | |
H18 | 0.0492 | 0.6696 | 0.6430 | 0.040* | |
C19 | 0.1349 (6) | 0.71952 (10) | 0.6152 (3) | 0.0292 (9) | |
H19 | 0.1661 | 0.7246 | 0.6964 | 0.035* | |
C20 | 0.1624 (6) | 0.74617 (10) | 0.5296 (4) | 0.0266 (8) | |
C21 | 0.2290 (6) | 0.77955 (11) | 0.5743 (3) | 0.0272 (9) | |
H21 | 0.2651 | 0.7809 | 0.6566 | 0.033* | |
C22 | 0.3282 (6) | 0.86546 (11) | 0.5167 (4) | 0.0282 (9) | |
C23 | 0.4128 (7) | 0.89347 (12) | 0.7416 (4) | 0.0357 (10) | |
H23A | 0.3009 | 0.8806 | 0.7615 | 0.043* | |
H23B | 0.5205 | 0.8777 | 0.7587 | 0.043* | |
C24 | 0.4365 (7) | 0.92718 (12) | 0.8150 (4) | 0.0399 (11) | |
H24A | 0.5535 | 0.9388 | 0.7985 | 0.048* | |
H24B | 0.3345 | 0.9437 | 0.7913 | 0.048* | |
C25 | 0.4385 (7) | 0.91990 (12) | 0.9463 (4) | 0.0394 (11) | |
H25A | 0.3241 | 0.9071 | 0.9614 | 0.047* | |
H25B | 0.5437 | 0.9041 | 0.9698 | 0.047* | |
C26 | 0.4533 (9) | 0.95249 (13) | 1.0232 (5) | 0.0572 (15) | |
H26A | 0.3523 | 0.9690 | 0.9970 | 0.069* | |
H26B | 0.5714 | 0.9646 | 1.0120 | 0.069* | |
C27 | 0.4440 (12) | 0.94475 (19) | 1.1539 (5) | 0.076 (2) | |
H27A | 0.3329 | 0.9302 | 1.1634 | 0.091* | |
H27B | 0.5527 | 0.9303 | 1.1814 | 0.091* | |
C28 | 0.4381 (15) | 0.9760 (2) | 1.2308 (7) | 0.112 (3) | |
H28A | 0.4322 | 0.9683 | 1.3130 | 0.168* | |
H28B | 0.5492 | 0.9903 | 1.2245 | 0.168* | |
H28C | 0.3288 | 0.9902 | 1.2064 | 0.168* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0294 (3) | 0.0239 (2) | 0.0163 (2) | 0.00168 (19) | 0.00456 (18) | −0.00053 (18) |
Cu2 | 0.0311 (3) | 0.0258 (2) | 0.0191 (2) | −0.0010 (2) | 0.00362 (19) | −0.00153 (18) |
S1 | 0.0357 (6) | 0.0258 (5) | 0.0190 (4) | 0.0041 (4) | 0.0043 (4) | −0.0001 (4) |
S2 | 0.0330 (5) | 0.0255 (5) | 0.0233 (5) | 0.0004 (4) | 0.0064 (4) | −0.0035 (4) |
S3 | 0.0355 (6) | 0.0315 (5) | 0.0288 (5) | −0.0062 (4) | 0.0043 (4) | 0.0002 (4) |
S4 | 0.0333 (6) | 0.0303 (5) | 0.0352 (5) | −0.0036 (4) | 0.0025 (4) | −0.0060 (4) |
O1 | 0.0368 (18) | 0.0231 (13) | 0.0182 (14) | 0.0014 (11) | 0.0060 (13) | −0.0001 (10) |
O2 | 0.0404 (19) | 0.0221 (13) | 0.0152 (13) | 0.0010 (12) | 0.0062 (13) | 0.0000 (10) |
N1 | 0.0246 (18) | 0.0249 (17) | 0.0211 (17) | 0.0009 (14) | 0.0033 (14) | −0.0018 (13) |
N2 | 0.0339 (19) | 0.0258 (17) | 0.0175 (16) | 0.0003 (15) | 0.0058 (14) | −0.0034 (13) |
N3 | 0.0249 (19) | 0.0290 (17) | 0.0217 (17) | 0.0006 (14) | 0.0025 (14) | −0.0062 (14) |
N4 | 0.0288 (18) | 0.0293 (17) | 0.0262 (17) | 0.0000 (15) | 0.0004 (15) | −0.0040 (14) |
C1 | 0.022 (2) | 0.030 (2) | 0.0228 (18) | −0.0012 (16) | 0.0031 (15) | 0.0006 (16) |
C2 | 0.032 (2) | 0.030 (2) | 0.029 (2) | 0.0007 (17) | 0.0068 (18) | −0.0032 (16) |
C3 | 0.035 (2) | 0.026 (2) | 0.038 (2) | 0.0032 (18) | 0.0027 (19) | −0.0031 (18) |
C4 | 0.037 (2) | 0.031 (2) | 0.035 (2) | 0.0037 (19) | −0.0043 (19) | 0.0069 (18) |
C5 | 0.034 (2) | 0.030 (2) | 0.0239 (19) | −0.0007 (17) | −0.0023 (17) | 0.0022 (17) |
C6 | 0.023 (2) | 0.031 (2) | 0.0218 (19) | −0.0015 (17) | 0.0021 (16) | 0.0003 (16) |
C7 | 0.024 (2) | 0.032 (2) | 0.0196 (18) | −0.0026 (17) | 0.0035 (16) | −0.0001 (16) |
C8 | 0.0188 (19) | 0.0265 (19) | 0.0219 (19) | −0.0012 (15) | 0.0067 (15) | −0.0016 (15) |
C9 | 0.030 (2) | 0.027 (2) | 0.030 (2) | −0.0011 (17) | 0.0087 (17) | 0.0014 (17) |
C10 | 0.038 (2) | 0.024 (2) | 0.039 (2) | −0.0020 (17) | 0.0107 (19) | −0.0021 (17) |
C11 | 0.038 (3) | 0.031 (2) | 0.047 (3) | 0.0040 (19) | 0.004 (2) | 0.005 (2) |
C12 | 0.048 (3) | 0.030 (2) | 0.072 (3) | −0.001 (2) | 0.006 (3) | 0.010 (2) |
C13 | 0.062 (4) | 0.038 (3) | 0.088 (4) | 0.001 (3) | 0.022 (3) | −0.010 (3) |
C14 | 0.077 (5) | 0.040 (3) | 0.110 (6) | 0.004 (3) | 0.006 (4) | −0.022 (3) |
C15 | 0.023 (2) | 0.025 (2) | 0.0232 (19) | 0.0055 (15) | 0.0076 (16) | 0.0023 (15) |
C16 | 0.028 (2) | 0.031 (2) | 0.0214 (18) | 0.0040 (17) | 0.0047 (16) | −0.0016 (16) |
C17 | 0.030 (2) | 0.027 (2) | 0.028 (2) | 0.0006 (17) | 0.0053 (17) | 0.0007 (16) |
C18 | 0.039 (3) | 0.034 (2) | 0.028 (2) | 0.0077 (19) | 0.0099 (19) | 0.0101 (17) |
C19 | 0.034 (2) | 0.035 (2) | 0.0196 (18) | 0.0064 (18) | 0.0042 (16) | 0.0023 (16) |
C20 | 0.028 (2) | 0.032 (2) | 0.0205 (19) | 0.0081 (17) | 0.0069 (16) | −0.0001 (16) |
C21 | 0.026 (2) | 0.038 (2) | 0.0183 (18) | 0.0055 (18) | 0.0022 (16) | 0.0006 (17) |
C22 | 0.020 (2) | 0.034 (2) | 0.031 (2) | −0.0013 (16) | 0.0036 (17) | −0.0095 (18) |
C23 | 0.039 (3) | 0.034 (2) | 0.033 (2) | −0.006 (2) | 0.002 (2) | −0.0093 (19) |
C24 | 0.047 (3) | 0.034 (2) | 0.038 (2) | −0.002 (2) | 0.004 (2) | −0.010 (2) |
C25 | 0.040 (3) | 0.037 (2) | 0.041 (2) | −0.003 (2) | 0.008 (2) | −0.011 (2) |
C26 | 0.083 (4) | 0.040 (3) | 0.048 (3) | 0.006 (3) | −0.001 (3) | −0.015 (2) |
C27 | 0.103 (6) | 0.078 (4) | 0.047 (3) | 0.005 (4) | 0.008 (4) | −0.016 (3) |
C28 | 0.134 (8) | 0.128 (7) | 0.074 (5) | 0.005 (6) | 0.017 (5) | −0.048 (5) |
Cu1—N1 | 1.919 (4) | C11—H11A | 0.9900 |
Cu1—O1 | 1.946 (3) | C11—H11B | 0.9900 |
Cu1—O2 | 1.952 (3) | C12—C13 | 1.515 (8) |
Cu1—S1 | 2.2171 (10) | C12—H12A | 0.9900 |
Cu1—Cu2 | 2.9923 (6) | C12—H12B | 0.9900 |
Cu2—N3 | 1.931 (4) | C13—C14 | 1.522 (7) |
Cu2—O2 | 1.963 (2) | C13—H13A | 0.9900 |
Cu2—O1 | 1.982 (3) | C13—H13B | 0.9900 |
Cu2—S3 | 2.2352 (11) | C14—H14A | 0.9800 |
S1—C8 | 1.739 (4) | C14—H14B | 0.9800 |
S2—C8 | 1.762 (4) | C14—H14C | 0.9800 |
S2—C9 | 1.819 (4) | C15—C16 | 1.394 (6) |
S3—C22 | 1.739 (4) | C15—C20 | 1.415 (6) |
S4—C22 | 1.751 (4) | C16—C17 | 1.383 (6) |
S4—C23 | 1.817 (4) | C16—H16 | 0.9500 |
O1—C1 | 1.337 (5) | C17—C18 | 1.398 (6) |
O2—C15 | 1.343 (5) | C17—H17 | 0.9500 |
N1—C7 | 1.299 (5) | C18—C19 | 1.359 (6) |
N1—N2 | 1.399 (5) | C18—H18 | 0.9500 |
N2—C8 | 1.289 (5) | C19—C20 | 1.423 (6) |
N3—C21 | 1.293 (5) | C19—H19 | 0.9500 |
N3—N4 | 1.406 (5) | C20—C21 | 1.428 (6) |
N4—C22 | 1.295 (5) | C21—H21 | 0.9500 |
C1—C2 | 1.407 (6) | C23—C24 | 1.522 (6) |
C1—C6 | 1.416 (5) | C23—H23A | 0.9900 |
C2—C3 | 1.366 (6) | C23—H23B | 0.9900 |
C2—H2 | 0.9500 | C24—C25 | 1.513 (6) |
C3—C4 | 1.396 (6) | C24—H24A | 0.9900 |
C3—H3 | 0.9500 | C24—H24B | 0.9900 |
C4—C5 | 1.366 (6) | C25—C26 | 1.507 (6) |
C4—H4 | 0.9500 | C25—H25A | 0.9900 |
C5—C6 | 1.415 (6) | C25—H25B | 0.9900 |
C5—H5 | 0.9500 | C26—C27 | 1.517 (8) |
C6—C7 | 1.434 (6) | C26—H26A | 0.9900 |
C7—H7 | 0.9500 | C26—H26B | 0.9900 |
C9—C10 | 1.524 (5) | C27—C28 | 1.468 (9) |
C9—H9A | 0.9900 | C27—H27A | 0.9900 |
C9—H9B | 0.9900 | C27—H27B | 0.9900 |
C10—C11 | 1.527 (6) | C28—H28A | 0.9800 |
C10—H10A | 0.9900 | C28—H28B | 0.9800 |
C10—H10B | 0.9900 | C28—H28C | 0.9800 |
C11—C12 | 1.525 (6) | ||
N1—Cu1—O1 | 93.65 (12) | H11A—C11—H11B | 107.7 |
N1—Cu1—O2 | 169.54 (14) | C13—C12—C11 | 114.5 (4) |
O1—Cu1—O2 | 78.10 (11) | C13—C12—H12A | 108.6 |
N1—Cu1—S1 | 87.40 (10) | C11—C12—H12A | 108.6 |
O1—Cu1—S1 | 170.18 (10) | C13—C12—H12B | 108.6 |
O2—Cu1—S1 | 101.83 (8) | C11—C12—H12B | 108.6 |
N1—Cu1—Cu2 | 133.36 (9) | H12A—C12—H12B | 107.6 |
O1—Cu1—Cu2 | 40.83 (8) | C12—C13—C14 | 112.6 (5) |
O2—Cu1—Cu2 | 40.28 (7) | C12—C13—H13A | 109.1 |
S1—Cu1—Cu2 | 135.36 (3) | C14—C13—H13A | 109.1 |
N3—Cu2—O2 | 91.89 (13) | C12—C13—H13B | 109.1 |
N3—Cu2—O1 | 168.85 (12) | C14—C13—H13B | 109.1 |
O2—Cu2—O1 | 77.02 (11) | H13A—C13—H13B | 107.8 |
N3—Cu2—S3 | 87.22 (11) | C13—C14—H14A | 109.5 |
O2—Cu2—S3 | 165.65 (10) | C13—C14—H14B | 109.5 |
O1—Cu2—S3 | 103.25 (9) | H14A—C14—H14B | 109.5 |
N3—Cu2—Cu1 | 129.13 (10) | C13—C14—H14C | 109.5 |
O2—Cu2—Cu1 | 40.03 (8) | H14A—C14—H14C | 109.5 |
O1—Cu2—Cu1 | 39.94 (8) | H14B—C14—H14C | 109.5 |
S3—Cu2—Cu1 | 134.33 (3) | O2—C15—C16 | 120.9 (3) |
C8—S1—Cu1 | 93.33 (13) | O2—C15—C20 | 120.6 (3) |
C8—S2—C9 | 103.67 (19) | C16—C15—C20 | 118.5 (4) |
C22—S3—Cu2 | 92.80 (14) | C17—C16—C15 | 121.3 (4) |
C22—S4—C23 | 102.5 (2) | C17—C16—H16 | 119.3 |
C1—O1—Cu1 | 127.4 (3) | C15—C16—H16 | 119.3 |
C1—O1—Cu2 | 133.4 (2) | C16—C17—C18 | 120.6 (4) |
Cu1—O1—Cu2 | 99.23 (12) | C16—C17—H17 | 119.7 |
C15—O2—Cu1 | 132.7 (2) | C18—C17—H17 | 119.7 |
C15—O2—Cu2 | 127.6 (2) | C19—C18—C17 | 119.0 (4) |
Cu1—O2—Cu2 | 99.69 (12) | C19—C18—H18 | 120.5 |
C7—N1—N2 | 114.5 (3) | C17—C18—H18 | 120.5 |
C7—N1—Cu1 | 125.6 (3) | C18—C19—C20 | 122.0 (4) |
N2—N1—Cu1 | 119.9 (2) | C18—C19—H19 | 119.0 |
C8—N2—N1 | 112.8 (3) | C20—C19—H19 | 119.0 |
C21—N3—N4 | 113.9 (3) | C15—C20—C19 | 118.5 (4) |
C21—N3—Cu2 | 126.2 (3) | C15—C20—C21 | 125.1 (4) |
N4—N3—Cu2 | 119.8 (3) | C19—C20—C21 | 116.3 (4) |
C22—N4—N3 | 112.2 (3) | N3—C21—C20 | 126.1 (4) |
O1—C1—C2 | 120.5 (4) | N3—C21—H21 | 117.0 |
O1—C1—C6 | 121.6 (4) | C20—C21—H21 | 117.0 |
C2—C1—C6 | 117.9 (4) | N4—C22—S3 | 127.2 (3) |
C3—C2—C1 | 121.6 (4) | N4—C22—S4 | 119.1 (3) |
C3—C2—H2 | 119.2 | S3—C22—S4 | 113.6 (2) |
C1—C2—H2 | 119.2 | C24—C23—S4 | 108.5 (3) |
C2—C3—C4 | 121.0 (4) | C24—C23—H23A | 110.0 |
C2—C3—H3 | 119.5 | S4—C23—H23A | 110.0 |
C4—C3—H3 | 119.5 | C24—C23—H23B | 110.0 |
C5—C4—C3 | 118.8 (4) | S4—C23—H23B | 110.0 |
C5—C4—H4 | 120.6 | H23A—C23—H23B | 108.4 |
C3—C4—H4 | 120.6 | C25—C24—C23 | 112.2 (4) |
C4—C5—C6 | 122.0 (4) | C25—C24—H24A | 109.2 |
C4—C5—H5 | 119.0 | C23—C24—H24A | 109.2 |
C6—C5—H5 | 119.0 | C25—C24—H24B | 109.2 |
C5—C6—C1 | 118.7 (4) | C23—C24—H24B | 109.2 |
C5—C6—C7 | 116.3 (4) | H24A—C24—H24B | 107.9 |
C1—C6—C7 | 125.0 (4) | C26—C25—C24 | 114.6 (4) |
N1—C7—C6 | 126.1 (4) | C26—C25—H25A | 108.6 |
N1—C7—H7 | 117.0 | C24—C25—H25A | 108.6 |
C6—C7—H7 | 117.0 | C26—C25—H25B | 108.6 |
N2—C8—S1 | 126.4 (3) | C24—C25—H25B | 108.6 |
N2—C8—S2 | 113.6 (3) | H25A—C25—H25B | 107.6 |
S1—C8—S2 | 120.0 (2) | C25—C26—C27 | 113.7 (5) |
C10—C9—S2 | 110.0 (3) | C25—C26—H26A | 108.8 |
C10—C9—H9A | 109.7 | C27—C26—H26A | 108.8 |
S2—C9—H9A | 109.7 | C25—C26—H26B | 108.8 |
C10—C9—H9B | 109.7 | C27—C26—H26B | 108.8 |
S2—C9—H9B | 109.7 | H26A—C26—H26B | 107.7 |
H9A—C9—H9B | 108.2 | C28—C27—C26 | 115.6 (6) |
C9—C10—C11 | 110.3 (4) | C28—C27—H27A | 108.4 |
C9—C10—H10A | 109.6 | C26—C27—H27A | 108.4 |
C11—C10—H10A | 109.6 | C28—C27—H27B | 108.4 |
C9—C10—H10B | 109.6 | C26—C27—H27B | 108.4 |
C11—C10—H10B | 109.6 | H27A—C27—H27B | 107.4 |
H10A—C10—H10B | 108.1 | C27—C28—H28A | 109.5 |
C12—C11—C10 | 113.5 (4) | C27—C28—H28B | 109.5 |
C12—C11—H11A | 108.9 | H28A—C28—H28B | 109.5 |
C10—C11—H11A | 108.9 | C27—C28—H28C | 109.5 |
C12—C11—H11B | 108.9 | H28A—C28—H28C | 109.5 |
C10—C11—H11B | 108.9 | H28B—C28—H28C | 109.5 |
D—H···A | D—H | H···A | D···A | D—H···A |
C19—H19···N2i | 0.95 | 2.52 | 3.457 (5) | 167 |
Symmetry code: (i) x, y, z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C19—H19···N2i | 0.95 | 2.52 | 3.457 (5) | 167 |
Symmetry code: (i) x, y, z+1. |
Acknowledgements
MSB and MBHH are grateful to the Department of Chemistry, Rajshahi University, for the provision of laboratory facilities. MCS acknowledges the Department of Applied Chemistry, Toyama University, for providing funds for single-crystal X-ray analyses.
References
Ali, M. A., Mirza, A. H., Butcher, R. J., Tarafder, M. T. H., Keat, T. B. & Ali, A. M. (2002). J. Inorg. Biochem. 92, 141–148. CSD CrossRef PubMed Google Scholar
Ali, Md. A., Mirza, A. H., Ting, W. Y., Hamid, M. H. S. A., Bernhardt, P. V. & Butcher, R. J. (2012). Polyhedron, 48, 167–173. Web of Science CSD CrossRef CAS Google Scholar
Ali, M. A., Tan, A. L., Mirza, A. H., Santos, J. H. & Abdullah, A. H. H. (2012). Transition Met. Chem. 37, 651–659. Web of Science CSD CrossRef CAS Google Scholar
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Begum, M. S., Howlader, M. B. H., Sheikh, M. C., Miyatake, R. & Zangrando, E. (2015). Acta Cryst. E71, m63–m64. Web of Science CSD CrossRef IUCr Journals Google Scholar
Chan, M. E., Crouse, K. A., Tahir, M. I. M., Rosli, R., Umar-Tsafe, N. & Cowley, A. R. (2008). Polyhedron, 27, 1141–1149. Web of Science CSD CrossRef CAS Google Scholar
Chew, K. B., Tarafder, M. T. H., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H. K. (2004). Polyhedron, 23, 1385–1392. Web of Science CSD CrossRef CAS Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
How, F. N. F., Crouse, K. A., Tahir, M. I. M., Tarafder, M. T. H. & Cowley, A. R. (2008). Polyhedron, 27, 3325–3329. Web of Science CSD CrossRef CAS Google Scholar
Howlader, M. B. H., Begum, M. S., Sheikh, M. C., Miyatake, R. & Zangrando, E. (2015). Acta Cryst. E71, m26–m27. CSD CrossRef IUCr Journals Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Rigaku (2001). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Tarafder, M. T. H., Islam, M. T., Islam, M. A. A. A. A., Chantrapromma, S. & Fun, H.-K. (2008). Acta Cryst. E64, m416–m417. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Zangrando, E., Begum, M. S., Miyatake, R., Sheikh, M. C. & Hossain, M. M. (2015). Acta Cryst. E71, 706–708. CSD CrossRef IUCr Journals Google Scholar
Zangrando, E., Islam, M. T., Islam, M. A. A. A., Sheikh, M. C., Tarafder, M. T. H., Miyatake, R., Zahan, R. & Hossain, M. A. (2015). Inorg. Chim. Acta, 427, 278–284. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.