organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 4-methyl­sulfanyl-2-(2H-tetra­zol-2-yl)pyrimidine

aHelmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Department for Drug Design and Optimization (DDOP), Saarland University, Campus E8.1, D-66123 Saarbruecken, Germany, bDepartment of Inorganic Chemistry, Saarland University, Campus B2.2, D-66123 Saarbruecken, Germany, and cDepartment of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, D-66123 Saarbruecken, Germany
*Correspondence e-mail: rolf.hartmann@helmholtz-hzi.de

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 1 December 2015; accepted 9 December 2015; online 16 December 2015)

The title compound, C6H6N6S, crystallized with two independent mol­ecules (A and B) in the asymmetric unit. The conformation of the two mol­ecules differs slightly. While the tetra­zole ring is inclined to the pyrim­idene ring by 5.48 (7) and 4.24 (7)° in mol­ecules A and B, respectively, the N—C—S—C torsion angles of the thio­methyl groups differ by ca 180°. In the crystal, the A and B mol­ecules are linked via a C—H⋯N hydrogen bond. They stack along the b-axis direction forming columns within which there are weak ππ inter­actions present [shortest inter-centroid distance = 3.6933 (13) Å].

1. Related literature

For applications of tetra­zolyl-substituted aromatic systems in metal–ligand research, see: Kim et al. (2008[Kim, Y.-J., Lee, K.-E., Jeon, H.-T., Huh, H. S. & Lee, S. W. (2008). Inorg. Chim. Acta, 361, 2159-2165.]); Stoessel et al. (2010[Stoessel, P., Heil, H., Jooseten, D., Pflumm, C., Gerhard, A. & Breuning, E. (2010). PCT Int. Appl. WO 2010086089 A1.]); in drug development, see: Pasternak et al. (2012[Pasternak, A., Dejesus, R. K., Zhu, Y., Yang, L., Walsh, S., Pio, B., Shahripour, A., Tang, H., Belyk, K. & Kim, D. (2012). PCT Int. Appl. WO 2012058134 A1.]); Biswas et al. (2015[Biswas, D., Ding, F.-X., Dong, S., Gu, X., Jiang, J., Pasternak, A., Suzuki, T., Vacca, J. & Xu, S. (2015). PCT Int. Appl. WO2015103756 A1.]); in polymer synthesis, see: Yu et al. (2008[Yu, L., Zhang, Z., Chen, X., Zhang, W., Wu, J., Cheng, Z., Zhu, J. & Zhu, X. (2008). J. Polym. Sci. A Polym. Chem. 46, 682-691.]); Sengupta et al. (2010[Sengupta, O. & Mukherjee, P. S. (2010). Inorg. Chem. 49, 8583-8590.]). For the synthesis of 4-methyl­sulfanyl-2-(1H-tetra­zol-1-yl)pyrimidine and the title compound, see: Thomann et al. (2014[Thomann, A., Börger, C., Empting, M. & Hartmann, R. W. (2014). Synlett, 25, 935-938.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C6H6N6S

  • Mr = 194.23

  • Triclinic, [P \overline 1]

  • a = 6.3001 (17) Å

  • b = 7.393 (2) Å

  • c = 18.159 (5) Å

  • α = 91.407 (7)°

  • β = 95.864 (7)°

  • γ = 102.695 (8)°

  • V = 819.9 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 143 K

  • 0.22 × 0.22 × 0.01 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2010[Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.716, Tmax = 0.746

  • 15501 measured reflections

  • 4581 independent reflections

  • 3596 reflections with I > 2σ(I)

  • Rint = 0.028

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.086

  • S = 1.01

  • 4581 reflections

  • 283 parameters

  • All H-atom parameters refined

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H1⋯N9i 0.89 (2) 2.58 (2) 3.203 (2) 129 (2)
Symmetry code: (i) x-1, y, z.

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL2014 and PLATON.

Supporting information


Comment top

4-tetra­zolyl­pyrimidines are well reported scaffolds in many bioactive entities. Besides synthetic chemistry, tetra­zolyl substituted aromatic systems are also of high inter­est for example, in metal-ligand research (Kim et al., 2008; Stoessel et al., 2010), drug development (Pasternak et al., 2012; Biswas et al., 2015) and polymer discovery (Yu et al., 2008; Sengupta et al., 2010). Thus, the knowledge of the three dimensional structure of these moieties is of crucial importance for the rational design in these fields of research. Recently, we have reported a novel method to synthesize such compounds (Thomann et al., 2014). We have reported the synthesis of 4-(methyl­thio)-2-(1H-tetra­zol-1-yl)pyrimidine (1). Inter­estingly, when scaling up the reaction, another product was found in small amounts. NMR analytical characterization revealed the compound to be the 2-tetra­zolyl regioisomer (2). To determine unequivocally proof of the structure of this compound, we determined its crystal structure.

The title compound (2), crystallized with two independent molecules (A and B) in the asymmetric unit (Fig. 1). Inter­estingly, the two molecules differ in their conformation. While the tetra­zole moieties are arranged similarly, with the tetra­zole ring is inclined to the pyrim­idene ring by 5.48 (7) and 4.24 (7) ° in molecules A and B, respectively, the thio­methyl groups have a difference of the torsion angle about the Car···S bond of ca. 180° [for example, torsion angle N5—C4—S1—C6 = 0.89 (12) °, compared to torsion angle N11—C10—S2—C12 = -176.78 (10) °] indicating higher rotational freedom than the tetra­zoles (Fig. 1). The latter finding is of importance for computational chemists in medicinal chemistry, as the polarized hydrogen at atom C5 of the tetra­zole ring is able to form non-classical hydrogen bonds. Therefore, the results from the crystal structure may favour this conformational isomer for in silico predictions.

In the crystal, the A and B molecules are linked via a C—H···N hydrogen bond (Table 1 and Fig. 2). They stack along the b axis direction forming columns within which there are weak π-π inter­actions present [shortest inter-centroid distance is Cg2···Cg4i = 3.6918 (5) Å; Cg2 and Cg4 are the centroids of rings N5/N6/C1—C4 and N11/N12/C7—C10, respectively; symmetry code: (i) x, y + 1, z].

Synthesis and crystallization top

The title compound (2), was synthesized following a previously reported procedure (Thomann et al., 2014). A mixture of 4-chloro-2-(methyl­thio)­pyrimidine, 1H-tetra­zole and tri­ethyl­amine, in the ratio 1:1:1, was stirred under microwave irradiation at 50 W, 353 K for 1 h. The crude product was purified by flash chromatography (hexane:ethyl acetate, 8:2, Rf = 0.25) to yield a white solid (9%). Crystals formed at 294 K after 16 h from a saturated solution of 2 in ethyl acetate.1H NMR (CDCl3, 300MHz) 8.80 (dd, J = 5.3, 0.6 Hz, 1 H), 8.77 (s, 1 H), 7.77 (dd, J = 5.3, 0.7 Hz, 1 H), 2.69 ppm (d, J = 0.7 Hz, 3 H).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were located in a difference Fourier map and freely refined.

Related literature top

For applications of tetrazolyl-substituted aromatic systems in metal–ligand research, see: Kim et al. (2008); Stoessel et al. (2010); in drug development, see: Pasternak et al. (2012); Biswas et al. (2015); in polymer discovery, see: Yu et al. (2008); Sengupta et al. (2010). For the synthesis of 4-methylsulfanyl-2-(1H-tetrazol-1-yl)pyrimidine and the title compound, see: Thomann et al. (2014).

Structure description top

4-tetra­zolyl­pyrimidines are well reported scaffolds in many bioactive entities. Besides synthetic chemistry, tetra­zolyl substituted aromatic systems are also of high inter­est for example, in metal-ligand research (Kim et al., 2008; Stoessel et al., 2010), drug development (Pasternak et al., 2012; Biswas et al., 2015) and polymer discovery (Yu et al., 2008; Sengupta et al., 2010). Thus, the knowledge of the three dimensional structure of these moieties is of crucial importance for the rational design in these fields of research. Recently, we have reported a novel method to synthesize such compounds (Thomann et al., 2014). We have reported the synthesis of 4-(methyl­thio)-2-(1H-tetra­zol-1-yl)pyrimidine (1). Inter­estingly, when scaling up the reaction, another product was found in small amounts. NMR analytical characterization revealed the compound to be the 2-tetra­zolyl regioisomer (2). To determine unequivocally proof of the structure of this compound, we determined its crystal structure.

The title compound (2), crystallized with two independent molecules (A and B) in the asymmetric unit (Fig. 1). Inter­estingly, the two molecules differ in their conformation. While the tetra­zole moieties are arranged similarly, with the tetra­zole ring is inclined to the pyrim­idene ring by 5.48 (7) and 4.24 (7) ° in molecules A and B, respectively, the thio­methyl groups have a difference of the torsion angle about the Car···S bond of ca. 180° [for example, torsion angle N5—C4—S1—C6 = 0.89 (12) °, compared to torsion angle N11—C10—S2—C12 = -176.78 (10) °] indicating higher rotational freedom than the tetra­zoles (Fig. 1). The latter finding is of importance for computational chemists in medicinal chemistry, as the polarized hydrogen at atom C5 of the tetra­zole ring is able to form non-classical hydrogen bonds. Therefore, the results from the crystal structure may favour this conformational isomer for in silico predictions.

In the crystal, the A and B molecules are linked via a C—H···N hydrogen bond (Table 1 and Fig. 2). They stack along the b axis direction forming columns within which there are weak π-π inter­actions present [shortest inter-centroid distance is Cg2···Cg4i = 3.6918 (5) Å; Cg2 and Cg4 are the centroids of rings N5/N6/C1—C4 and N11/N12/C7—C10, respectively; symmetry code: (i) x, y + 1, z].

For applications of tetrazolyl-substituted aromatic systems in metal–ligand research, see: Kim et al. (2008); Stoessel et al. (2010); in drug development, see: Pasternak et al. (2012); Biswas et al. (2015); in polymer discovery, see: Yu et al. (2008); Sengupta et al. (2010). For the synthesis of 4-methylsulfanyl-2-(1H-tetrazol-1-yl)pyrimidine and the title compound, see: Thomann et al. (2014).

Synthesis and crystallization top

The title compound (2), was synthesized following a previously reported procedure (Thomann et al., 2014). A mixture of 4-chloro-2-(methyl­thio)­pyrimidine, 1H-tetra­zole and tri­ethyl­amine, in the ratio 1:1:1, was stirred under microwave irradiation at 50 W, 353 K for 1 h. The crude product was purified by flash chromatography (hexane:ethyl acetate, 8:2, Rf = 0.25) to yield a white solid (9%). Crystals formed at 294 K after 16 h from a saturated solution of 2 in ethyl acetate.1H NMR (CDCl3, 300MHz) 8.80 (dd, J = 5.3, 0.6 Hz, 1 H), 8.77 (s, 1 H), 7.77 (dd, J = 5.3, 0.7 Hz, 1 H), 2.69 ppm (d, J = 0.7 Hz, 3 H).

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were located in a difference Fourier map and freely refined.

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the two independent molecules (A and B) of the title compound (2), with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of the two independent molecules (A black; B red) of the title compound (2), viewed along the a axis. Hydrogen bonds are shown as dashed lines (see Table 1).
[Figure 3] Fig. 3. Compounds (1) and (2).
4-Methylsulfanyl-2-(2H-tetrazol-2-yl)pyrimidine top
Crystal data top
C6H6N6SZ = 4
Mr = 194.23F(000) = 400
Triclinic, P1Dx = 1.574 Mg m3
a = 6.3001 (17) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.393 (2) ÅCell parameters from 728 reflections
c = 18.159 (5) Åθ = 3.6–24.3°
α = 91.407 (7)°µ = 0.35 mm1
β = 95.864 (7)°T = 143 K
γ = 102.695 (8)°Cuboid, colourless
V = 819.9 (4) Å30.22 × 0.22 × 0.01 mm
Data collection top
Bruker APEXII CCD
diffractometer
3596 reflections with I > 2σ(I)
φ and ω scansRint = 0.028
Absorption correction: multi-scan
(SADABS; Bruker, 2010)
θmax = 29.6°, θmin = 2.3°
Tmin = 0.716, Tmax = 0.746h = 88
15501 measured reflectionsk = 1010
4581 independent reflectionsl = 2425
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034All H-atom parameters refined
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.0376P)2 + 0.2718P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
4581 reflectionsΔρmax = 0.35 e Å3
283 parametersΔρmin = 0.30 e Å3
Crystal data top
C6H6N6Sγ = 102.695 (8)°
Mr = 194.23V = 819.9 (4) Å3
Triclinic, P1Z = 4
a = 6.3001 (17) ÅMo Kα radiation
b = 7.393 (2) ŵ = 0.35 mm1
c = 18.159 (5) ÅT = 143 K
α = 91.407 (7)°0.22 × 0.22 × 0.01 mm
β = 95.864 (7)°
Data collection top
Bruker APEXII CCD
diffractometer
4581 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2010)
3596 reflections with I > 2σ(I)
Tmin = 0.716, Tmax = 0.746Rint = 0.028
15501 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.086All H-atom parameters refined
S = 1.01Δρmax = 0.35 e Å3
4581 reflectionsΔρmin = 0.30 e Å3
283 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.84117 (6)0.83334 (5)0.58281 (2)0.01975 (9)
N11.04303 (18)0.69484 (15)0.84617 (6)0.0152 (2)
N21.00906 (19)0.60999 (17)0.90974 (6)0.0208 (3)
N31.24517 (19)0.79683 (17)0.84553 (7)0.0209 (3)
N41.3498 (2)0.77865 (18)0.91059 (7)0.0233 (3)
N50.93885 (18)0.76012 (15)0.72442 (6)0.0159 (2)
N60.56784 (19)0.65519 (16)0.66803 (7)0.0200 (3)
C10.8749 (2)0.67900 (17)0.78527 (7)0.0148 (3)
C20.6647 (2)0.58341 (19)0.79335 (8)0.0184 (3)
C30.5146 (2)0.5770 (2)0.73096 (8)0.0203 (3)
C40.7801 (2)0.74205 (18)0.66783 (8)0.0162 (3)
C51.2034 (2)0.6651 (2)0.94818 (8)0.0209 (3)
C61.1309 (2)0.9298 (2)0.60068 (9)0.0230 (3)
H10.629 (3)0.532 (2)0.8352 (10)0.028 (5)*
H20.366 (3)0.512 (2)0.7313 (9)0.023 (4)*
H31.235 (3)0.634 (2)0.9944 (11)0.030 (5)*
H41.204 (3)0.833 (2)0.6178 (10)0.032 (5)*
H51.160 (3)1.037 (2)0.6366 (10)0.030 (5)*
H61.172 (3)0.969 (3)0.5531 (11)0.040 (5)*
S20.91337 (6)0.35407 (5)0.59998 (2)0.02003 (10)
N71.07557 (18)0.19569 (15)0.85809 (6)0.0156 (2)
N81.0376 (2)0.11547 (17)0.92240 (7)0.0219 (3)
N91.28032 (19)0.29223 (17)0.85739 (7)0.0218 (3)
N101.3817 (2)0.27602 (18)0.92304 (7)0.0241 (3)
N110.97742 (18)0.26119 (15)0.73636 (6)0.0159 (2)
N120.60819 (19)0.16413 (16)0.67866 (7)0.0192 (2)
C70.9101 (2)0.18161 (17)0.79690 (7)0.0146 (3)
C80.6975 (2)0.08981 (19)0.80433 (8)0.0181 (3)
C90.5511 (2)0.0862 (2)0.74162 (8)0.0204 (3)
C100.8194 (2)0.24779 (18)0.67912 (8)0.0162 (3)
C111.2311 (2)0.1686 (2)0.96118 (8)0.0218 (3)
C120.6629 (3)0.3216 (2)0.53901 (9)0.0256 (3)
H70.658 (3)0.041 (2)0.8462 (10)0.028 (5)*
H80.400 (3)0.022 (2)0.7410 (10)0.027 (4)*
H91.264 (3)0.138 (3)1.0104 (11)0.035 (5)*
H100.564 (3)0.385 (2)0.5600 (10)0.035 (5)*
H110.702 (3)0.373 (3)0.4949 (11)0.037 (5)*
H120.600 (3)0.192 (3)0.5294 (10)0.038 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02103 (18)0.02210 (18)0.01490 (18)0.00253 (13)0.00004 (13)0.00614 (13)
N10.0152 (5)0.0167 (5)0.0130 (5)0.0007 (4)0.0036 (4)0.0040 (4)
N20.0216 (6)0.0250 (6)0.0152 (6)0.0020 (5)0.0040 (5)0.0078 (5)
N30.0155 (6)0.0260 (6)0.0190 (6)0.0011 (5)0.0024 (5)0.0049 (5)
N40.0203 (6)0.0295 (7)0.0186 (6)0.0031 (5)0.0005 (5)0.0046 (5)
N50.0166 (5)0.0159 (5)0.0149 (6)0.0028 (4)0.0030 (4)0.0019 (4)
N60.0182 (6)0.0193 (6)0.0212 (6)0.0019 (4)0.0009 (5)0.0034 (5)
C10.0155 (6)0.0138 (6)0.0150 (6)0.0030 (5)0.0025 (5)0.0011 (5)
C20.0186 (7)0.0180 (7)0.0181 (7)0.0012 (5)0.0057 (5)0.0042 (5)
C30.0168 (7)0.0200 (7)0.0232 (8)0.0008 (5)0.0039 (6)0.0026 (5)
C40.0181 (6)0.0149 (6)0.0157 (7)0.0034 (5)0.0026 (5)0.0020 (5)
C50.0221 (7)0.0251 (7)0.0153 (7)0.0044 (6)0.0022 (6)0.0045 (5)
C60.0203 (7)0.0305 (8)0.0190 (7)0.0053 (6)0.0042 (6)0.0093 (6)
S20.02219 (18)0.02074 (18)0.01648 (18)0.00230 (13)0.00321 (14)0.00600 (13)
N70.0134 (5)0.0181 (5)0.0149 (6)0.0015 (4)0.0037 (4)0.0045 (4)
N80.0203 (6)0.0281 (7)0.0170 (6)0.0028 (5)0.0044 (5)0.0090 (5)
N90.0152 (6)0.0265 (6)0.0213 (6)0.0005 (5)0.0014 (5)0.0057 (5)
N100.0182 (6)0.0316 (7)0.0203 (7)0.0015 (5)0.0004 (5)0.0048 (5)
N110.0159 (5)0.0160 (5)0.0155 (6)0.0021 (4)0.0029 (4)0.0033 (4)
N120.0170 (6)0.0214 (6)0.0184 (6)0.0020 (5)0.0026 (5)0.0016 (5)
C70.0139 (6)0.0142 (6)0.0160 (6)0.0039 (5)0.0019 (5)0.0008 (5)
C80.0171 (7)0.0200 (7)0.0170 (7)0.0018 (5)0.0056 (5)0.0036 (5)
C90.0164 (7)0.0233 (7)0.0206 (7)0.0019 (5)0.0034 (6)0.0014 (5)
C100.0189 (7)0.0139 (6)0.0160 (7)0.0039 (5)0.0023 (5)0.0008 (5)
C110.0188 (7)0.0294 (8)0.0168 (7)0.0039 (6)0.0023 (6)0.0060 (6)
C120.0305 (8)0.0281 (8)0.0181 (8)0.0075 (7)0.0006 (6)0.0034 (6)
Geometric parameters (Å, º) top
S1—C41.7453 (15)S2—C101.7487 (15)
S1—C61.8004 (16)S2—C121.7992 (16)
N1—N31.3311 (16)N7—N91.3314 (16)
N1—N21.3412 (16)N7—N81.3421 (16)
N1—C11.4347 (17)N7—C71.4291 (17)
N2—C51.3207 (19)N8—C111.3182 (19)
N3—N41.3176 (17)N9—N101.3148 (17)
N4—C51.356 (2)N10—C111.3566 (19)
N5—C11.3267 (17)N11—C71.3237 (17)
N5—C41.3412 (17)N11—C101.3496 (17)
N6—C31.3336 (19)N12—C101.3377 (18)
N6—C41.3506 (18)N12—C91.3393 (19)
C1—C21.3815 (19)C7—C81.3837 (19)
C2—C31.393 (2)C8—C91.386 (2)
C2—H10.885 (19)C8—H70.886 (19)
C3—H20.951 (17)C9—H80.965 (18)
C5—H30.891 (19)C11—H90.940 (19)
C6—H40.974 (17)C12—H100.955 (19)
C6—H50.988 (17)C12—H110.93 (2)
C6—H60.96 (2)C12—H120.957 (19)
C4—S1—C6101.92 (7)C10—S2—C12101.37 (8)
N3—N1—N2113.78 (11)N9—N7—N8113.63 (11)
N3—N1—C1123.45 (11)N9—N7—C7123.40 (11)
N2—N1—C1122.75 (11)N8—N7—C7122.96 (11)
C5—N2—N1101.28 (11)C11—N8—N7101.34 (12)
N4—N3—N1105.82 (12)N10—N9—N7105.89 (12)
N3—N4—C5106.17 (12)N9—N10—C11106.19 (12)
C1—N5—C4114.47 (12)C7—N11—C10114.67 (12)
C3—N6—C4115.71 (12)C10—N12—C9115.82 (12)
N5—C1—C2125.31 (12)N11—C7—C8125.20 (12)
N5—C1—N1115.33 (12)N11—C7—N7115.25 (12)
C2—C1—N1119.36 (12)C8—C7—N7119.55 (12)
C1—C2—C3114.59 (13)C7—C8—C9114.40 (13)
C1—C2—H1122.4 (11)C7—C8—H7122.5 (11)
C3—C2—H1123.0 (12)C9—C8—H7123.1 (12)
N6—C3—C2123.19 (13)N12—C9—C8123.46 (14)
N6—C3—H2116.5 (10)N12—C9—H8116.1 (11)
C2—C3—H2120.3 (10)C8—C9—H8120.5 (11)
N5—C4—N6126.72 (13)N12—C10—N11126.44 (13)
N5—C4—S1119.87 (10)N12—C10—S2119.96 (10)
N6—C4—S1113.41 (10)N11—C10—S2113.60 (10)
N2—C5—N4112.96 (13)N8—C11—N10112.94 (13)
N2—C5—H3124.0 (12)N8—C11—H9124.6 (12)
N4—C5—H3123.0 (12)N10—C11—H9122.5 (12)
S1—C6—H4108.9 (11)S2—C12—H10109.7 (11)
S1—C6—H5110.3 (10)S2—C12—H11105.7 (12)
H4—C6—H5112.5 (14)H10—C12—H11110.6 (16)
S1—C6—H6103.5 (11)S2—C12—H12110.3 (11)
H4—C6—H6110.8 (15)H10—C12—H12111.9 (16)
H5—C6—H6110.4 (15)H11—C12—H12108.4 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H1···N9i0.89 (2)2.58 (2)3.203 (2)129 (2)
Symmetry code: (i) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H1···N9i0.89 (2)2.58 (2)3.203 (2)129 (2)
Symmetry code: (i) x1, y, z.
 

Acknowledgements

We thank Nadja Klippel for the synthesis of the title compound.

References

First citationBiswas, D., Ding, F.-X., Dong, S., Gu, X., Jiang, J., Pasternak, A., Suzuki, T., Vacca, J. & Xu, S. (2015). PCT Int. Appl. WO2015103756 A1.  Google Scholar
First citationBruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKim, Y.-J., Lee, K.-E., Jeon, H.-T., Huh, H. S. & Lee, S. W. (2008). Inorg. Chim. Acta, 361, 2159–2165.  Web of Science CSD CrossRef CAS Google Scholar
First citationPasternak, A., Dejesus, R. K., Zhu, Y., Yang, L., Walsh, S., Pio, B., Shahripour, A., Tang, H., Belyk, K. & Kim, D. (2012). PCT Int. Appl. WO 2012058134 A1.  Google Scholar
First citationSengupta, O. & Mukherjee, P. S. (2010). Inorg. Chem. 49, 8583–8590.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoessel, P., Heil, H., Jooseten, D., Pflumm, C., Gerhard, A. & Breuning, E. (2010). PCT Int. Appl. WO 2010086089 A1.  Google Scholar
First citationThomann, A., Börger, C., Empting, M. & Hartmann, R. W. (2014). Synlett, 25, 935–938.  CAS Google Scholar
First citationYu, L., Zhang, Z., Chen, X., Zhang, W., Wu, J., Cheng, Z., Zhu, J. & Zhu, X. (2008). J. Polym. Sci. A Polym. Chem. 46, 682–691.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds