organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (Z)-3-allyl-5-(3-bromo­benzyl­­idene)-2-sulfanyl­­idene-1,3-thia­zolidin-4-one

aLaboratoire de Chimie Organique et Analytique, Université Sultan Moulay Slimane, Faculté des Sciences et Techniques, Béni-Mellal, BP 523, Morocco, and bLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V de Rabat, Avenue Ibn Battouta, BP. 1014, Rabat, Morocco
*Correspondence e-mail: r_elajlaoui@yahoo.fr

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 24 November 2015; accepted 30 November 2015; online 6 December 2015)

In the title compound, C13H10BrNOS2, the rhodanine (systematic name: 2-sulfanyl­idene-1,3-thia­zolidin-4-one) and the 3-bromo­benzyl­idene ring systems are inclined slightly, forming a dihedral angle of 5.86 (12)°. The rhodanine moiety is linked to an allyl group at the N atom and to the 3-bromo­benzyl­idene ring system. The allyl group, C=C—C, is nearly perpendicular to the mean plane through the rhodanine ring, maling a dihedral angle of 87.2 (5)°. In the crystal, mol­ecules are linked by pairs of C—H⋯O hydrogen bonds, forming inversion dimers with an R22(10) ring motif.

1. Related literature

For pharmacological and biological activities of rhodanine-based mol­ecules, see: Tomasić & Masic (2009[Tomasić, T. & Masic, L. P. (2009). Curr. Med. Chem. 16, 1596-1629.]); Sortino et al. (2007[Sortino, M., Delgado, P., Juárez, S. F., Quiroga, J., Abonía, R., Insuasty, B., Nogueras, M., Rodero, L., Garibotto, F. M., Enriz, R. D. & Zacchino, S. A. (2007). Bioorg. Med. Chem. 15, 484-494.]); Kesel (2003[Kesel, A. J. (2003). Biochem. Biophys. Res. Commun. 300, 793-799.]); Capan et al. (1996[Capan, G., Ulusoy, N., Ergenç, N., Cevdet Ekinci, A. & Vidin, A. (1996). Farmaco, 51, 729-732.]); Momose et al. (1991[Momose, Y., Meguro, K., Ikeda, H., Hatanaka, C., Oi, S. & Sohda, T. (1991). Chem. Pharm. Bull. 39, 1440-1445.]); Kawakami et al. (1998[Kawakami, M., Koya, K., Ukai, T., Tatsuta, N., Ikegawa, A., Ogawa, K., Shishido, T. & Chen, L. B. (1998). J. Med. Chem. 41, 130-142.]); Insuasty et al. (2010[Insuasty, B., Gutie'rrez, A., Quiroga, J., Abonia, R., Nogueras, M., Cobo, J., Svetaz, L., Raimondi, M. & Zacchino, S. (2010). Arch. Pharm. 343, 48-53.]). For the crystal structure of a related compound, see: El Ajlaoui et al. (2015[El Ajlaoui, R., Rakib, E. M., Chigr, M., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, o906-o907.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C13H10BrNOS2

  • Mr = 340.25

  • Triclinic, [P \overline 1]

  • a = 5.4044 (6) Å

  • b = 11.2306 (13) Å

  • c = 11.7966 (13) Å

  • α = 80.100 (5)°

  • β = 84.912 (6)°

  • γ = 76.732 (6)°

  • V = 685.60 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.29 mm−1

  • T = 296 K

  • 0.31 × 0.27 × 0.21 mm

2.2. Data collection

  • Bruker X8 APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.479, Tmax = 0.746

  • 25482 measured reflections

  • 4181 independent reflections

  • 2895 reflections with I > 2σ(I)

  • Rint = 0.044

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.098

  • S = 1.01

  • 4181 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.95 e Å−3

  • Δρmin = −0.71 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O1i 0.93 2.42 3.310 (3) 159
Symmetry code: (i) -x+1, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Structural commentary top

Rhodanine is an attractive scaffold unit because of its prestigious position in medicinal chemistry as it is responsible for numerous pharmacological and biological activities (Tomasic & Masic, 2009), e.g., anti­microbial, anti­viral, anti­convulsant, anti­diabetic and anti­tumor activities (Sortino et al., 2007; Kesel, 2003; Capan et al., 1996; Momose et al., 1991; Kawakami et al., 1998; Insuasty et al. 2010). The unusual biological activity displayed by many rhodanine-based molecules have made them attractive synthetic targets.

The title compound, Fig. 1, is build up from a rhodanine ring (S1/N/1C8–C10) linked to an allyl group (C11–C13) at the nitro­gen atom and to a 3-bromo­benzyl­idene ring system (C1—C6). The mean plane through the rhodanine ring is almost perpendicular to the allyl group (C11—C13) with a dihedral angle of 87.2 (5) °, and makes a dihedral angle of 5.86 (12)° with the 3-bromo­benzyl­idene ring. A very similar arrangement has been observed in the crystal structure of (Z)-3-allyl-5-(4-methyl-benzyl­idene)-2-thioxo­thia­zolidin-4-one, but with disorder in the allyl group ( El Ajlaoui et al., 2015 ).

In the crystal, molecules are linked by a pair of C—H···O hydrogen bonds forming inversion dimers with an R22(10) ring motif (Table 1 and Fig. 2).

Synthesis and crystallization top

To a solution of 3-allyl­rhodanine (1.15 mmol, 0.2 g) in 10 ml of THF, (3-bromo­benzyl­idene)-4-methyl-5-oxopyrazolidin-2-ium-1-ide (1.38 mmol) was added and the mixture refluxed for 8 h, monitored by TLC. On completion of the reaction, with a yellow spot (TLC Rf = 0.3, using hexane/ethyl acetate 1:9) generated cleanly, the solvent was evaporated in vacuo. The crude product was purified on silica gel using hexane:ethyl acetate (1:9) as eluent. The title compound was recrystallized from ethanol giving colourless block-like crystals (yield: 76%; m.p. 390 K).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were located in a difference Fourier map and treated as riding: C–H = 0.93-0.97 Å with Uiso(H) = 1.2Ueq(C). Two reflections, (0 1 0) and (0 0 1), affected by the beam-stop were removed during the final cycles of refinement.

Related literature top

For pharmacological and biological activities of rhodanine-based molecules, see: Tomasić & Masic (2009); Sortino et al. (2007); Kesel (2003); Capan et al. (1996); Momose et al. (1991); Kawakami et al. (1998); Insuasty et al. (2010). For the crystal structure of a related compound, see: El Ajlaoui et al. (2015).

Structure description top

Rhodanine is an attractive scaffold unit because of its prestigious position in medicinal chemistry as it is responsible for numerous pharmacological and biological activities (Tomasic & Masic, 2009), e.g., anti­microbial, anti­viral, anti­convulsant, anti­diabetic and anti­tumor activities (Sortino et al., 2007; Kesel, 2003; Capan et al., 1996; Momose et al., 1991; Kawakami et al., 1998; Insuasty et al. 2010). The unusual biological activity displayed by many rhodanine-based molecules have made them attractive synthetic targets.

The title compound, Fig. 1, is build up from a rhodanine ring (S1/N/1C8–C10) linked to an allyl group (C11–C13) at the nitro­gen atom and to a 3-bromo­benzyl­idene ring system (C1—C6). The mean plane through the rhodanine ring is almost perpendicular to the allyl group (C11—C13) with a dihedral angle of 87.2 (5) °, and makes a dihedral angle of 5.86 (12)° with the 3-bromo­benzyl­idene ring. A very similar arrangement has been observed in the crystal structure of (Z)-3-allyl-5-(4-methyl-benzyl­idene)-2-thioxo­thia­zolidin-4-one, but with disorder in the allyl group ( El Ajlaoui et al., 2015 ).

In the crystal, molecules are linked by a pair of C—H···O hydrogen bonds forming inversion dimers with an R22(10) ring motif (Table 1 and Fig. 2).

For pharmacological and biological activities of rhodanine-based molecules, see: Tomasić & Masic (2009); Sortino et al. (2007); Kesel (2003); Capan et al. (1996); Momose et al. (1991); Kawakami et al. (1998); Insuasty et al. (2010). For the crystal structure of a related compound, see: El Ajlaoui et al. (2015).

Synthesis and crystallization top

To a solution of 3-allyl­rhodanine (1.15 mmol, 0.2 g) in 10 ml of THF, (3-bromo­benzyl­idene)-4-methyl-5-oxopyrazolidin-2-ium-1-ide (1.38 mmol) was added and the mixture refluxed for 8 h, monitored by TLC. On completion of the reaction, with a yellow spot (TLC Rf = 0.3, using hexane/ethyl acetate 1:9) generated cleanly, the solvent was evaporated in vacuo. The crude product was purified on silica gel using hexane:ethyl acetate (1:9) as eluent. The title compound was recrystallized from ethanol giving colourless block-like crystals (yield: 76%; m.p. 390 K).

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were located in a difference Fourier map and treated as riding: C–H = 0.93-0.97 Å with Uiso(H) = 1.2Ueq(C). Two reflections, (0 1 0) and (0 0 1), affected by the beam-stop were removed during the final cycles of refinement.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view along the a axis of the crystal packing of the title compound, showing the hydrogen bonds as dashed lines (see Table 1).
(Z)-3-Allyl-5-(3-bromobenzylidene)-2-sulfanylidene-1,3-thiazolidin-4-one top
Crystal data top
C13H10BrNOS2F(000) = 340
Mr = 340.25Dx = 1.648 Mg m3
Triclinic, P1Melting point: 390 K
a = 5.4044 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.2306 (13) ÅCell parameters from 4181 reflections
c = 11.7966 (13) Åθ = 2.8–30.5°
α = 80.100 (5)°µ = 3.29 mm1
β = 84.912 (6)°T = 296 K
γ = 76.732 (6)°Block, colourless
V = 685.60 (13) Å30.31 × 0.27 × 0.21 mm
Z = 2
Data collection top
Bruker X8 APEX
diffractometer
4181 independent reflections
Radiation source: fine-focus sealed tube2895 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
φ and ω scansθmax = 30.5°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 77
Tmin = 0.479, Tmax = 0.746k = 1616
25482 measured reflectionsl = 1616
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0356P)2 + 0.492P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
4181 reflectionsΔρmax = 0.95 e Å3
163 parametersΔρmin = 0.71 e Å3
Crystal data top
C13H10BrNOS2γ = 76.732 (6)°
Mr = 340.25V = 685.60 (13) Å3
Triclinic, P1Z = 2
a = 5.4044 (6) ÅMo Kα radiation
b = 11.2306 (13) ŵ = 3.29 mm1
c = 11.7966 (13) ÅT = 296 K
α = 80.100 (5)°0.31 × 0.27 × 0.21 mm
β = 84.912 (6)°
Data collection top
Bruker X8 APEX
diffractometer
4181 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2895 reflections with I > 2σ(I)
Tmin = 0.479, Tmax = 0.746Rint = 0.044
25482 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.01Δρmax = 0.95 e Å3
4181 reflectionsΔρmin = 0.71 e Å3
163 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7585 (5)0.8474 (2)0.6704 (2)0.0449 (5)
C20.7277 (6)0.8621 (3)0.5535 (2)0.0578 (7)
H20.79740.92010.50250.069*
C30.5914 (6)0.7891 (3)0.5138 (2)0.0625 (8)
H30.57040.79770.43520.075*
C40.4861 (5)0.7039 (3)0.5885 (2)0.0516 (6)
H40.39340.65620.56010.062*
C50.5173 (4)0.6882 (2)0.70721 (19)0.0379 (5)
C60.6565 (4)0.7623 (2)0.7469 (2)0.0392 (5)
H60.67990.75400.82530.047*
C70.4177 (4)0.5987 (2)0.79133 (19)0.0386 (5)
H70.46380.59400.86630.046*
C80.2693 (4)0.5212 (2)0.77866 (18)0.0358 (4)
C90.1983 (4)0.4349 (2)0.87829 (19)0.0402 (5)
C100.0140 (4)0.3884 (2)0.7315 (2)0.0385 (5)
C110.0559 (5)0.2749 (3)0.9303 (2)0.0538 (7)
H11A0.22180.26910.90940.065*
H11B0.07690.30181.00510.065*
C120.1173 (8)0.1500 (3)0.9393 (3)0.0717 (9)
H120.07390.08980.99720.086*
C130.3193 (8)0.1155 (3)0.8769 (3)0.0845 (11)
H13A0.37240.17160.81760.101*
H13B0.41250.03430.89090.101*
N10.0372 (4)0.36716 (18)0.84606 (16)0.0398 (4)
O10.2673 (4)0.42021 (19)0.97577 (14)0.0579 (5)
S10.13666 (12)0.50102 (6)0.65523 (5)0.04169 (14)
S20.18899 (14)0.31940 (7)0.67061 (6)0.05491 (18)
Br10.94248 (6)0.94874 (3)0.72543 (3)0.06670 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0478 (14)0.0440 (13)0.0461 (13)0.0140 (11)0.0009 (10)0.0110 (10)
C20.0697 (18)0.0600 (17)0.0465 (14)0.0269 (14)0.0026 (13)0.0013 (12)
C30.080 (2)0.079 (2)0.0341 (13)0.0327 (17)0.0068 (13)0.0022 (13)
C40.0625 (16)0.0627 (16)0.0376 (12)0.0268 (13)0.0082 (11)0.0086 (11)
C50.0402 (12)0.0407 (12)0.0345 (11)0.0097 (9)0.0058 (9)0.0077 (9)
C60.0424 (12)0.0420 (12)0.0356 (11)0.0106 (10)0.0030 (9)0.0105 (9)
C70.0418 (12)0.0450 (12)0.0319 (10)0.0102 (10)0.0087 (9)0.0097 (9)
C80.0381 (11)0.0397 (11)0.0315 (10)0.0072 (9)0.0077 (8)0.0093 (9)
C90.0434 (12)0.0455 (12)0.0359 (11)0.0142 (10)0.0071 (9)0.0091 (9)
C100.0346 (11)0.0436 (12)0.0403 (12)0.0059 (9)0.0075 (9)0.0152 (9)
C110.0588 (16)0.0713 (18)0.0417 (13)0.0359 (14)0.0026 (11)0.0107 (12)
C120.106 (3)0.0573 (18)0.0569 (18)0.0387 (18)0.0014 (18)0.0050 (14)
C130.098 (3)0.060 (2)0.082 (3)0.0004 (19)0.008 (2)0.0036 (18)
N10.0432 (10)0.0464 (11)0.0345 (9)0.0159 (9)0.0060 (8)0.0085 (8)
O10.0756 (13)0.0754 (13)0.0335 (9)0.0392 (11)0.0177 (8)0.0004 (8)
S10.0471 (3)0.0495 (3)0.0328 (3)0.0148 (3)0.0131 (2)0.0066 (2)
S20.0547 (4)0.0703 (4)0.0517 (4)0.0268 (3)0.0135 (3)0.0194 (3)
Br10.0796 (2)0.0688 (2)0.0663 (2)0.04359 (17)0.00513 (15)0.01814 (15)
Geometric parameters (Å, º) top
C1—C61.374 (3)C8—S11.749 (2)
C1—C21.381 (4)C9—O11.213 (3)
C1—Br11.896 (2)C9—N11.394 (3)
C2—C31.380 (4)C10—N11.372 (3)
C2—H20.9300C10—S21.631 (2)
C3—C41.374 (4)C10—S11.739 (2)
C3—H30.9300C11—N11.453 (3)
C4—C51.401 (3)C11—C121.489 (5)
C4—H40.9300C11—H11A0.9700
C5—C61.401 (3)C11—H11B0.9700
C5—C71.447 (3)C12—C131.283 (5)
C6—H60.9300C12—H120.9300
C7—C81.345 (3)C13—H13A0.9300
C7—H70.9300C13—H13B0.9300
C8—C91.472 (3)
C6—C1—C2121.4 (2)C9—C8—S1109.66 (16)
C6—C1—Br1119.79 (18)O1—C9—N1122.5 (2)
C2—C1—Br1118.8 (2)O1—C9—C8127.0 (2)
C3—C2—C1118.7 (2)N1—C9—C8110.44 (18)
C3—C2—H2120.7N1—C10—S2126.32 (19)
C1—C2—H2120.7N1—C10—S1110.91 (16)
C4—C3—C2121.1 (3)S2—C10—S1122.77 (14)
C4—C3—H3119.5N1—C11—C12113.0 (2)
C2—C3—H3119.5N1—C11—H11A109.0
C3—C4—C5120.6 (2)C12—C11—H11A109.0
C3—C4—H4119.7N1—C11—H11B109.0
C5—C4—H4119.7C12—C11—H11B109.0
C6—C5—C4118.1 (2)H11A—C11—H11B107.8
C6—C5—C7117.89 (19)C13—C12—C11127.9 (3)
C4—C5—C7124.0 (2)C13—C12—H12116.1
C1—C6—C5120.2 (2)C11—C12—H12116.1
C1—C6—H6119.9C12—C13—H13A120.0
C5—C6—H6119.9C12—C13—H13B120.0
C8—C7—C5130.5 (2)H13A—C13—H13B120.0
C8—C7—H7114.8C10—N1—C9116.30 (19)
C5—C7—H7114.8C10—N1—C11123.3 (2)
C7—C8—C9120.37 (19)C9—N1—C11120.27 (19)
C7—C8—S1129.97 (18)C10—S1—C892.61 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O1i0.932.423.310 (3)159
Symmetry code: (i) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O1i0.932.423.310 (3)159
Symmetry code: (i) x+1, y+1, z+2.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements and the University Sultan Moulay Slimane, Beni-Mellal, Morocco, for financial support.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationCapan, G., Ulusoy, N., Ergenç, N., Cevdet Ekinci, A. & Vidin, A. (1996). Farmaco, 51, 729–732.  CAS PubMed Web of Science Google Scholar
First citationEl Ajlaoui, R., Rakib, E. M., Chigr, M., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, o906–o907.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationInsuasty, B., Gutie'rrez, A., Quiroga, J., Abonia, R., Nogueras, M., Cobo, J., Svetaz, L., Raimondi, M. & Zacchino, S. (2010). Arch. Pharm. 343, 48–53.  CAS Google Scholar
First citationKawakami, M., Koya, K., Ukai, T., Tatsuta, N., Ikegawa, A., Ogawa, K., Shishido, T. & Chen, L. B. (1998). J. Med. Chem. 41, 130–142.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKesel, A. J. (2003). Biochem. Biophys. Res. Commun. 300, 793–799.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMomose, Y., Meguro, K., Ikeda, H., Hatanaka, C., Oi, S. & Sohda, T. (1991). Chem. Pharm. Bull. 39, 1440–1445.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSortino, M., Delgado, P., Juárez, S. F., Quiroga, J., Abonía, R., Insuasty, B., Nogueras, M., Rodero, L., Garibotto, F. M., Enriz, R. D. & Zacchino, S. A. (2007). Bioorg. Med. Chem. 15, 484–494.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTomasić, T. & Masic, L. P. (2009). Curr. Med. Chem. 16, 1596–1629.  Web of Science PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds