organic compounds
H-1,2,3-triazol-3-ium iodide
of 1-mesityl-3-methyl-4-phenyl-1aFacultad de Química, Universidad Nacional Autónoma de México, Circuito Interior, Ciudad Universitaria, Mexico City, 04510, Mexico
*Correspondence e-mail: juvent@unam.mx
In the cation of the title salt, C18H20N3+·I−, the mesityl and phenyl rings are inclined to the central triazolium ring by 61.39 (16) and 30.99 (16)°, respectively, and to one another by 37.75 (15)°. In the crystal, molecules are linked via C—H⋯I hydrogen bonds, forming slabs parallel to the ab plane. Within the slabs there are weak π–π interactions present involving the mesityl and phenyl rings [inter-centroid distances are 3.8663 (18) and 3.8141 (18) Å].
Keywords: crystal structure; triazolium salt; mesityl group; C—H⋯I hydrogen bonds.
CCDC reference: 1440705
1. Related literature
For classical Arduengo-type imidazol-2-ylidene N-heterocyclic (NHCs), see: Arduengo et al. (1995); Mathew et al. (2008). For similar 1-mesityl-3-methyl-4-phenyl-1H-1,2,3-triazol-3-ium structures and some complexes, see: Saravanakumar et al. (2011); Hohloch et al. (2011, 2013); Shaik et al. (2013).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
|
Data collection: (CrysAlis PRO; Agilent, 2013); cell (CrysAlis RED; Agilent, 2013); data reduction: (CrysAlis RED; program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012).
Supporting information
CCDC reference: 1440705
https://doi.org/10.1107/S2056989015023403/su5254sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989015023403/su5254Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989015023403/su5254Isup3.cml
Mesoionic 1,2,3-triazol-5-ylidenes bear only one nitrogen adjacent to the carbene bonding site and are more basic than the classical Arduengo-type imidazol-2-ylidene NHCs (Arduengo et al., 1995; Mathew et al., 2008). This type of triazolylidene has recently been applied for the development of a variety of organometallic complexes, specially directed towards catalytic purposes (Saravanakumar et al., 2011; Hohloch et al., 2011,2013); Shaik et al., 2013).
In the cation of the title salt, Fig. 1, the central triazolium ring (N1—N3/C10/C11) is inclined to the mesityl (C1—C6) and phenyl (C13—C18) rings by 61.39 (16) and 30.99 (16) °, respectively, while the two six-membered aromatic rings are inclined to one another by 37.75 (15) °.
In the crystal, molecules are linked via C—H···I hydrogen bonds forming slabs parallel to the ab plane (Table 1 and Fig. 2). Within the slabs there are slipped parallel π-π interactions present involving the mesityl and phenyl rings: Cg2···Cg3i = 3.8663 (18) Å [where Cg2 and Cg3 are the centroids of rings C1—C6 and C13—C18, interplanar distance = 3.6798 (13) Å, slippage = 1.595 Å; symmetry ocde: (i) - x + 3/2, y + 1/2, - z + 1/3], and Cg2···Cg3ii = 3.8141 (18) Å [interplanar distance = 3.5739 (13) Å, slippage = 1.797 Å; symmetry ocde: (ii) - x + 5/2, y + 1/2, -z + 1/2]; see Fig. 2.
Synthesis of 1-mesityl-4-phenyl-1,2,3-triazole
2-azido-1,3,5-trimethylbenzene (868 mg, 5.4 mmol), and phenylacetylene (1000 mg, 4.9 mmol) were suspended in a mixture of water (16.0 ml) and tBuOH (16.0 mL). To the previous mixture CuSO4 (10.6 mg, 0.05 mmol), and sodium ascorbate (97 mg, 0.50 mmol) were added and stirred for 24 hours at 100 °C. The reaction mixture was allowed to cool and tBuOH was evaporated off. The resulted mixture was extracted with CH2Cl2 (2 × 100 mL). The combined organic phases were washed with water (2 × 60 mL), brine (2 × 50 mL), dried over MgSO4 and evaporated to dryness. The residue was washed with pentane (50 mL) to afford the crude triazole as an off brown solid. The crude product was recrystallized from hot acetone to give the corresponding pure triazole (yield: 1100 mg, 85%). 1H NMR (CDCl3, 300 MHz): δ 7.93 (d, 3JHH = 7.8 Hz, 2H, Har), 7.84 (s, 1H, Htrz), 7.47 (t, 3JHH = 7.8 Hz, 2H, Har), 7.36 (t, 3JHH = 7.5 Hz, 1H, Har), 7.01 (s, 2H, Hmes), 2.37 (s, 3H, ArCH3), 2.02 (s, 6H, ArCH3). 13C{1H} NMR (CDCl3, 75 MHz): δ 147.5 (Ctrz–Mes), 140.0, 135.1, 133.5, 130.4, 129.1 (5 × Car), 128.9 (Ctrz-H), 130.4, 128.8, 128.2 (3 × Car), 21.1 (Ar—CH3), 17.3 (Ar—CH3).
Synthesis of 1-mesityl-3-methyl-4-phenyl-1H-1,2,3-triazol-3-ium iodide
A solution of 1-mesityl-4-phenyl-1,2,3-triazole (500 mg, 1.3 mmol) in MeCN (12 ml) was added CH3I (1.7 g, 12 mmol) and the mixture was stirred at 373 K for 48 h. The workup and purification were carried out according to the general method. The title compound was obtained as a white solid (yield: 612 mg, 80%). Colourless plate-like crystals were obtained by ???? - please complete. 1H NMR (CDCl3, 300 MHz): δ 8.86 (s, 1H, Htrz), 8.04 (m, 2H, Har), 7.58 (m, 3H, Har), 7.05 (s, 2H, Hmes), 4.58 (s, 3H, NCH3), 2.37 (s, 3H, ArCH3), 2.22 (s, 6H, ArCH3). 13C{1H} NMR (CDCl3, 75 MHz): δ 144.2 (Ctrz–Mes), 142.5, 134.4, 132.2, 130.4, 130.1, 129.9, 129.7, 121.2, (8 × Car), 40.7 (NCH3), 21.2 (Ar—CH3), 18.5 (Ar—CH3). Anal. Calcd. for C18H20IN3 x 1 H2O (423.28): C 51.44, H 5.24, N 9.93. Found: C 51.44, H 4.34, N 10.17.
Mesoionic 1,2,3-triazol-5-ylidenes bear only one nitrogen adjacent to the carbene bonding site and are more basic than the classical Arduengo-type imidazol-2-ylidene NHCs (Arduengo et al., 1995; Mathew et al., 2008). This type of triazolylidene has recently been applied for the development of a variety of organometallic complexes, specially directed towards catalytic purposes (Saravanakumar et al., 2011; Hohloch et al., 2011,2013); Shaik et al., 2013).
In the cation of the title salt, Fig. 1, the central triazolium ring (N1—N3/C10/C11) is inclined to the mesityl (C1—C6) and phenyl (C13—C18) rings by 61.39 (16) and 30.99 (16) °, respectively, while the two six-membered aromatic rings are inclined to one another by 37.75 (15) °.
In the crystal, molecules are linked via C—H···I hydrogen bonds forming slabs parallel to the ab plane (Table 1 and Fig. 2). Within the slabs there are slipped parallel π-π interactions present involving the mesityl and phenyl rings: Cg2···Cg3i = 3.8663 (18) Å [where Cg2 and Cg3 are the centroids of rings C1—C6 and C13—C18, interplanar distance = 3.6798 (13) Å, slippage = 1.595 Å; symmetry ocde: (i) - x + 3/2, y + 1/2, - z + 1/3], and Cg2···Cg3ii = 3.8141 (18) Å [interplanar distance = 3.5739 (13) Å, slippage = 1.797 Å; symmetry ocde: (ii) - x + 5/2, y + 1/2, -z + 1/2]; see Fig. 2.
For classical Arduengo-type imidazol-2-ylidene NHCs, see: Arduengo et al. (1995); Mathew et al. (2008). For similar 1-mesityl-3-methyl-4-phenyl-1H-1,2,3-triazol-3-ium structures and some complexes, see: Saravanakumar et al. (2011); Hohloch et al. (2011, 2013); Shaik et al. (2013).
Synthesis of 1-mesityl-4-phenyl-1,2,3-triazole
2-azido-1,3,5-trimethylbenzene (868 mg, 5.4 mmol), and phenylacetylene (1000 mg, 4.9 mmol) were suspended in a mixture of water (16.0 ml) and tBuOH (16.0 mL). To the previous mixture CuSO4 (10.6 mg, 0.05 mmol), and sodium ascorbate (97 mg, 0.50 mmol) were added and stirred for 24 hours at 100 °C. The reaction mixture was allowed to cool and tBuOH was evaporated off. The resulted mixture was extracted with CH2Cl2 (2 × 100 mL). The combined organic phases were washed with water (2 × 60 mL), brine (2 × 50 mL), dried over MgSO4 and evaporated to dryness. The residue was washed with pentane (50 mL) to afford the crude triazole as an off brown solid. The crude product was recrystallized from hot acetone to give the corresponding pure triazole (yield: 1100 mg, 85%). 1H NMR (CDCl3, 300 MHz): δ 7.93 (d, 3JHH = 7.8 Hz, 2H, Har), 7.84 (s, 1H, Htrz), 7.47 (t, 3JHH = 7.8 Hz, 2H, Har), 7.36 (t, 3JHH = 7.5 Hz, 1H, Har), 7.01 (s, 2H, Hmes), 2.37 (s, 3H, ArCH3), 2.02 (s, 6H, ArCH3). 13C{1H} NMR (CDCl3, 75 MHz): δ 147.5 (Ctrz–Mes), 140.0, 135.1, 133.5, 130.4, 129.1 (5 × Car), 128.9 (Ctrz-H), 130.4, 128.8, 128.2 (3 × Car), 21.1 (Ar—CH3), 17.3 (Ar—CH3).
Synthesis of 1-mesityl-3-methyl-4-phenyl-1H-1,2,3-triazol-3-ium iodide
A solution of 1-mesityl-4-phenyl-1,2,3-triazole (500 mg, 1.3 mmol) in MeCN (12 ml) was added CH3I (1.7 g, 12 mmol) and the mixture was stirred at 373 K for 48 h. The workup and purification were carried out according to the general method. The title compound was obtained as a white solid (yield: 612 mg, 80%). Colourless plate-like crystals were obtained by ???? - please complete. 1H NMR (CDCl3, 300 MHz): δ 8.86 (s, 1H, Htrz), 8.04 (m, 2H, Har), 7.58 (m, 3H, Har), 7.05 (s, 2H, Hmes), 4.58 (s, 3H, NCH3), 2.37 (s, 3H, ArCH3), 2.22 (s, 6H, ArCH3). 13C{1H} NMR (CDCl3, 75 MHz): δ 144.2 (Ctrz–Mes), 142.5, 134.4, 132.2, 130.4, 130.1, 129.9, 129.7, 121.2, (8 × Car), 40.7 (NCH3), 21.2 (Ar—CH3), 18.5 (Ar—CH3). Anal. Calcd. for C18H20IN3 x 1 H2O (423.28): C 51.44, H 5.24, N 9.93. Found: C 51.44, H 4.34, N 10.17.
detailsCrystal data, data collection and structure
details are summarized in Table 2. The C-bound H atoms were placed in geometrically idealized positions and refined as riding on their parent atoms: C—H = 0.95-0.98 Å with Uiso(H) = 1.5Ueq(C-methyl) and 1.2Ueq(C) for other H atoms.Data collection: (CrysAlis PRO; Agilent, 2013); cell
(CrysAlis RED; Agilent, 2013); data reduction: (CrysAlis RED; Agilent, 2013); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012).C18H20N3+·I− | F(000) = 808 |
Mr = 405.27 | Dx = 1.565 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 3748 reflections |
a = 7.6704 (3) Å | θ = 4.5–29.3° |
b = 9.9341 (3) Å | µ = 1.86 mm−1 |
c = 22.8541 (10) Å | T = 130 K |
β = 98.982 (4)° | Plate, colourless |
V = 1720.09 (12) Å3 | 0.14 × 0.08 × 0.02 mm |
Z = 4 |
Agilent Xcalibur Atlas Gemini diffractometer | 4073 independent reflections |
Graphite monochromator | 3374 reflections with I > 2σ(I) |
Detector resolution: 10.4685 pixels mm-1 | Rint = 0.031 |
ω scans | θmax = 29.3°, θmin = 3.4° |
Absorption correction: analytical (CrysAlis RED; Agilent, 2013) | h = −10→9 |
Tmin = 0.864, Tmax = 0.963 | k = −13→12 |
8948 measured reflections | l = −20→30 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.034 | H-atom parameters constrained |
wR(F2) = 0.084 | w = 1/[σ2(Fo2) + (0.0324P)2 + 0.4334P] where P = (Fo2 + 2Fc2)/3 |
S = 1.16 | (Δ/σ)max = 0.001 |
4073 reflections | Δρmax = 1.05 e Å−3 |
203 parameters | Δρmin = −0.57 e Å−3 |
C18H20N3+·I− | V = 1720.09 (12) Å3 |
Mr = 405.27 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 7.6704 (3) Å | µ = 1.86 mm−1 |
b = 9.9341 (3) Å | T = 130 K |
c = 22.8541 (10) Å | 0.14 × 0.08 × 0.02 mm |
β = 98.982 (4)° |
Agilent Xcalibur Atlas Gemini diffractometer | 4073 independent reflections |
Absorption correction: analytical (CrysAlis RED; Agilent, 2013) | 3374 reflections with I > 2σ(I) |
Tmin = 0.864, Tmax = 0.963 | Rint = 0.031 |
8948 measured reflections |
R[F2 > 2σ(F2)] = 0.034 | 0 restraints |
wR(F2) = 0.084 | H-atom parameters constrained |
S = 1.16 | Δρmax = 1.05 e Å−3 |
4073 reflections | Δρmin = −0.57 e Å−3 |
203 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.9473 (4) | 0.6044 (3) | 0.32285 (13) | 0.0166 (6) | |
C2 | 1.0174 (4) | 0.7345 (3) | 0.32716 (13) | 0.0166 (6) | |
C3 | 1.0440 (4) | 0.7926 (3) | 0.38314 (14) | 0.0193 (7) | |
H3 | 1.0952 | 0.8798 | 0.3878 | 0.023* | |
C4 | 0.9986 (4) | 0.7281 (3) | 0.43240 (14) | 0.0207 (7) | |
C5 | 0.9244 (4) | 0.6001 (3) | 0.42536 (14) | 0.0205 (7) | |
H5 | 0.8905 | 0.5562 | 0.4587 | 0.025* | |
C6 | 0.8984 (4) | 0.5345 (3) | 0.37081 (13) | 0.0178 (6) | |
C7 | 0.8235 (4) | 0.3951 (3) | 0.36552 (14) | 0.0217 (7) | |
H7A | 0.7477 | 0.3814 | 0.3958 | 0.033* | |
H7B | 0.92 | 0.3293 | 0.3712 | 0.033* | |
H7C | 0.7538 | 0.3832 | 0.3261 | 0.033* | |
C8 | 1.0311 (6) | 0.7949 (4) | 0.49185 (16) | 0.0336 (9) | |
H8A | 1.1237 | 0.7462 | 0.5179 | 0.05* | |
H8B | 0.9222 | 0.7943 | 0.5093 | 0.05* | |
H8C | 1.0687 | 0.8881 | 0.4873 | 0.05* | |
C9 | 1.0623 (4) | 0.8130 (3) | 0.27524 (15) | 0.0224 (7) | |
H9A | 1.1435 | 0.8862 | 0.2896 | 0.034* | |
H9B | 0.9541 | 0.8507 | 0.2527 | 0.034* | |
H9C | 1.1186 | 0.7533 | 0.2496 | 0.034* | |
C10 | 1.0035 (4) | 0.4227 (3) | 0.25127 (13) | 0.0174 (6) | |
H10 | 1.0827 | 0.3672 | 0.2768 | 0.021* | |
C11 | 0.9446 (4) | 0.4023 (3) | 0.19207 (13) | 0.0165 (6) | |
C12 | 0.7388 (4) | 0.5467 (3) | 0.11771 (13) | 0.0193 (7) | |
H12A | 0.8138 | 0.6043 | 0.0973 | 0.029* | |
H12B | 0.6313 | 0.5958 | 0.1228 | 0.029* | |
H12C | 0.707 | 0.4654 | 0.0942 | 0.029* | |
C13 | 0.9856 (4) | 0.2918 (3) | 0.15337 (14) | 0.0185 (7) | |
C14 | 0.9941 (4) | 0.3091 (3) | 0.09329 (15) | 0.0224 (7) | |
H14 | 0.9724 | 0.3951 | 0.0755 | 0.027* | |
C15 | 1.0344 (5) | 0.2003 (3) | 0.05942 (16) | 0.0262 (8) | |
H15 | 1.0361 | 0.2112 | 0.0182 | 0.031* | |
C16 | 1.0722 (4) | 0.0760 (3) | 0.08598 (16) | 0.0265 (8) | |
H16 | 1.1002 | 0.0018 | 0.0629 | 0.032* | |
C17 | 1.0694 (4) | 0.0596 (3) | 0.14553 (16) | 0.0240 (7) | |
H17 | 1.0984 | −0.0253 | 0.1635 | 0.029* | |
C18 | 1.0248 (4) | 0.1657 (3) | 0.17954 (15) | 0.0207 (7) | |
H18 | 1.0207 | 0.153 | 0.2205 | 0.025* | |
I1 | 0.22531 (3) | 0.67415 (2) | 0.12660 (2) | 0.02384 (9) | |
N1 | 0.8211 (3) | 0.5913 (3) | 0.22025 (11) | 0.0174 (5) | |
N2 | 0.9259 (3) | 0.5380 (2) | 0.26597 (10) | 0.0152 (5) | |
N3 | 0.8348 (3) | 0.5089 (2) | 0.17589 (11) | 0.0157 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0163 (14) | 0.0163 (15) | 0.0157 (15) | 0.0032 (13) | −0.0023 (11) | −0.0023 (13) |
C2 | 0.0134 (14) | 0.0184 (16) | 0.0174 (15) | 0.0047 (13) | 0.0006 (11) | 0.0015 (13) |
C3 | 0.0193 (15) | 0.0152 (15) | 0.0223 (17) | 0.0029 (13) | −0.0003 (12) | −0.0031 (13) |
C4 | 0.0226 (16) | 0.0223 (17) | 0.0165 (16) | 0.0075 (14) | 0.0002 (12) | −0.0011 (14) |
C5 | 0.0250 (16) | 0.0217 (17) | 0.0149 (15) | 0.0047 (14) | 0.0029 (12) | 0.0048 (13) |
C6 | 0.0167 (14) | 0.0170 (15) | 0.0189 (15) | 0.0040 (13) | 0.0005 (12) | 0.0016 (13) |
C7 | 0.0251 (16) | 0.0163 (16) | 0.0234 (17) | 0.0000 (14) | 0.0025 (13) | 0.0055 (13) |
C8 | 0.052 (2) | 0.028 (2) | 0.0201 (18) | 0.0025 (18) | 0.0015 (16) | −0.0050 (15) |
C9 | 0.0242 (16) | 0.0210 (17) | 0.0214 (17) | −0.0020 (14) | 0.0016 (13) | 0.0014 (14) |
C10 | 0.0198 (15) | 0.0141 (15) | 0.0177 (15) | 0.0032 (13) | 0.0010 (12) | 0.0000 (12) |
C11 | 0.0160 (14) | 0.0130 (15) | 0.0199 (16) | −0.0001 (12) | 0.0014 (12) | −0.0003 (12) |
C12 | 0.0232 (16) | 0.0157 (16) | 0.0163 (16) | 0.0019 (13) | −0.0050 (12) | 0.0008 (12) |
C13 | 0.0156 (14) | 0.0148 (15) | 0.0242 (17) | 0.0005 (13) | 0.0006 (12) | −0.0021 (13) |
C14 | 0.0246 (16) | 0.0193 (17) | 0.0225 (17) | 0.0000 (14) | 0.0013 (13) | −0.0035 (14) |
C15 | 0.0267 (17) | 0.0276 (19) | 0.0244 (18) | −0.0022 (15) | 0.0040 (14) | −0.0094 (15) |
C16 | 0.0250 (17) | 0.0199 (17) | 0.035 (2) | −0.0024 (15) | 0.0062 (14) | −0.0147 (15) |
C17 | 0.0214 (16) | 0.0141 (16) | 0.036 (2) | 0.0023 (14) | 0.0021 (14) | −0.0059 (14) |
C18 | 0.0194 (15) | 0.0165 (16) | 0.0255 (17) | −0.0009 (13) | 0.0015 (13) | −0.0007 (14) |
I1 | 0.02450 (13) | 0.01763 (12) | 0.03061 (14) | −0.00299 (9) | 0.00815 (9) | −0.00440 (9) |
N1 | 0.0191 (13) | 0.0143 (13) | 0.0179 (13) | 0.0005 (11) | 0.0004 (10) | −0.0018 (11) |
N2 | 0.0171 (12) | 0.0128 (12) | 0.0143 (12) | 0.0020 (11) | −0.0018 (10) | −0.0006 (10) |
N3 | 0.0188 (12) | 0.0112 (12) | 0.0158 (12) | −0.0005 (11) | −0.0009 (10) | 0.0000 (10) |
C1—C6 | 1.397 (4) | C10—C11 | 1.373 (4) |
C1—C2 | 1.397 (4) | C10—H10 | 0.95 |
C1—N2 | 1.444 (4) | C11—N3 | 1.367 (4) |
C2—C3 | 1.389 (4) | C11—C13 | 1.475 (4) |
C2—C9 | 1.504 (4) | C12—N3 | 1.465 (4) |
C3—C4 | 1.386 (5) | C12—H12A | 0.98 |
C3—H3 | 0.95 | C12—H12B | 0.98 |
C4—C5 | 1.392 (5) | C12—H12C | 0.98 |
C4—C8 | 1.498 (5) | C13—C14 | 1.395 (5) |
C5—C6 | 1.393 (4) | C13—C18 | 1.400 (4) |
C5—H5 | 0.95 | C14—C15 | 1.392 (5) |
C6—C7 | 1.497 (4) | C14—H14 | 0.95 |
C7—H7A | 0.98 | C15—C16 | 1.386 (5) |
C7—H7B | 0.98 | C15—H15 | 0.95 |
C7—H7C | 0.98 | C16—C17 | 1.374 (5) |
C8—H8A | 0.98 | C16—H16 | 0.95 |
C8—H8B | 0.98 | C17—C18 | 1.384 (4) |
C8—H8C | 0.98 | C17—H17 | 0.95 |
C9—H9A | 0.98 | C18—H18 | 0.95 |
C9—H9B | 0.98 | N1—N3 | 1.320 (3) |
C9—H9C | 0.98 | N1—N2 | 1.325 (3) |
C10—N2 | 1.358 (4) | ||
C6—C1—C2 | 123.5 (3) | N2—C10—H10 | 126.9 |
C6—C1—N2 | 118.2 (3) | C11—C10—H10 | 126.9 |
C2—C1—N2 | 118.3 (3) | N3—C11—C10 | 104.3 (3) |
C3—C2—C1 | 116.7 (3) | N3—C11—C13 | 126.5 (3) |
C3—C2—C9 | 119.5 (3) | C10—C11—C13 | 129.2 (3) |
C1—C2—C9 | 123.9 (3) | N3—C12—H12A | 109.5 |
C4—C3—C2 | 122.4 (3) | N3—C12—H12B | 109.5 |
C4—C3—H3 | 118.8 | H12A—C12—H12B | 109.5 |
C2—C3—H3 | 118.8 | N3—C12—H12C | 109.5 |
C3—C4—C5 | 118.6 (3) | H12A—C12—H12C | 109.5 |
C3—C4—C8 | 120.3 (3) | H12B—C12—H12C | 109.5 |
C5—C4—C8 | 121.1 (3) | C14—C13—C18 | 119.4 (3) |
C4—C5—C6 | 122.0 (3) | C14—C13—C11 | 123.1 (3) |
C4—C5—H5 | 119 | C18—C13—C11 | 117.5 (3) |
C6—C5—H5 | 119 | C15—C14—C13 | 120.0 (3) |
C5—C6—C1 | 116.8 (3) | C15—C14—H14 | 120 |
C5—C6—C7 | 120.3 (3) | C13—C14—H14 | 120 |
C1—C6—C7 | 122.9 (3) | C16—C15—C14 | 119.8 (3) |
C6—C7—H7A | 109.5 | C16—C15—H15 | 120.1 |
C6—C7—H7B | 109.5 | C14—C15—H15 | 120.1 |
H7A—C7—H7B | 109.5 | C17—C16—C15 | 120.3 (3) |
C6—C7—H7C | 109.5 | C17—C16—H16 | 119.8 |
H7A—C7—H7C | 109.5 | C15—C16—H16 | 119.8 |
H7B—C7—H7C | 109.5 | C16—C17—C18 | 120.6 (3) |
C4—C8—H8A | 109.5 | C16—C17—H17 | 119.7 |
C4—C8—H8B | 109.5 | C18—C17—H17 | 119.7 |
H8A—C8—H8B | 109.5 | C17—C18—C13 | 119.8 (3) |
C4—C8—H8C | 109.5 | C17—C18—H18 | 120.1 |
H8A—C8—H8C | 109.5 | C13—C18—H18 | 120.1 |
H8B—C8—H8C | 109.5 | N3—N1—N2 | 104.3 (2) |
C2—C9—H9A | 109.5 | N1—N2—C10 | 112.2 (2) |
C2—C9—H9B | 109.5 | N1—N2—C1 | 119.8 (2) |
H9A—C9—H9B | 109.5 | C10—N2—C1 | 128.0 (2) |
C2—C9—H9C | 109.5 | N1—N3—C11 | 113.1 (2) |
H9A—C9—H9C | 109.5 | N1—N3—C12 | 116.7 (2) |
H9B—C9—H9C | 109.5 | C11—N3—C12 | 130.2 (3) |
N2—C10—C11 | 106.2 (3) | ||
C6—C1—C2—C3 | 2.3 (4) | C18—C13—C14—C15 | 2.5 (5) |
N2—C1—C2—C3 | −177.0 (3) | C11—C13—C14—C15 | 179.7 (3) |
C6—C1—C2—C9 | −177.0 (3) | C13—C14—C15—C16 | −2.3 (5) |
N2—C1—C2—C9 | 3.8 (4) | C14—C15—C16—C17 | 0.2 (5) |
C1—C2—C3—C4 | −2.1 (4) | C15—C16—C17—C18 | 1.6 (5) |
C9—C2—C3—C4 | 177.2 (3) | C16—C17—C18—C13 | −1.3 (5) |
C2—C3—C4—C5 | 0.3 (5) | C14—C13—C18—C17 | −0.7 (5) |
C2—C3—C4—C8 | 179.6 (3) | C11—C13—C18—C17 | −178.0 (3) |
C3—C4—C5—C6 | 1.4 (5) | N3—N1—N2—C10 | −0.7 (3) |
C8—C4—C5—C6 | −177.9 (3) | N3—N1—N2—C1 | 178.6 (2) |
C4—C5—C6—C1 | −1.2 (4) | C11—C10—N2—N1 | 0.5 (4) |
C4—C5—C6—C7 | 178.0 (3) | C11—C10—N2—C1 | −178.8 (3) |
C2—C1—C6—C5 | −0.7 (4) | C6—C1—N2—N1 | 119.6 (3) |
N2—C1—C6—C5 | 178.6 (3) | C2—C1—N2—N1 | −61.0 (4) |
C2—C1—C6—C7 | −180.0 (3) | C6—C1—N2—C10 | −61.2 (4) |
N2—C1—C6—C7 | −0.7 (4) | C2—C1—N2—C10 | 118.1 (3) |
N2—C10—C11—N3 | 0.0 (3) | N2—N1—N3—C11 | 0.7 (3) |
N2—C10—C11—C13 | −179.4 (3) | N2—N1—N3—C12 | −176.8 (2) |
N3—C11—C13—C14 | 33.1 (5) | C10—C11—N3—N1 | −0.5 (3) |
C10—C11—C13—C14 | −147.6 (3) | C13—C11—N3—N1 | 179.0 (3) |
N3—C11—C13—C18 | −149.6 (3) | C10—C11—N3—C12 | 176.7 (3) |
C10—C11—C13—C18 | 29.7 (5) | C13—C11—N3—C12 | −3.9 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
C10—H10···I1i | 0.95 | 3.12 | 4.049 (3) | 168 |
C12—H12A···I1ii | 0.98 | 3.20 | 3.916 (3) | 131 |
C12—H12B···I1 | 0.98 | 3.22 | 4.172 (3) | 163 |
Symmetry codes: (i) −x+3/2, y−1/2, −z+1/2; (ii) x+1, y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C10—H10···I1i | 0.95 | 3.12 | 4.049 (3) | 168 |
C12—H12A···I1ii | 0.98 | 3.20 | 3.916 (3) | 131 |
C12—H12B···I1 | 0.98 | 3.22 | 4.172 (3) | 163 |
Symmetry codes: (i) −x+3/2, y−1/2, −z+1/2; (ii) x+1, y, z. |
Acknowledgements
DCG would like to thank DGAPA–UNAM for a postdoctoral fellowship. The authors thank Dr Alma Arévalo for her technical assistance. This work was supported financially by CONACYT (178265) and DGAPA-PAPIIT-IN-210613, which is gratefully acknowledged
References
Agilent (2013). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, Oxfordshire, England. Google Scholar
Arduengo, A. J., Goerlich, J. R. & Marshall, W. J. (1995). J. Am. Chem. Soc. 117, 11027–11028. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Hohloch, S., Scheiffele, D. & Sarkar, B. (2013). Eur. J. Inorg. Chem. pp. 3956–3965. Web of Science CSD CrossRef Google Scholar
Hohloch, S., Su, C. Y. & Sarkar, B. (2011). Eur. J. Inorg. Chem. pp. 3067–3075. Web of Science CSD CrossRef Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Mathew, P., Neels, A. & Albrecht, M. (2008). J. Am. Chem. Soc. 130, 13534–13535. Web of Science CSD CrossRef PubMed CAS Google Scholar
Saravanakumar, R., Ramkumar, V. & Sankararaman, S. (2011). Organometallics, 30, 1689–1694. Web of Science CSD CrossRef CAS Google Scholar
Shaik, J. B., Ramkumar, V., Varghese, B. & Sankararaman, S. (2013). Beilstein J. Org. Chem. 9, 698–704. Web of Science CSD CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.