organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2-amino-4-(4-meth­­oxy­phen­yl)-4H-benzo[g]chromene-3-carbo­nitrile

aDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, bChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, cChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, eChemistry Department, Faculty of Science, Sohag University, 82524 Sohag, Egypt, and fKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 20 November 2015; accepted 28 November 2015; online 6 December 2015)

In the title compound, C21H16N2O2, the naphthalene fragment is twisted slightly, as indicated by the dihedral angle of 3.2 (2)° between the two six-membered rings. The pendant 4-meth­oxy­phenyl ring makes a dihedral angle of 86.08 (6)° with the central six-membered ring of the 4H-benzo[g]chromene ring system. In the crystal, mol­ecules are linked by pairs of N—H⋯N hydrogen bonds, forming inversion dimers which are linked into chains propagating in the b-axis direction by N—H⋯O hydrogen bonds.

1. Related literature

For the chemical and pharmacological properties of 4H-chromene and fused 4H-chromene derivatives, see: Bonsignore et al. (1993[Bonsignore, L., Loy, G., Secci, D. & Calignano, A. (1993). Eur. J. Med. Chem. 28, 517-520.]); Martínez-Grau & Marco (1997[Martínez-Grau, A. & Marco, J. (1997). Bioorg. Med. Chem. Lett. 7, 3165-3170.]); Abd-El-Aziz et al. (2007[Abd-El-Aziz, A. S., Mohamed, H. M., Mohammed, S., Zahid, S., Ata, A., Bedair, A. H., El-Agrody, A. M. & Harvey, P. D. (2007). J. Heterocycl. Chem. 44, 1287-1301.]); Sabry et al. (2011[Sabry, N. M., Mohamed, H. M., Khattab, E. S. A. E. H., Motlaq, S. S. & El-Agrody, A. M. (2011). Eur. J. Med. Chem. 46, 765-772.]). For the synthesis and biological activities of 2-amino-3-cyano-4H-chromene derivatives, see: Kemnitzer et al. (2005[Kemnitzer, W., Kasibhatla, S., Jiang, S., Zhang, H., Zhao, J., Jia, S., Xu, L., Crogan-Grundy, C., Denis, R. A., Barriault, N., Vaillancourt, L., Charron, S., Dodd, J., Attardo, G., Labrecque, D., Lamothe, S., Gourdeau, H., Tseng, B., Drewe, J. & Cai, S. X. (2005). Bioorg. Med. Chem. Lett. 15, 4745-4751.]); Patil et al. (2012[Patil, S. A., Wang, J., Li, X. S., Chen, J., Jones, T. S., Hosni-Ahmed, A., Patil, R., Seibel, W. L., Li, W. & Miller, D. D. (2012). Bioorg. Med. Chem. Lett. 22, 4458-4461.]); Kumar et al. (2009[Kumar, D., Reddy, V. B., Sharad, S., Dube, U. & Kapur, S. (2009). Eur. J. Med. Chem. 44, 3805-3809.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C21H16N2O2

  • Mr = 328.36

  • Triclinic, [P \overline 1]

  • a = 6.3833 (2) Å

  • b = 10.6009 (3) Å

  • c = 13.0915 (4) Å

  • α = 108.823 (2)°

  • β = 95.906 (2)°

  • γ = 97.467 (2)°

  • V = 821.44 (4) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.69 mm−1

  • T = 150 K

  • 0.26 × 0.20 × 0.02 mm

2.2. Data collection

  • Bruker D8 VENTURE PHOTON 100 CMOS diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2015[Bruker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.78, Tmax = 0.99

  • 6215 measured reflections

  • 3039 independent reflections

  • 2074 reflections with I > 2σ(I)

  • Rint = 0.048

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.151

  • S = 1.03

  • 3039 reflections

  • 235 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯N1i 0.96 (3) 2.03 (3) 2.995 (3) 178 (3)
N2—H2B⋯O2ii 0.95 (3) 2.10 (3) 3.028 (3) 166 (2)
Symmetry codes: (i) -x+2, -y+2, -z+2; (ii) x, y+1, z.

Data collection: APEX2 (Bruker, 2015[Bruker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2015[Bruker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Structural commentary top

Fused benzo-4H-pyran, namely, 4H-chromene moiety, is the key building block of many oxygen-containing heterocyclic natural products whose pharmacological and biological activity such as anti-tumor, anti-oxidant, anti-bacterial, anti-viral, anti-fungal, hypotensive, anti-coagulant, anti-leishmanial, diuretic, and anti-allergenic activities (Bonsignore et al., 1993; Martínez-Grau & Marco, 1997; Abd-El-Aziz et al., 2007; Sabry et al., 2011). Moreover, 2-amino-3-cyano-4H-chromene derivatives have been also used as anti-cancers, inhibitors of insulin-regulated amino­peptidase (IRAP) for enhancing memory and learning functions and anti-bacterial agents (Kemnitzer et al., 2005; Patil et al., 2012; Kumar et al., 2009). In continuation of our inter­est in the chemical and pharmacological properties of 4H-chromene and fused 4H-chromene derivatives, we herein report on the synthesis and crystal structure of the title compound.

In the title compound, Fig. 1, the naphthalene fragment is slightly twisted as indicated by the dihedral angle of 3.2 (2)° between the two 6-membered rings. The pendant 4-meth­oxy­phenyl ring makes a dihedral angle of 86.08 (6)° with the (C4—C7/C12/C13) ring. The heterocyclic ring (O1/C1—C4/C13) can best be described as having an envelope conformation, with atom C3 as the flap, and with pucking parameters of Q = 0.099 (2) Å, θ = 109.8 (12)° and φ = 6.5 (14)°.

In the crystal, pairwise N2—H2A···N1i hydrogen bonds form inversion dimers which are linked into chains running along the b axis direction (Fig. 2 and Table 1). The overall packing of these units in the crystal is illustrated in Fig. 3.

Synthesis and crystallization top

To a solution of 4-meth­oxy­benzyl­idene-malono­nitrile (1 mmol, 180 mg) in 10 ml of ethanol was added 4- 1-naphthol (1 mmol, 144 mg) in the presence of few catalytic drops of piperedine and the temperature was adjusted at 353 K for 1 h. A solid product was obtained on cooling, collected by filtration and recrystallized from ethanol to afford colorless plate-like crystals suitable for X-ray diffraction analysis.

Refinement top

The NH2 H-atoms were located in a difference Fourier map and freely refined. The C-bound H atoms were placed in calculated positions (C—H = 0.95 - 1.00 Å) and included as riding contributions with Uiso(H) = 1.5Ueq(C-methyl) and 1.2Ueq(C) for other H atoms.

Related literature top

For the chemical and pharmacological properties of 4H-chromene and fused 4H-chromene derivatives, see: Bonsignore et al. (1993); Martínez-Grau & Marco (1997); Abd-El-Aziz et al. (2007); Sabry et al. (2011). For the synthesis and biological activities of 2-amino-3-cyano-4H-chromene derivatives, see: Kemnitzer et al. (2005); Patil et al. (2012); Kumar et al. (2009).

Structure description top

Fused benzo-4H-pyran, namely, 4H-chromene moiety, is the key building block of many oxygen-containing heterocyclic natural products whose pharmacological and biological activity such as anti-tumor, anti-oxidant, anti-bacterial, anti-viral, anti-fungal, hypotensive, anti-coagulant, anti-leishmanial, diuretic, and anti-allergenic activities (Bonsignore et al., 1993; Martínez-Grau & Marco, 1997; Abd-El-Aziz et al., 2007; Sabry et al., 2011). Moreover, 2-amino-3-cyano-4H-chromene derivatives have been also used as anti-cancers, inhibitors of insulin-regulated amino­peptidase (IRAP) for enhancing memory and learning functions and anti-bacterial agents (Kemnitzer et al., 2005; Patil et al., 2012; Kumar et al., 2009). In continuation of our inter­est in the chemical and pharmacological properties of 4H-chromene and fused 4H-chromene derivatives, we herein report on the synthesis and crystal structure of the title compound.

In the title compound, Fig. 1, the naphthalene fragment is slightly twisted as indicated by the dihedral angle of 3.2 (2)° between the two 6-membered rings. The pendant 4-meth­oxy­phenyl ring makes a dihedral angle of 86.08 (6)° with the (C4—C7/C12/C13) ring. The heterocyclic ring (O1/C1—C4/C13) can best be described as having an envelope conformation, with atom C3 as the flap, and with pucking parameters of Q = 0.099 (2) Å, θ = 109.8 (12)° and φ = 6.5 (14)°.

In the crystal, pairwise N2—H2A···N1i hydrogen bonds form inversion dimers which are linked into chains running along the b axis direction (Fig. 2 and Table 1). The overall packing of these units in the crystal is illustrated in Fig. 3.

For the chemical and pharmacological properties of 4H-chromene and fused 4H-chromene derivatives, see: Bonsignore et al. (1993); Martínez-Grau & Marco (1997); Abd-El-Aziz et al. (2007); Sabry et al. (2011). For the synthesis and biological activities of 2-amino-3-cyano-4H-chromene derivatives, see: Kemnitzer et al. (2005); Patil et al. (2012); Kumar et al. (2009).

Synthesis and crystallization top

To a solution of 4-meth­oxy­benzyl­idene-malono­nitrile (1 mmol, 180 mg) in 10 ml of ethanol was added 4- 1-naphthol (1 mmol, 144 mg) in the presence of few catalytic drops of piperedine and the temperature was adjusted at 353 K for 1 h. A solid product was obtained on cooling, collected by filtration and recrystallized from ethanol to afford colorless plate-like crystals suitable for X-ray diffraction analysis.

Refinement details top

The NH2 H-atoms were located in a difference Fourier map and freely refined. The C-bound H atoms were placed in calculated positions (C—H = 0.95 - 1.00 Å) and included as riding contributions with Uiso(H) = 1.5Ueq(C-methyl) and 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the labeling scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. View along the c axis of one hydrogen-bonded layer. The N—H···N and N—H···O hydrogen bonds (see Table 1) are shown as blue and purple dotted lines, respectively.
[Figure 3] Fig. 3. Crystal packing viewed along the c axis, with the N—H···N and N—H···O hydrogen bonds (see Table 1) shown as blue and purple dotted lines, respectively.
2-Amino-4-(4-methoxyphenyl)-4H-benzo[g]chromene-3-carbonitrile top
Crystal data top
C21H16N2O2Z = 2
Mr = 328.36F(000) = 344
Triclinic, P1Dx = 1.328 Mg m3
a = 6.3833 (2) ÅCu Kα radiation, λ = 1.54178 Å
b = 10.6009 (3) ÅCell parameters from 3044 reflections
c = 13.0915 (4) Åθ = 3.6–72.4°
α = 108.823 (2)°µ = 0.69 mm1
β = 95.906 (2)°T = 150 K
γ = 97.467 (2)°Plate, colourless
V = 821.44 (4) Å30.26 × 0.20 × 0.02 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
3039 independent reflections
Radiation source: INCOATEC IµS micro–focus source2074 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.048
Detector resolution: 10.4167 pixels mm-1θmax = 72.4°, θmin = 3.6°
ω scansh = 76
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
k = 1213
Tmin = 0.78, Tmax = 0.99l = 1616
6215 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: mixed
wR(F2) = 0.151H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0739P)2 + 0.065P]
where P = (Fo2 + 2Fc2)/3
3039 reflections(Δ/σ)max < 0.001
235 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C21H16N2O2γ = 97.467 (2)°
Mr = 328.36V = 821.44 (4) Å3
Triclinic, P1Z = 2
a = 6.3833 (2) ÅCu Kα radiation
b = 10.6009 (3) ŵ = 0.69 mm1
c = 13.0915 (4) ÅT = 150 K
α = 108.823 (2)°0.26 × 0.20 × 0.02 mm
β = 95.906 (2)°
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
3039 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
2074 reflections with I > 2σ(I)
Tmin = 0.78, Tmax = 0.99Rint = 0.048
6215 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.151H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.18 e Å3
3039 reflectionsΔρmin = 0.22 e Å3
235 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 1.00 Å). All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3785 (2)0.96970 (14)0.76705 (13)0.0403 (4)
O20.3737 (3)0.29798 (15)0.88255 (14)0.0498 (5)
N11.0346 (3)0.8671 (2)0.90170 (17)0.0471 (5)
N20.6393 (3)1.08806 (19)0.90280 (19)0.0475 (6)
H2A0.741 (5)1.101 (3)0.966 (2)0.060 (8)*
H2B0.559 (5)1.159 (3)0.909 (2)0.064 (8)*
C10.5666 (3)0.9677 (2)0.82491 (19)0.0368 (5)
C20.6619 (3)0.8565 (2)0.80085 (18)0.0357 (5)
C30.5665 (3)0.7233 (2)0.71189 (18)0.0369 (5)
H30.67560.69710.66290.044*
C40.3733 (3)0.7425 (2)0.64460 (18)0.0369 (5)
C50.2723 (4)0.6386 (2)0.5477 (2)0.0438 (6)
H50.33250.55870.52290.053*
C60.0909 (4)0.6488 (2)0.4883 (2)0.0451 (6)
H60.02900.57780.42230.054*
C70.0054 (4)0.7651 (2)0.52499 (19)0.0395 (5)
C80.2030 (4)0.7755 (3)0.4698 (2)0.0483 (6)
H80.27320.70310.40630.058*
C90.2917 (4)0.8878 (3)0.5073 (2)0.0527 (7)
H90.42370.89350.46970.063*
C100.1911 (4)0.9956 (3)0.6005 (2)0.0512 (6)
H100.25591.07350.62560.061*
C110.0004 (4)0.9904 (2)0.6562 (2)0.0437 (6)
H110.06741.06460.71890.052*
C120.0955 (3)0.8731 (2)0.61949 (19)0.0372 (5)
C130.2878 (3)0.8580 (2)0.67621 (18)0.0356 (5)
C140.8674 (4)0.8653 (2)0.85785 (19)0.0387 (5)
C150.5109 (3)0.6109 (2)0.75824 (18)0.0353 (5)
C160.3363 (4)0.6046 (2)0.8117 (2)0.0414 (6)
H160.24870.67200.81900.050*
C170.2843 (4)0.5033 (2)0.8551 (2)0.0438 (6)
H170.16310.50170.89140.053*
C180.4117 (4)0.4042 (2)0.84493 (19)0.0395 (5)
C190.5888 (4)0.4095 (2)0.79246 (19)0.0417 (6)
H190.67720.34260.78580.050*
C200.6375 (4)0.5111 (2)0.74989 (19)0.0400 (5)
H200.75950.51320.71420.048*
C210.1919 (5)0.2878 (3)0.9351 (2)0.0562 (7)
H21A0.20680.36721.00130.084*
H21B0.18030.20570.95470.084*
H21C0.06310.28330.88550.084*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0357 (8)0.0340 (8)0.0500 (10)0.0045 (6)0.0064 (7)0.0171 (7)
O20.0608 (11)0.0361 (8)0.0593 (11)0.0072 (7)0.0046 (9)0.0271 (8)
N10.0425 (12)0.0469 (11)0.0494 (13)0.0127 (9)0.0028 (10)0.0141 (10)
N20.0478 (13)0.0318 (10)0.0568 (14)0.0053 (8)0.0132 (10)0.0138 (10)
C10.0327 (12)0.0353 (11)0.0452 (13)0.0006 (8)0.0021 (10)0.0221 (10)
C20.0317 (12)0.0361 (11)0.0414 (13)0.0037 (8)0.0003 (9)0.0183 (10)
C30.0355 (12)0.0365 (11)0.0411 (13)0.0061 (9)0.0043 (10)0.0169 (10)
C40.0357 (12)0.0369 (11)0.0407 (13)0.0021 (9)0.0034 (9)0.0190 (10)
C50.0462 (14)0.0405 (12)0.0448 (14)0.0063 (10)0.0045 (11)0.0159 (11)
C60.0452 (14)0.0477 (13)0.0397 (13)0.0015 (10)0.0010 (11)0.0173 (11)
C70.0363 (12)0.0440 (12)0.0425 (13)0.0015 (9)0.0013 (10)0.0252 (11)
C80.0405 (14)0.0583 (15)0.0473 (15)0.0045 (11)0.0047 (11)0.0282 (12)
C90.0385 (14)0.0650 (16)0.0605 (17)0.0047 (11)0.0042 (12)0.0349 (14)
C100.0418 (14)0.0567 (15)0.0630 (17)0.0120 (11)0.0006 (12)0.0320 (14)
C110.0429 (13)0.0421 (12)0.0507 (14)0.0055 (10)0.0009 (11)0.0246 (11)
C120.0340 (12)0.0415 (12)0.0420 (13)0.0010 (9)0.0025 (10)0.0254 (10)
C130.0344 (12)0.0351 (11)0.0389 (12)0.0012 (8)0.0003 (9)0.0191 (10)
C140.0416 (14)0.0333 (11)0.0424 (13)0.0069 (9)0.0037 (10)0.0152 (10)
C150.0386 (12)0.0305 (10)0.0372 (12)0.0071 (8)0.0010 (9)0.0130 (9)
C160.0448 (14)0.0347 (11)0.0521 (15)0.0147 (9)0.0132 (11)0.0199 (11)
C170.0476 (14)0.0364 (12)0.0522 (15)0.0098 (10)0.0119 (11)0.0195 (11)
C180.0495 (14)0.0282 (10)0.0398 (13)0.0029 (9)0.0034 (10)0.0148 (10)
C190.0495 (14)0.0322 (11)0.0450 (14)0.0134 (9)0.0011 (11)0.0147 (10)
C200.0381 (13)0.0388 (12)0.0429 (13)0.0090 (9)0.0045 (10)0.0131 (10)
C210.0716 (18)0.0427 (13)0.0585 (17)0.0007 (12)0.0089 (14)0.0269 (13)
Geometric parameters (Å, º) top
O1—C11.359 (3)C8—C91.355 (4)
O1—C131.387 (3)C8—H80.9500
O2—C181.372 (3)C9—C101.399 (4)
O2—C211.418 (3)C9—H90.9500
N1—C141.154 (3)C10—C111.370 (3)
N2—C11.339 (3)C10—H100.9500
N2—H2A0.96 (3)C11—C121.423 (3)
N2—H2B0.95 (3)C11—H110.9500
C1—C21.359 (3)C12—C131.422 (3)
C2—C141.417 (3)C15—C161.381 (3)
C2—C31.513 (3)C15—C201.396 (3)
C3—C41.516 (3)C16—C171.387 (3)
C3—C151.522 (3)C16—H160.9500
C3—H31.0000C17—C181.391 (3)
C4—C131.365 (3)C17—H170.9500
C4—C51.409 (3)C18—C191.386 (3)
C5—C61.363 (3)C19—C201.380 (3)
C5—H50.9500C19—H190.9500
C6—C71.415 (3)C20—H200.9500
C6—H60.9500C21—H21A0.9800
C7—C121.409 (3)C21—H21B0.9800
C7—C81.423 (3)C21—H21C0.9800
C1—O1—C13119.06 (17)C11—C10—H10119.6
C18—O2—C21117.97 (18)C9—C10—H10119.6
C1—N2—H2A123.6 (16)C10—C11—C12119.6 (2)
C1—N2—H2B119.0 (17)C10—C11—H11120.2
H2A—N2—H2B115 (2)C12—C11—H11120.2
N2—C1—C2127.4 (2)C7—C12—C13118.0 (2)
N2—C1—O1110.53 (18)C7—C12—C11119.3 (2)
C2—C1—O1122.1 (2)C13—C12—C11122.6 (2)
C1—C2—C14119.1 (2)C4—C13—O1123.04 (19)
C1—C2—C3123.89 (19)C4—C13—C12122.7 (2)
C14—C2—C3116.96 (18)O1—C13—C12114.30 (18)
C2—C3—C4109.13 (17)N1—C14—C2177.3 (2)
C2—C3—C15111.84 (18)C16—C15—C20117.4 (2)
C4—C3—C15111.76 (18)C16—C15—C3121.60 (18)
C2—C3—H3108.0C20—C15—C3121.0 (2)
C4—C3—H3108.0C15—C16—C17122.3 (2)
C15—C3—H3108.0C15—C16—H16118.8
C13—C4—C5117.7 (2)C17—C16—H16118.8
C13—C4—C3121.9 (2)C16—C17—C18119.3 (2)
C5—C4—C3120.39 (19)C16—C17—H17120.4
C6—C5—C4122.1 (2)C18—C17—H17120.4
C6—C5—H5118.9O2—C18—C19116.25 (19)
C4—C5—H5118.9O2—C18—C17124.5 (2)
C5—C6—C7120.1 (2)C19—C18—C17119.3 (2)
C5—C6—H6120.0C20—C19—C18120.5 (2)
C7—C6—H6120.0C20—C19—H19119.8
C12—C7—C6119.2 (2)C18—C19—H19119.8
C12—C7—C8118.9 (2)C19—C20—C15121.3 (2)
C6—C7—C8121.8 (2)C19—C20—H20119.4
C9—C8—C7120.4 (2)C15—C20—H20119.4
C9—C8—H8119.8O2—C21—H21A109.5
C7—C8—H8119.8O2—C21—H21B109.5
C8—C9—C10120.8 (2)H21A—C21—H21B109.5
C8—C9—H9119.6O2—C21—H21C109.5
C10—C9—H9119.6H21A—C21—H21C109.5
C11—C10—C9120.9 (2)H21B—C21—H21C109.5
C13—O1—C1—N2174.13 (19)C10—C11—C12—C71.2 (3)
C13—O1—C1—C24.3 (3)C10—C11—C12—C13176.9 (2)
N2—C1—C2—C144.0 (4)C5—C4—C13—O1176.9 (2)
O1—C1—C2—C14174.2 (2)C3—C4—C13—O14.8 (3)
N2—C1—C2—C3179.2 (2)C5—C4—C13—C124.2 (3)
O1—C1—C2—C32.6 (3)C3—C4—C13—C12174.2 (2)
C1—C2—C3—C49.3 (3)C1—O1—C13—C43.3 (3)
C14—C2—C3—C4167.6 (2)C1—O1—C13—C12177.71 (19)
C1—C2—C3—C15114.9 (2)C7—C12—C13—C42.0 (3)
C14—C2—C3—C1568.2 (3)C11—C12—C13—C4176.1 (2)
C2—C3—C4—C1310.2 (3)C7—C12—C13—O1178.94 (18)
C15—C3—C4—C13114.1 (2)C11—C12—C13—O12.9 (3)
C2—C3—C4—C5171.5 (2)C2—C3—C15—C1674.0 (3)
C15—C3—C4—C564.3 (3)C4—C3—C15—C1648.7 (3)
C13—C4—C5—C62.3 (3)C2—C3—C15—C20104.9 (2)
C3—C4—C5—C6176.1 (2)C4—C3—C15—C20132.4 (2)
C4—C5—C6—C71.7 (4)C20—C15—C16—C170.6 (3)
C5—C6—C7—C123.9 (3)C3—C15—C16—C17179.5 (2)
C5—C6—C7—C8175.3 (2)C15—C16—C17—C180.0 (4)
C12—C7—C8—C90.4 (3)C21—O2—C18—C19178.9 (2)
C6—C7—C8—C9179.6 (2)C21—O2—C18—C170.3 (3)
C7—C8—C9—C100.1 (4)C16—C17—C18—O2178.6 (2)
C8—C9—C10—C110.1 (4)C16—C17—C18—C190.6 (3)
C9—C10—C11—C120.8 (4)O2—C18—C19—C20178.7 (2)
C6—C7—C12—C132.1 (3)C17—C18—C19—C200.6 (3)
C8—C7—C12—C13177.1 (2)C18—C19—C20—C150.0 (3)
C6—C7—C12—C11179.7 (2)C16—C15—C20—C190.6 (3)
C8—C7—C12—C111.1 (3)C3—C15—C20—C19179.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N1i0.96 (3)2.03 (3)2.995 (3)178 (3)
N2—H2B···O2ii0.95 (3)2.10 (3)3.028 (3)166 (2)
Symmetry codes: (i) x+2, y+2, z+2; (ii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N1i0.96 (3)2.03 (3)2.995 (3)178 (3)
N2—H2B···O2ii0.95 (3)2.10 (3)3.028 (3)166 (2)
Symmetry codes: (i) x+2, y+2, z+2; (ii) x, y+1, z.
 

Acknowledgements

The support of NSF–MRI Grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationAbd-El-Aziz, A. S., Mohamed, H. M., Mohammed, S., Zahid, S., Ata, A., Bedair, A. H., El-Agrody, A. M. & Harvey, P. D. (2007). J. Heterocycl. Chem. 44, 1287–1301.  CAS Google Scholar
First citationBonsignore, L., Loy, G., Secci, D. & Calignano, A. (1993). Eur. J. Med. Chem. 28, 517–520.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKemnitzer, W., Kasibhatla, S., Jiang, S., Zhang, H., Zhao, J., Jia, S., Xu, L., Crogan-Grundy, C., Denis, R. A., Barriault, N., Vaillancourt, L., Charron, S., Dodd, J., Attardo, G., Labrecque, D., Lamothe, S., Gourdeau, H., Tseng, B., Drewe, J. & Cai, S. X. (2005). Bioorg. Med. Chem. Lett. 15, 4745–4751.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKumar, D., Reddy, V. B., Sharad, S., Dube, U. & Kapur, S. (2009). Eur. J. Med. Chem. 44, 3805–3809.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMartínez-Grau, A. & Marco, J. (1997). Bioorg. Med. Chem. Lett. 7, 3165–3170.  Google Scholar
First citationPatil, S. A., Wang, J., Li, X. S., Chen, J., Jones, T. S., Hosni-Ahmed, A., Patil, R., Seibel, W. L., Li, W. & Miller, D. D. (2012). Bioorg. Med. Chem. Lett. 22, 4458–4461.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSabry, N. M., Mohamed, H. M., Khattab, E. S. A. E. H., Motlaq, S. S. & El-Agrody, A. M. (2011). Eur. J. Med. Chem. 46, 765–772.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds