organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 5-bromo-1-ethyl­indoline-2,3-dione

aLaboratoire de Chimie Appliquée, Faculté des Sciences et Techniques, Université Sidi Mohamed Ben Abdallah, Fès, Morocco, bUnité de Catalyse et de Chimie du Solide (UCCS), UMR 8181. Ecole Nationale, Supérieure de Chimie de Lille, Université Lille 1, 59650 Villeneuve, d'Ascq Cedex, France, cUSR 3290 Miniaturisation pour l'Analyse, la Synthèse et la Protéomique, 59655 Villeneuve d'Ascq Cedex, Université Lille 1, France, and dLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: kharbachy26@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 24 November 2015; accepted 30 November 2015; online 6 December 2015)

The title compound, C10H8BrNO2, crystallizes with two independent molcules (A and B) in the asymmetric unit. In each mol­ecule, the indoline ring system is almost planar, with the largest deviation from the mean plane being 0.016 (2) Å in mol­ecule A and 0.040 (13) Å in mol­ecule B. In each mol­ecule, the ethyl group is nearly perpendicular to the indoline ring system with C—C—N—C torsion angles of −94.8 (3) and 93.0 (3)° in mol­ecules A and B, respectively. In the crystal, the two mol­ecules are inclined to each other, making a dihedral angle of 6.28 (8)°. In the molecular packing, the A and B mol­ecules are linked by C—H⋯O hydrogen bonds, forming –ABAB– chains along [01-1]. Parallel chains are linked via a weak slipped parallel ππ inter­action [inter-centroid distance = 3.6107 (14) Å] and a short Br⋯O contact [3.183 (2) Å], forming a three-dimensional structure.

1. Related literature

For biological activities of isatin derivatives, see: Samus et al. (2004[Samus', N. M., Tsapkov, V. L. & Gulya, A. P. (2004). Russ. J. Gen. Chem. 74, 1428-1432.]); Sarangapani & Reddy (1994[Sarangapani, M. & Reddy, V. M. (1994). Indian J. Heterocycl. Chem. 3, 257-260.]); Varma et al. (2004[Verma, M., Pandeya, S. N., Singh, K. N. & Stables, J. P. (2004). Acta Pharm. 54, 49-56.]); Pandeya et al. (1999[Pandeya, S. N., Sriram, D., Nath, G. & DeClercq, E. (1999). Eur. J. Med. Chem. 9, 25-31.]). For the use of isatin derivatives as reagents in organic synthesis and as raw materials for drug synthesis, see: Abele et al. (2003[Abele, E., Abele, R., Dzenitis, O. & Lukevics, E. (2003). Chem. Heterocycl. Compd, 39, 3-35.]). For their use as corrosion inhibitors, see: Da Silva et al. (2013[Da Silva, A. B., Gomes, J. A. C. P., D'Elia, E., Rezende, M. J. C., Pinto, A. C., Silva, B. N. M. & Silva, B. V. (2013). Int. J. Electrochem. Sci. 8, 9317-9331.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C10H8BrNO2

  • Mr = 254.08

  • Triclinic, [P \overline 1]

  • a = 9.5198 (3) Å

  • b = 10.0655 (3) Å

  • c = 11.2341 (3) Å

  • α = 70.9288 (16)°

  • β = 75.4109 (16)°

  • γ = 85.2199 (16)°

  • V = 984.58 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.15 mm−1

  • T = 296 K

  • 0.50 × 0.27 × 0.16 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.363, Tmax = 0.746

  • 40192 measured reflections

  • 6275 independent reflections

  • 4053 reflections with I > 2σ(I)

  • Rint = 0.045

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.105

  • S = 1.02

  • 6275 reflections

  • 255 parameters

  • H-atom parameters constrained

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9A⋯O3i 0.97 2.58 3.351 (4) 136
C13—H13⋯O1ii 0.93 2.60 3.514 (3) 170
C19—H19B⋯O1ii 0.97 2.54 3.368 (3) 143
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y, -z+2.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Synthesis and crystallization top

To 5-bromo-1H-indole-2,3-dione (0.4g, 1.76 mmol) in DMF (25 ml) was added 1-bromo­ethane (0.21 ml, 1.93 mmol), potassium carbonate (0.6g, 4.4 mmol), and a catalytic amount of tetra-n-butyl­ammonium bromide (0.1g, 0.4 mmol). The mixture was stirred at room temperature for 48 h. The reaction was monitored by thin layer chromatography. On completion of the reaction the mixture was filtered and the solvent removed under vacuum. The title compound was obtained in 79% yield as red prismatic crystals (m.p. 409 K).

Structural commentary top

5-bromo­isatin is an isatin derivative which has been reported to show a variety of biological activities, such as anti­bacterial, anti­microbial, anti­fungal and anti-HIV activities (Samus et al., 2004; Sarangapani & Reddy, 1994; Varma et al., 2004; Pandeya et al., 1999). It has been used as a versatile reagent in organic synthesis, to obtain heterocyclic compounds, and as a raw material for drug synthesis (Abele et al., 2003). Several isatin derivatives have been reported as being effective corrosion inhibitors for aluminum, copper and steel in different acid solution (Da Silva et al., 2013).

The title compound, Fig. 1, crystallizes with two independent molecules (A and B) in the asymmetric unit. In each molecule the indoline ring system is almost planar with the largest deviation from the mean plane being 0.016 (2)Å for atom C8 in molecule A, and 0.040 (13)Å for atom C18 in molecule B. In each molecule, the ethyl group is nearly perpendicular to the indoline ring system as indicated by the torsion angles of C10–C9–N1–C8 = -94.8 (3)° and C20–C19–N2–C18 = -92.9 (3)°.

In the crystal, the two molecules are inclined to each other with a dihedral angle of 6.28 (8)°. The A and B molecules are linked to one another by C—H···O hydrogen bonds, forming -A—B—A—B- chains along direction [011]; see Table 1 and Fig. 2. Parallel chains are linked via a weak parallel slipped ππ inter­action [Cg1···Cg5i = 3.6107 (14) Å, Cg1 and Cg5 are the centroids of rings (N1/C3/C4/C7/C8) and (C11—C16), respectively, inter-planar distance = 3.4584 (9) Å, slippage = 1.262 Å; symmetry code: (i) x, y - 1, z] and a short Br1···O4ii contact [3.183 (2) Å; symmetry code: (ii) x - 1, y, z] forming a three-dimensional structure (Fig. 2).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. Crystal data, data collection and structure refinement details are summarized in Table 2. The H atoms were located in a difference Fourier map and treated as riding: C—H = 0.93-0.97 Å with Uiso(H) = 1.5Ueq(C-methyl) and 1.2Ueq(C) for other H atoms. The reflection (1 0 0) affected by the beam stop was removed during the final cycles of refinement.

Related literature top

For biological activities of isatin derivatives, see: Samus et al. (2004); Sarangapani & Reddy (1994); Varma et al. (2004); Pandeya et al. (1999). For the use of isatin derivatives as reagents in organic synthesis and as raw materials for drug synthesis, see: Abele et al. (2003). For their use as corrosion inhibitors, see: Da Silva et al. (2013).

Structure description top

5-bromo­isatin is an isatin derivative which has been reported to show a variety of biological activities, such as anti­bacterial, anti­microbial, anti­fungal and anti-HIV activities (Samus et al., 2004; Sarangapani & Reddy, 1994; Varma et al., 2004; Pandeya et al., 1999). It has been used as a versatile reagent in organic synthesis, to obtain heterocyclic compounds, and as a raw material for drug synthesis (Abele et al., 2003). Several isatin derivatives have been reported as being effective corrosion inhibitors for aluminum, copper and steel in different acid solution (Da Silva et al., 2013).

The title compound, Fig. 1, crystallizes with two independent molecules (A and B) in the asymmetric unit. In each molecule the indoline ring system is almost planar with the largest deviation from the mean plane being 0.016 (2)Å for atom C8 in molecule A, and 0.040 (13)Å for atom C18 in molecule B. In each molecule, the ethyl group is nearly perpendicular to the indoline ring system as indicated by the torsion angles of C10–C9–N1–C8 = -94.8 (3)° and C20–C19–N2–C18 = -92.9 (3)°.

In the crystal, the two molecules are inclined to each other with a dihedral angle of 6.28 (8)°. The A and B molecules are linked to one another by C—H···O hydrogen bonds, forming -A—B—A—B- chains along direction [011]; see Table 1 and Fig. 2. Parallel chains are linked via a weak parallel slipped ππ inter­action [Cg1···Cg5i = 3.6107 (14) Å, Cg1 and Cg5 are the centroids of rings (N1/C3/C4/C7/C8) and (C11—C16), respectively, inter-planar distance = 3.4584 (9) Å, slippage = 1.262 Å; symmetry code: (i) x, y - 1, z] and a short Br1···O4ii contact [3.183 (2) Å; symmetry code: (ii) x - 1, y, z] forming a three-dimensional structure (Fig. 2).

For biological activities of isatin derivatives, see: Samus et al. (2004); Sarangapani & Reddy (1994); Varma et al. (2004); Pandeya et al. (1999). For the use of isatin derivatives as reagents in organic synthesis and as raw materials for drug synthesis, see: Abele et al. (2003). For their use as corrosion inhibitors, see: Da Silva et al. (2013).

Synthesis and crystallization top

To 5-bromo-1H-indole-2,3-dione (0.4g, 1.76 mmol) in DMF (25 ml) was added 1-bromo­ethane (0.21 ml, 1.93 mmol), potassium carbonate (0.6g, 4.4 mmol), and a catalytic amount of tetra-n-butyl­ammonium bromide (0.1g, 0.4 mmol). The mixture was stirred at room temperature for 48 h. The reaction was monitored by thin layer chromatography. On completion of the reaction the mixture was filtered and the solvent removed under vacuum. The title compound was obtained in 79% yield as red prismatic crystals (m.p. 409 K).

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 1. Crystal data, data collection and structure refinement details are summarized in Table 2. The H atoms were located in a difference Fourier map and treated as riding: C—H = 0.93-0.97 Å with Uiso(H) = 1.5Ueq(C-methyl) and 1.2Ueq(C) for other H atoms. The reflection (1 0 0) affected by the beam stop was removed during the final cycles of refinement.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view along the a axis of the crystal packing of the title compound. Hydrogen bonds (see Table 1) and other short interactions are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.
5-Bromo-1-ethylindoline-2,3-dione top
Crystal data top
C10H8BrNO2F(000) = 504
Mr = 254.08Dx = 1.714 Mg m3
Triclinic, P1Melting point: 409 K
a = 9.5198 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.0655 (3) ÅCell parameters from 9899 reflections
c = 11.2341 (3) Åθ = 2.4–26.9°
α = 70.9288 (16)°µ = 4.15 mm1
β = 75.4109 (16)°T = 296 K
γ = 85.2199 (16)°Prism, red
V = 984.58 (5) Å30.50 × 0.27 × 0.16 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
4053 reflections with I > 2σ(I)
φ and ω scansRint = 0.045
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
θmax = 31.1°, θmin = 2.1°
Tmin = 0.363, Tmax = 0.746h = 1313
40192 measured reflectionsk = 1414
6275 independent reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0447P)2 + 0.4234P]
where P = (Fo2 + 2Fc2)/3
6275 reflections(Δ/σ)max = 0.001
255 parametersΔρmax = 0.66 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
C10H8BrNO2γ = 85.2199 (16)°
Mr = 254.08V = 984.58 (5) Å3
Triclinic, P1Z = 4
a = 9.5198 (3) ÅMo Kα radiation
b = 10.0655 (3) ŵ = 4.15 mm1
c = 11.2341 (3) ÅT = 296 K
α = 70.9288 (16)°0.50 × 0.27 × 0.16 mm
β = 75.4109 (16)°
Data collection top
Bruker APEXII CCD
diffractometer
6275 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4053 reflections with I > 2σ(I)
Tmin = 0.363, Tmax = 0.746Rint = 0.045
40192 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.02Δρmax = 0.66 e Å3
6275 reflectionsΔρmin = 0.47 e Å3
255 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.18497 (3)0.38373 (3)0.65426 (3)0.05961 (10)
Br20.21774 (3)0.83177 (4)0.67449 (3)0.06693 (11)
C10.0541 (3)0.2362 (3)0.7041 (2)0.0455 (5)
C20.1069 (2)0.1111 (3)0.7981 (2)0.0448 (5)
H20.20580.09800.83550.054*
C30.0083 (2)0.0065 (2)0.8345 (2)0.0401 (5)
C40.1408 (2)0.0245 (2)0.7783 (2)0.0398 (5)
C50.1932 (3)0.1482 (3)0.6833 (2)0.0470 (5)
H50.29180.16030.64450.056*
C60.0941 (3)0.2541 (3)0.6475 (2)0.0490 (6)
H60.12730.33870.58440.059*
C70.0281 (3)0.1350 (2)0.9294 (2)0.0452 (5)
C80.1282 (3)0.1971 (2)0.9241 (2)0.0457 (5)
C90.3772 (3)0.1079 (3)0.8006 (3)0.0492 (6)
H9A0.41520.06510.70810.059*
H9B0.40410.20650.82300.059*
C100.4440 (3)0.0384 (4)0.8721 (3)0.0638 (7)
H10A0.41600.05880.85160.096*
H10B0.54780.04530.84690.096*
H10C0.41120.08420.96370.096*
C110.0389 (2)0.7381 (3)0.6866 (2)0.0456 (5)
C120.0362 (3)0.6079 (3)0.7812 (2)0.0476 (5)
H120.12230.56950.83910.057*
C130.0932 (3)0.5346 (2)0.7905 (2)0.0446 (5)
H130.09520.44820.85400.054*
C140.2183 (2)0.5947 (2)0.7023 (2)0.0384 (5)
C150.2160 (2)0.7266 (2)0.6083 (2)0.0420 (5)
C160.0875 (3)0.7996 (3)0.5993 (2)0.0483 (5)
H160.08580.88700.53690.058*
C170.3641 (3)0.7565 (3)0.5299 (2)0.0503 (6)
C180.4542 (3)0.6263 (3)0.5872 (2)0.0471 (5)
C190.4003 (3)0.4048 (3)0.7749 (3)0.0532 (6)
H19A0.48420.36640.72740.064*
H19B0.32100.33860.80240.064*
C200.4349 (4)0.4217 (4)0.8918 (3)0.0863 (11)
H20A0.51820.48140.86520.129*
H20B0.45520.33140.94810.129*
H20C0.35350.46340.93710.129*
N10.2194 (2)0.09608 (19)0.83095 (18)0.0435 (4)
N20.3599 (2)0.5384 (2)0.68952 (18)0.0436 (4)
O10.1362 (2)0.1955 (2)1.00032 (18)0.0615 (5)
O20.1621 (2)0.31109 (18)0.98927 (18)0.0608 (5)
O30.4154 (2)0.8572 (2)0.4392 (2)0.0769 (7)
O40.58302 (19)0.6081 (2)0.54841 (19)0.0622 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.05388 (16)0.05547 (16)0.06915 (19)0.00842 (12)0.01909 (13)0.01804 (13)
Br20.04361 (15)0.0816 (2)0.0751 (2)0.01261 (14)0.01524 (13)0.02645 (16)
C10.0427 (12)0.0441 (12)0.0496 (13)0.0017 (10)0.0109 (10)0.0153 (10)
C20.0367 (11)0.0503 (13)0.0456 (12)0.0072 (10)0.0014 (9)0.0176 (10)
C30.0395 (11)0.0406 (11)0.0368 (11)0.0092 (9)0.0006 (9)0.0119 (9)
C40.0405 (11)0.0405 (11)0.0362 (11)0.0058 (9)0.0034 (9)0.0121 (9)
C50.0384 (12)0.0483 (13)0.0440 (12)0.0095 (10)0.0014 (9)0.0071 (10)
C60.0454 (13)0.0440 (12)0.0466 (13)0.0079 (10)0.0037 (10)0.0032 (10)
C70.0473 (13)0.0430 (12)0.0412 (12)0.0126 (10)0.0001 (10)0.0128 (10)
C80.0533 (14)0.0414 (12)0.0395 (12)0.0087 (10)0.0026 (10)0.0130 (10)
C90.0402 (12)0.0479 (13)0.0533 (14)0.0035 (10)0.0020 (10)0.0156 (11)
C100.0444 (14)0.079 (2)0.0712 (18)0.0016 (13)0.0120 (13)0.0304 (16)
C110.0372 (11)0.0518 (13)0.0497 (13)0.0045 (10)0.0077 (10)0.0218 (11)
C120.0398 (12)0.0504 (13)0.0462 (12)0.0078 (10)0.0025 (10)0.0148 (11)
C130.0434 (12)0.0400 (11)0.0416 (12)0.0066 (10)0.0000 (9)0.0073 (9)
C140.0386 (11)0.0366 (10)0.0368 (11)0.0045 (9)0.0031 (9)0.0106 (9)
C150.0398 (11)0.0403 (11)0.0388 (11)0.0054 (9)0.0022 (9)0.0073 (9)
C160.0463 (13)0.0442 (12)0.0470 (13)0.0003 (10)0.0094 (10)0.0059 (10)
C170.0436 (13)0.0478 (13)0.0470 (13)0.0088 (11)0.0011 (10)0.0037 (11)
C180.0405 (12)0.0477 (13)0.0470 (12)0.0072 (10)0.0013 (10)0.0119 (10)
C190.0472 (14)0.0402 (12)0.0577 (15)0.0041 (11)0.0044 (11)0.0036 (11)
C200.094 (3)0.093 (3)0.0634 (19)0.022 (2)0.0306 (18)0.0099 (18)
N10.0414 (10)0.0396 (10)0.0433 (10)0.0044 (8)0.0031 (8)0.0090 (8)
N20.0373 (10)0.0402 (10)0.0427 (10)0.0018 (8)0.0001 (8)0.0059 (8)
O10.0537 (11)0.0562 (11)0.0576 (11)0.0199 (9)0.0069 (8)0.0059 (9)
O20.0708 (13)0.0416 (9)0.0563 (11)0.0040 (9)0.0075 (9)0.0022 (8)
O30.0518 (11)0.0630 (12)0.0751 (14)0.0094 (10)0.0033 (10)0.0209 (10)
O40.0382 (9)0.0634 (12)0.0676 (12)0.0040 (9)0.0016 (8)0.0073 (10)
Geometric parameters (Å, º) top
Br1—C11.889 (2)C10—H10C0.9600
Br2—C111.890 (2)C11—C161.388 (3)
C1—C21.387 (3)C11—C121.395 (4)
C1—C61.394 (3)C12—C131.391 (4)
C2—C31.379 (3)C12—H120.9300
C2—H20.9300C13—C141.378 (3)
C3—C41.401 (3)C13—H130.9300
C3—C71.467 (3)C14—C151.403 (3)
C4—C51.381 (3)C14—N21.410 (3)
C4—N11.409 (3)C15—C161.382 (3)
C5—C61.390 (4)C15—C171.458 (3)
C5—H50.9300C16—H160.9300
C6—H60.9300C17—O31.209 (3)
C7—O11.200 (3)C17—C181.551 (4)
C7—C81.560 (4)C18—O41.214 (3)
C8—O21.210 (3)C18—N21.363 (3)
C8—N11.369 (3)C19—N21.461 (3)
C9—N11.458 (3)C19—C201.495 (4)
C9—C101.497 (4)C19—H19A0.9700
C9—H9A0.9700C19—H19B0.9700
C9—H9B0.9700C20—H20A0.9600
C10—H10A0.9600C20—H20B0.9600
C10—H10B0.9600C20—H20C0.9600
C2—C1—C6120.6 (2)C13—C12—C11121.1 (2)
C2—C1—Br1119.35 (18)C13—C12—H12119.4
C6—C1—Br1120.06 (18)C11—C12—H12119.4
C3—C2—C1118.0 (2)C14—C13—C12117.6 (2)
C3—C2—H2121.0C14—C13—H13121.2
C1—C2—H2121.0C12—C13—H13121.2
C2—C3—C4121.6 (2)C13—C14—C15121.3 (2)
C2—C3—C7131.4 (2)C13—C14—N2127.9 (2)
C4—C3—C7107.0 (2)C15—C14—N2110.87 (18)
C5—C4—C3120.5 (2)C16—C15—C14121.1 (2)
C5—C4—N1128.3 (2)C16—C15—C17131.9 (2)
C3—C4—N1111.24 (19)C14—C15—C17107.0 (2)
C4—C5—C6118.0 (2)C15—C16—C11117.7 (2)
C4—C5—H5121.0C15—C16—H16121.2
C6—C5—H5121.0C11—C16—H16121.2
C5—C6—C1121.4 (2)O3—C17—C15131.2 (3)
C5—C6—H6119.3O3—C17—C18123.6 (2)
C1—C6—H6119.3C15—C17—C18105.25 (19)
O1—C7—C3130.6 (2)O4—C18—N2127.4 (2)
O1—C7—C8124.4 (2)O4—C18—C17126.4 (2)
C3—C7—C8105.00 (18)N2—C18—C17106.18 (19)
O2—C8—N1127.0 (2)N2—C19—C20111.7 (2)
O2—C8—C7127.0 (2)N2—C19—H19A109.3
N1—C8—C7106.0 (2)C20—C19—H19A109.3
N1—C9—C10112.1 (2)N2—C19—H19B109.3
N1—C9—H9A109.2C20—C19—H19B109.3
C10—C9—H9A109.2H19A—C19—H19B107.9
N1—C9—H9B109.2C19—C20—H20A109.5
C10—C9—H9B109.2C19—C20—H20B109.5
H9A—C9—H9B107.9H20A—C20—H20B109.5
C9—C10—H10A109.5C19—C20—H20C109.5
C9—C10—H10B109.5H20A—C20—H20C109.5
H10A—C10—H10B109.5H20B—C20—H20C109.5
C9—C10—H10C109.5C8—N1—C4110.77 (19)
H10A—C10—H10C109.5C8—N1—C9123.9 (2)
H10B—C10—H10C109.5C4—N1—C9125.04 (18)
C16—C11—C12121.2 (2)C18—N2—C14110.69 (19)
C16—C11—Br2119.07 (19)C18—N2—C19124.7 (2)
C12—C11—Br2119.72 (18)C14—N2—C19124.64 (18)
C6—C1—C2—C30.8 (4)C17—C15—C16—C11176.5 (3)
Br1—C1—C2—C3178.63 (17)C12—C11—C16—C150.8 (4)
C1—C2—C3—C40.4 (3)Br2—C11—C16—C15178.19 (18)
C1—C2—C3—C7179.7 (2)C16—C15—C17—O34.3 (5)
C2—C3—C4—C50.6 (3)C14—C15—C17—O3179.0 (3)
C7—C3—C4—C5179.3 (2)C16—C15—C17—C18176.1 (3)
C2—C3—C4—N1179.9 (2)C14—C15—C17—C180.6 (3)
C7—C3—C4—N10.2 (3)O3—C17—C18—O41.4 (5)
C3—C4—C5—C61.1 (3)C15—C17—C18—O4179.0 (3)
N1—C4—C5—C6179.4 (2)O3—C17—C18—N2178.1 (3)
C4—C5—C6—C10.8 (4)C15—C17—C18—N21.6 (3)
C2—C1—C6—C50.2 (4)O2—C8—N1—C4178.3 (2)
Br1—C1—C6—C5179.2 (2)C7—C8—N1—C41.4 (2)
C2—C3—C7—O10.3 (4)O2—C8—N1—C93.8 (4)
C4—C3—C7—O1179.8 (3)C7—C8—N1—C9175.9 (2)
C2—C3—C7—C8179.1 (2)C5—C4—N1—C8179.7 (2)
C4—C3—C7—C81.1 (2)C3—C4—N1—C80.8 (3)
O1—C7—C8—O20.6 (4)C5—C4—N1—C95.2 (4)
C3—C7—C8—O2178.2 (2)C3—C4—N1—C9175.2 (2)
O1—C7—C8—N1179.6 (2)C10—C9—N1—C894.8 (3)
C3—C7—C8—N11.5 (2)C10—C9—N1—C478.8 (3)
C16—C11—C12—C130.7 (4)O4—C18—N2—C14178.6 (3)
Br2—C11—C12—C13178.34 (19)C17—C18—N2—C142.0 (3)
C11—C12—C13—C140.5 (4)O4—C18—N2—C191.8 (4)
C12—C13—C14—C151.5 (3)C17—C18—N2—C19177.6 (2)
C12—C13—C14—N2177.4 (2)C13—C14—N2—C18177.3 (2)
C13—C14—C15—C161.4 (4)C15—C14—N2—C181.7 (3)
N2—C14—C15—C16177.7 (2)C13—C14—N2—C193.1 (4)
C13—C14—C15—C17178.5 (2)C15—C14—N2—C19177.9 (2)
N2—C14—C15—C170.6 (3)C20—C19—N2—C1893.0 (3)
C14—C15—C16—C110.2 (4)C20—C19—N2—C1486.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···O3i0.972.583.351 (4)136
C13—H13···O1ii0.932.603.514 (3)170
C19—H19B···O1ii0.972.543.368 (3)143
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···O3i0.972.583.351 (4)136
C13—H13···O1ii0.932.603.514 (3)170
C19—H19B···O1ii0.972.543.368 (3)143
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z+2.
 

References

First citationAbele, E., Abele, R., Dzenitis, O. & Lukevics, E. (2003). Chem. Heterocycl. Compd, 39, 3–35.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDa Silva, A. B., Gomes, J. A. C. P., D'Elia, E., Rezende, M. J. C., Pinto, A. C., Silva, B. N. M. & Silva, B. V. (2013). Int. J. Electrochem. Sci. 8, 9317–9331.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPandeya, S. N., Sriram, D., Nath, G. & DeClercq, E. (1999). Eur. J. Med. Chem. 9, 25–31.  CAS Google Scholar
First citationSamus', N. M., Tsapkov, V. L. & Gulya, A. P. (2004). Russ. J. Gen. Chem. 74, 1428–1432.  CAS Google Scholar
First citationSarangapani, M. & Reddy, V. M. (1994). Indian J. Heterocycl. Chem. 3, 257–260.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVerma, M., Pandeya, S. N., Singh, K. N. & Stables, J. P. (2004). Acta Pharm. 54, 49–56.  PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds