organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 1-mesityl-3-methyl-4-phenyl-1H-1,2,3-triazol-3-ium iodide

aFacultad de Química, Universidad Nacional Autónoma de México, Circuito Interior, Ciudad Universitaria, Mexico City, 04510, Mexico
*Correspondence e-mail: juvent@unam.mx

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 1 December 2015; accepted 5 December 2015; online 12 December 2015)

In the cation of the title salt, C18H20N3+·I, the mesityl and phenyl rings are inclined to the central triazolium ring by 61.39 (16) and 30.99 (16)°, respectively, and to one another by 37.75 (15)°. In the crystal, mol­ecules are linked via C—H⋯I hydrogen bonds, forming slabs parallel to the ab plane. Within the slabs there are weak ππ inter­actions present involving the mesityl and phenyl rings [inter-centroid distances are 3.8663 (18) and 3.8141 (18) Å].

1. Related literature

For classical Arduengo-type imidazol-2-yl­idene N-heterocyclic carbenes (NHCs), see: Arduengo et al. (1995[Arduengo, A. J., Goerlich, J. R. & Marshall, W. J. (1995). J. Am. Chem. Soc. 117, 11027-11028.]); Mathew et al. (2008[Mathew, P., Neels, A. & Albrecht, M. (2008). J. Am. Chem. Soc. 130, 13534-13535.]). For similar 1-mesityl-3-methyl-4-phenyl-1H-1,2,3-triazol-3-ium structures and some complexes, see: Saravanakumar et al. (2011[Saravanakumar, R., Ramkumar, V. & Sankararaman, S. (2011). Organometallics, 30, 1689-1694.]); Hohloch et al. (2011[Hohloch, S., Su, C. Y. & Sarkar, B. (2011). Eur. J. Inorg. Chem. pp. 3067-3075.], 2013[Hohloch, S., Scheiffele, D. & Sarkar, B. (2013). Eur. J. Inorg. Chem. pp. 3956-3965.]); Shaik et al. (2013[Shaik, J. B., Ramkumar, V., Varghese, B. & Sankararaman, S. (2013). Beilstein J. Org. Chem. 9, 698-704.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C18H20N3+·I

  • Mr = 405.27

  • Monoclinic, P 21 /n

  • a = 7.6704 (3) Å

  • b = 9.9341 (3) Å

  • c = 22.8541 (10) Å

  • β = 98.982 (4)°

  • V = 1720.09 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.86 mm−1

  • T = 130 K

  • 0.14 × 0.08 × 0.02 mm

2.2. Data collection

  • Agilent Xcalibur Atlas Gemini diffractometer

  • Absorption correction: analytical (CrysAlis RED; Agilent, 2013[Agilent (2013). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.864, Tmax = 0.963

  • 8948 measured reflections

  • 4073 independent reflections

  • 3374 reflections with I > 2σ(I)

  • Rint = 0.031

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.084

  • S = 1.16

  • 4073 reflections

  • 203 parameters

  • H-atom parameters constrained

  • Δρmax = 1.05 e Å−3

  • Δρmin = −0.57 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯I1i 0.95 3.12 4.049 (3) 168
C12—H12A⋯I1ii 0.98 3.20 3.916 (3) 131
C12—H12B⋯I1 0.98 3.22 4.172 (3) 163
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x+1, y, z.

Data collection: (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: (CrysAlis RED; Agilent, 2013[Agilent (2013). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, Oxfordshire, England.]); data reduction: (CrysAlis RED; program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Commentary top

Mesoionic 1,2,3-triazol-5-ylidenes bear only one nitro­gen adjacent to the carbene bonding site and are more basic than the classical Arduengo-type imidazol-2-yl­idene NHCs (Arduengo et al., 1995; Mathew et al., 2008). This type of triazolyl­idene has recently been applied for the development of a variety of organometallic complexes, specially directed towards catalytic purposes (Saravanakumar et al., 2011; Hohloch et al., 2011,2013); Shaik et al., 2013).

In the cation of the title salt, Fig. 1, the central triazolium ring (N1—N3/C10/C11) is inclined to the mesityl (C1—C6) and phenyl (C13—C18) rings by 61.39 (16) and 30.99 (16) °, respectively, while the two six-membered aromatic rings are inclined to one another by 37.75 (15) °.

In the crystal, molecules are linked via C—H···I hydrogen bonds forming slabs parallel to the ab plane (Table 1 and Fig. 2). Within the slabs there are slipped parallel π-π inter­actions present involving the mesityl and phenyl rings: Cg2···Cg3i = 3.8663 (18) Å [where Cg2 and Cg3 are the centroids of rings C1—C6 and C13—C18, inter­planar distance = 3.6798 (13) Å, slippage = 1.595 Å; symmetry ocde: (i) - x + 3/2, y + 1/2, - z + 1/3], and Cg2···Cg3ii = 3.8141 (18) Å [inter­planar distance = 3.5739 (13) Å, slippage = 1.797 Å; symmetry ocde: (ii) - x + 5/2, y + 1/2, -z + 1/2]; see Fig. 2.

Synthesis and crystallization top

Synthesis of 1-mesityl-4-phenyl-1,2,3-triazole

2-azido-1,3,5-tri­methyl­benzene (868 mg, 5.4 mmol), and phenyl­acetyl­ene (1000 mg, 4.9 mmol) were suspended in a mixture of water (16.0 ml) and tBuOH (16.0 mL). To the previous mixture CuSO4 (10.6 mg, 0.05 mmol), and sodium ascorbate (97 mg, 0.50 mmol) were added and stirred for 24 hours at 100 °C. The reaction mixture was allowed to cool and tBuOH was evaporated off. The resulted mixture was extracted with CH2Cl2 (2 × 100 mL). The combined organic phases were washed with water (2 × 60 mL), brine (2 × 50 mL), dried over MgSO4 and evaporated to dryness. The residue was washed with pentane (50 mL) to afford the crude triazole as an off brown solid. The crude product was recrystallized from hot acetone to give the corresponding pure triazole (yield: 1100 mg, 85%). 1H NMR (CDCl3, 300 MHz): δ 7.93 (d, 3JHH = 7.8 Hz, 2H, Har), 7.84 (s, 1H, Htrz), 7.47 (t, 3JHH = 7.8 Hz, 2H, Har), 7.36 (t, 3JHH = 7.5 Hz, 1H, Har), 7.01 (s, 2H, Hmes), 2.37 (s, 3H, ArCH3), 2.02 (s, 6H, ArCH3). 13C{1H} NMR (CDCl3, 75 MHz): δ 147.5 (Ctrz–Mes), 140.0, 135.1, 133.5, 130.4, 129.1 (5 × Car), 128.9 (Ctrz-H), 130.4, 128.8, 128.2 (3 × Car), 21.1 (Ar—CH3), 17.3 (Ar—CH3).

Synthesis of 1-mesityl-3-methyl-4-phenyl-1H-1,2,3-triazol-3-ium iodide

A solution of 1-mesityl-4-phenyl-1,2,3-triazole (500 mg, 1.3 mmol) in MeCN (12 ml) was added CH3I (1.7 g, 12 mmol) and the mixture was stirred at 373 K for 48 h. The workup and purification were carried out according to the general method. The title compound was obtained as a white solid (yield: 612 mg, 80%). Colourless plate-like crystals were obtained by ???? - please complete. 1H NMR (CDCl3, 300 MHz): δ 8.86 (s, 1H, Htrz), 8.04 (m, 2H, Har), 7.58 (m, 3H, Har), 7.05 (s, 2H, Hmes), 4.58 (s, 3H, NCH3), 2.37 (s, 3H, ArCH3), 2.22 (s, 6H, ArCH3). 13C{1H} NMR (CDCl3, 75 MHz): δ 144.2 (Ctrz–Mes), 142.5, 134.4, 132.2, 130.4, 130.1, 129.9, 129.7, 121.2, (8 × Car), 40.7 (NCH3), 21.2 (Ar—CH3), 18.5 (Ar—CH3). Anal. Calcd. for C18H20IN3 x 1 H2O (423.28): C 51.44, H 5.24, N 9.93. Found: C 51.44, H 4.34, N 10.17.

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 2. The C-bound H atoms were placed in geometrically idealized positions and refined as riding on their parent atoms: C—H = 0.95-0.98 Å with Uiso(H) = 1.5Ueq(C-methyl) and 1.2Ueq(C) for other H atoms.

Related literature top

For classical Arduengo-type imidazol-2-ylidene NHCs, see: Arduengo et al. (1995); Mathew et al. (2008). For similar 1-mesityl-3-methyl-4-phenyl-1H-1,2,3-triazol-3-ium structures and some complexes, see: Saravanakumar et al. (2011); Hohloch et al. (2011, 2013); Shaik et al. (2013).

Structure description top

Mesoionic 1,2,3-triazol-5-ylidenes bear only one nitro­gen adjacent to the carbene bonding site and are more basic than the classical Arduengo-type imidazol-2-yl­idene NHCs (Arduengo et al., 1995; Mathew et al., 2008). This type of triazolyl­idene has recently been applied for the development of a variety of organometallic complexes, specially directed towards catalytic purposes (Saravanakumar et al., 2011; Hohloch et al., 2011,2013); Shaik et al., 2013).

In the cation of the title salt, Fig. 1, the central triazolium ring (N1—N3/C10/C11) is inclined to the mesityl (C1—C6) and phenyl (C13—C18) rings by 61.39 (16) and 30.99 (16) °, respectively, while the two six-membered aromatic rings are inclined to one another by 37.75 (15) °.

In the crystal, molecules are linked via C—H···I hydrogen bonds forming slabs parallel to the ab plane (Table 1 and Fig. 2). Within the slabs there are slipped parallel π-π inter­actions present involving the mesityl and phenyl rings: Cg2···Cg3i = 3.8663 (18) Å [where Cg2 and Cg3 are the centroids of rings C1—C6 and C13—C18, inter­planar distance = 3.6798 (13) Å, slippage = 1.595 Å; symmetry ocde: (i) - x + 3/2, y + 1/2, - z + 1/3], and Cg2···Cg3ii = 3.8141 (18) Å [inter­planar distance = 3.5739 (13) Å, slippage = 1.797 Å; symmetry ocde: (ii) - x + 5/2, y + 1/2, -z + 1/2]; see Fig. 2.

For classical Arduengo-type imidazol-2-ylidene NHCs, see: Arduengo et al. (1995); Mathew et al. (2008). For similar 1-mesityl-3-methyl-4-phenyl-1H-1,2,3-triazol-3-ium structures and some complexes, see: Saravanakumar et al. (2011); Hohloch et al. (2011, 2013); Shaik et al. (2013).

Synthesis and crystallization top

Synthesis of 1-mesityl-4-phenyl-1,2,3-triazole

2-azido-1,3,5-tri­methyl­benzene (868 mg, 5.4 mmol), and phenyl­acetyl­ene (1000 mg, 4.9 mmol) were suspended in a mixture of water (16.0 ml) and tBuOH (16.0 mL). To the previous mixture CuSO4 (10.6 mg, 0.05 mmol), and sodium ascorbate (97 mg, 0.50 mmol) were added and stirred for 24 hours at 100 °C. The reaction mixture was allowed to cool and tBuOH was evaporated off. The resulted mixture was extracted with CH2Cl2 (2 × 100 mL). The combined organic phases were washed with water (2 × 60 mL), brine (2 × 50 mL), dried over MgSO4 and evaporated to dryness. The residue was washed with pentane (50 mL) to afford the crude triazole as an off brown solid. The crude product was recrystallized from hot acetone to give the corresponding pure triazole (yield: 1100 mg, 85%). 1H NMR (CDCl3, 300 MHz): δ 7.93 (d, 3JHH = 7.8 Hz, 2H, Har), 7.84 (s, 1H, Htrz), 7.47 (t, 3JHH = 7.8 Hz, 2H, Har), 7.36 (t, 3JHH = 7.5 Hz, 1H, Har), 7.01 (s, 2H, Hmes), 2.37 (s, 3H, ArCH3), 2.02 (s, 6H, ArCH3). 13C{1H} NMR (CDCl3, 75 MHz): δ 147.5 (Ctrz–Mes), 140.0, 135.1, 133.5, 130.4, 129.1 (5 × Car), 128.9 (Ctrz-H), 130.4, 128.8, 128.2 (3 × Car), 21.1 (Ar—CH3), 17.3 (Ar—CH3).

Synthesis of 1-mesityl-3-methyl-4-phenyl-1H-1,2,3-triazol-3-ium iodide

A solution of 1-mesityl-4-phenyl-1,2,3-triazole (500 mg, 1.3 mmol) in MeCN (12 ml) was added CH3I (1.7 g, 12 mmol) and the mixture was stirred at 373 K for 48 h. The workup and purification were carried out according to the general method. The title compound was obtained as a white solid (yield: 612 mg, 80%). Colourless plate-like crystals were obtained by ???? - please complete. 1H NMR (CDCl3, 300 MHz): δ 8.86 (s, 1H, Htrz), 8.04 (m, 2H, Har), 7.58 (m, 3H, Har), 7.05 (s, 2H, Hmes), 4.58 (s, 3H, NCH3), 2.37 (s, 3H, ArCH3), 2.22 (s, 6H, ArCH3). 13C{1H} NMR (CDCl3, 75 MHz): δ 144.2 (Ctrz–Mes), 142.5, 134.4, 132.2, 130.4, 130.1, 129.9, 129.7, 121.2, (8 × Car), 40.7 (NCH3), 21.2 (Ar—CH3), 18.5 (Ar—CH3). Anal. Calcd. for C18H20IN3 x 1 H2O (423.28): C 51.44, H 5.24, N 9.93. Found: C 51.44, H 4.34, N 10.17.

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 2. The C-bound H atoms were placed in geometrically idealized positions and refined as riding on their parent atoms: C—H = 0.95-0.98 Å with Uiso(H) = 1.5Ueq(C-methyl) and 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: (CrysAlis PRO; Agilent, 2013); cell refinement: (CrysAlis RED; Agilent, 2013); data reduction: (CrysAlis RED; Agilent, 2013); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title salt, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view along the a axis of the crystal packing of the title compound. The C—H···I hydrogen bonds are shown as dashed lines (see Table 1). H atoms not involved in these interactions have been omitted for clarity.
1-Mesityl-3-methyl-4-phenyl-1H-1,2,3-triazol-3-ium iodide top
Crystal data top
C18H20N3+·IF(000) = 808
Mr = 405.27Dx = 1.565 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3748 reflections
a = 7.6704 (3) Åθ = 4.5–29.3°
b = 9.9341 (3) ŵ = 1.86 mm1
c = 22.8541 (10) ÅT = 130 K
β = 98.982 (4)°Plate, colourless
V = 1720.09 (12) Å30.14 × 0.08 × 0.02 mm
Z = 4
Data collection top
Agilent Xcalibur Atlas Gemini
diffractometer
4073 independent reflections
Graphite monochromator3374 reflections with I > 2σ(I)
Detector resolution: 10.4685 pixels mm-1Rint = 0.031
ω scansθmax = 29.3°, θmin = 3.4°
Absorption correction: analytical
(CrysAlis RED; Agilent, 2013)
h = 109
Tmin = 0.864, Tmax = 0.963k = 1312
8948 measured reflectionsl = 2030
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.0324P)2 + 0.4334P]
where P = (Fo2 + 2Fc2)/3
S = 1.16(Δ/σ)max = 0.001
4073 reflectionsΔρmax = 1.05 e Å3
203 parametersΔρmin = 0.57 e Å3
Crystal data top
C18H20N3+·IV = 1720.09 (12) Å3
Mr = 405.27Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.6704 (3) ŵ = 1.86 mm1
b = 9.9341 (3) ÅT = 130 K
c = 22.8541 (10) Å0.14 × 0.08 × 0.02 mm
β = 98.982 (4)°
Data collection top
Agilent Xcalibur Atlas Gemini
diffractometer
4073 independent reflections
Absorption correction: analytical
(CrysAlis RED; Agilent, 2013)
3374 reflections with I > 2σ(I)
Tmin = 0.864, Tmax = 0.963Rint = 0.031
8948 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.084H-atom parameters constrained
S = 1.16Δρmax = 1.05 e Å3
4073 reflectionsΔρmin = 0.57 e Å3
203 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.9473 (4)0.6044 (3)0.32285 (13)0.0166 (6)
C21.0174 (4)0.7345 (3)0.32716 (13)0.0166 (6)
C31.0440 (4)0.7926 (3)0.38314 (14)0.0193 (7)
H31.09520.87980.38780.023*
C40.9986 (4)0.7281 (3)0.43240 (14)0.0207 (7)
C50.9244 (4)0.6001 (3)0.42536 (14)0.0205 (7)
H50.89050.55620.45870.025*
C60.8984 (4)0.5345 (3)0.37081 (13)0.0178 (6)
C70.8235 (4)0.3951 (3)0.36552 (14)0.0217 (7)
H7A0.74770.38140.39580.033*
H7B0.920.32930.37120.033*
H7C0.75380.38320.32610.033*
C81.0311 (6)0.7949 (4)0.49185 (16)0.0336 (9)
H8A1.12370.74620.51790.05*
H8B0.92220.79430.50930.05*
H8C1.06870.88810.48730.05*
C91.0623 (4)0.8130 (3)0.27524 (15)0.0224 (7)
H9A1.14350.88620.28960.034*
H9B0.95410.85070.25270.034*
H9C1.11860.75330.24960.034*
C101.0035 (4)0.4227 (3)0.25127 (13)0.0174 (6)
H101.08270.36720.27680.021*
C110.9446 (4)0.4023 (3)0.19207 (13)0.0165 (6)
C120.7388 (4)0.5467 (3)0.11771 (13)0.0193 (7)
H12A0.81380.60430.09730.029*
H12B0.63130.59580.12280.029*
H12C0.7070.46540.09420.029*
C130.9856 (4)0.2918 (3)0.15337 (14)0.0185 (7)
C140.9941 (4)0.3091 (3)0.09329 (15)0.0224 (7)
H140.97240.39510.07550.027*
C151.0344 (5)0.2003 (3)0.05942 (16)0.0262 (8)
H151.03610.21120.01820.031*
C161.0722 (4)0.0760 (3)0.08598 (16)0.0265 (8)
H161.10020.00180.06290.032*
C171.0694 (4)0.0596 (3)0.14553 (16)0.0240 (7)
H171.09840.02530.16350.029*
C181.0248 (4)0.1657 (3)0.17954 (15)0.0207 (7)
H181.02070.1530.22050.025*
I10.22531 (3)0.67415 (2)0.12660 (2)0.02384 (9)
N10.8211 (3)0.5913 (3)0.22025 (11)0.0174 (5)
N20.9259 (3)0.5380 (2)0.26597 (10)0.0152 (5)
N30.8348 (3)0.5089 (2)0.17589 (11)0.0157 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0163 (14)0.0163 (15)0.0157 (15)0.0032 (13)0.0023 (11)0.0023 (13)
C20.0134 (14)0.0184 (16)0.0174 (15)0.0047 (13)0.0006 (11)0.0015 (13)
C30.0193 (15)0.0152 (15)0.0223 (17)0.0029 (13)0.0003 (12)0.0031 (13)
C40.0226 (16)0.0223 (17)0.0165 (16)0.0075 (14)0.0002 (12)0.0011 (14)
C50.0250 (16)0.0217 (17)0.0149 (15)0.0047 (14)0.0029 (12)0.0048 (13)
C60.0167 (14)0.0170 (15)0.0189 (15)0.0040 (13)0.0005 (12)0.0016 (13)
C70.0251 (16)0.0163 (16)0.0234 (17)0.0000 (14)0.0025 (13)0.0055 (13)
C80.052 (2)0.028 (2)0.0201 (18)0.0025 (18)0.0015 (16)0.0050 (15)
C90.0242 (16)0.0210 (17)0.0214 (17)0.0020 (14)0.0016 (13)0.0014 (14)
C100.0198 (15)0.0141 (15)0.0177 (15)0.0032 (13)0.0010 (12)0.0000 (12)
C110.0160 (14)0.0130 (15)0.0199 (16)0.0001 (12)0.0014 (12)0.0003 (12)
C120.0232 (16)0.0157 (16)0.0163 (16)0.0019 (13)0.0050 (12)0.0008 (12)
C130.0156 (14)0.0148 (15)0.0242 (17)0.0005 (13)0.0006 (12)0.0021 (13)
C140.0246 (16)0.0193 (17)0.0225 (17)0.0000 (14)0.0013 (13)0.0035 (14)
C150.0267 (17)0.0276 (19)0.0244 (18)0.0022 (15)0.0040 (14)0.0094 (15)
C160.0250 (17)0.0199 (17)0.035 (2)0.0024 (15)0.0062 (14)0.0147 (15)
C170.0214 (16)0.0141 (16)0.036 (2)0.0023 (14)0.0021 (14)0.0059 (14)
C180.0194 (15)0.0165 (16)0.0255 (17)0.0009 (13)0.0015 (13)0.0007 (14)
I10.02450 (13)0.01763 (12)0.03061 (14)0.00299 (9)0.00815 (9)0.00440 (9)
N10.0191 (13)0.0143 (13)0.0179 (13)0.0005 (11)0.0004 (10)0.0018 (11)
N20.0171 (12)0.0128 (12)0.0143 (12)0.0020 (11)0.0018 (10)0.0006 (10)
N30.0188 (12)0.0112 (12)0.0158 (12)0.0005 (11)0.0009 (10)0.0000 (10)
Geometric parameters (Å, º) top
C1—C61.397 (4)C10—C111.373 (4)
C1—C21.397 (4)C10—H100.95
C1—N21.444 (4)C11—N31.367 (4)
C2—C31.389 (4)C11—C131.475 (4)
C2—C91.504 (4)C12—N31.465 (4)
C3—C41.386 (5)C12—H12A0.98
C3—H30.95C12—H12B0.98
C4—C51.392 (5)C12—H12C0.98
C4—C81.498 (5)C13—C141.395 (5)
C5—C61.393 (4)C13—C181.400 (4)
C5—H50.95C14—C151.392 (5)
C6—C71.497 (4)C14—H140.95
C7—H7A0.98C15—C161.386 (5)
C7—H7B0.98C15—H150.95
C7—H7C0.98C16—C171.374 (5)
C8—H8A0.98C16—H160.95
C8—H8B0.98C17—C181.384 (4)
C8—H8C0.98C17—H170.95
C9—H9A0.98C18—H180.95
C9—H9B0.98N1—N31.320 (3)
C9—H9C0.98N1—N21.325 (3)
C10—N21.358 (4)
C6—C1—C2123.5 (3)N2—C10—H10126.9
C6—C1—N2118.2 (3)C11—C10—H10126.9
C2—C1—N2118.3 (3)N3—C11—C10104.3 (3)
C3—C2—C1116.7 (3)N3—C11—C13126.5 (3)
C3—C2—C9119.5 (3)C10—C11—C13129.2 (3)
C1—C2—C9123.9 (3)N3—C12—H12A109.5
C4—C3—C2122.4 (3)N3—C12—H12B109.5
C4—C3—H3118.8H12A—C12—H12B109.5
C2—C3—H3118.8N3—C12—H12C109.5
C3—C4—C5118.6 (3)H12A—C12—H12C109.5
C3—C4—C8120.3 (3)H12B—C12—H12C109.5
C5—C4—C8121.1 (3)C14—C13—C18119.4 (3)
C4—C5—C6122.0 (3)C14—C13—C11123.1 (3)
C4—C5—H5119C18—C13—C11117.5 (3)
C6—C5—H5119C15—C14—C13120.0 (3)
C5—C6—C1116.8 (3)C15—C14—H14120
C5—C6—C7120.3 (3)C13—C14—H14120
C1—C6—C7122.9 (3)C16—C15—C14119.8 (3)
C6—C7—H7A109.5C16—C15—H15120.1
C6—C7—H7B109.5C14—C15—H15120.1
H7A—C7—H7B109.5C17—C16—C15120.3 (3)
C6—C7—H7C109.5C17—C16—H16119.8
H7A—C7—H7C109.5C15—C16—H16119.8
H7B—C7—H7C109.5C16—C17—C18120.6 (3)
C4—C8—H8A109.5C16—C17—H17119.7
C4—C8—H8B109.5C18—C17—H17119.7
H8A—C8—H8B109.5C17—C18—C13119.8 (3)
C4—C8—H8C109.5C17—C18—H18120.1
H8A—C8—H8C109.5C13—C18—H18120.1
H8B—C8—H8C109.5N3—N1—N2104.3 (2)
C2—C9—H9A109.5N1—N2—C10112.2 (2)
C2—C9—H9B109.5N1—N2—C1119.8 (2)
H9A—C9—H9B109.5C10—N2—C1128.0 (2)
C2—C9—H9C109.5N1—N3—C11113.1 (2)
H9A—C9—H9C109.5N1—N3—C12116.7 (2)
H9B—C9—H9C109.5C11—N3—C12130.2 (3)
N2—C10—C11106.2 (3)
C6—C1—C2—C32.3 (4)C18—C13—C14—C152.5 (5)
N2—C1—C2—C3177.0 (3)C11—C13—C14—C15179.7 (3)
C6—C1—C2—C9177.0 (3)C13—C14—C15—C162.3 (5)
N2—C1—C2—C93.8 (4)C14—C15—C16—C170.2 (5)
C1—C2—C3—C42.1 (4)C15—C16—C17—C181.6 (5)
C9—C2—C3—C4177.2 (3)C16—C17—C18—C131.3 (5)
C2—C3—C4—C50.3 (5)C14—C13—C18—C170.7 (5)
C2—C3—C4—C8179.6 (3)C11—C13—C18—C17178.0 (3)
C3—C4—C5—C61.4 (5)N3—N1—N2—C100.7 (3)
C8—C4—C5—C6177.9 (3)N3—N1—N2—C1178.6 (2)
C4—C5—C6—C11.2 (4)C11—C10—N2—N10.5 (4)
C4—C5—C6—C7178.0 (3)C11—C10—N2—C1178.8 (3)
C2—C1—C6—C50.7 (4)C6—C1—N2—N1119.6 (3)
N2—C1—C6—C5178.6 (3)C2—C1—N2—N161.0 (4)
C2—C1—C6—C7180.0 (3)C6—C1—N2—C1061.2 (4)
N2—C1—C6—C70.7 (4)C2—C1—N2—C10118.1 (3)
N2—C10—C11—N30.0 (3)N2—N1—N3—C110.7 (3)
N2—C10—C11—C13179.4 (3)N2—N1—N3—C12176.8 (2)
N3—C11—C13—C1433.1 (5)C10—C11—N3—N10.5 (3)
C10—C11—C13—C14147.6 (3)C13—C11—N3—N1179.0 (3)
N3—C11—C13—C18149.6 (3)C10—C11—N3—C12176.7 (3)
C10—C11—C13—C1829.7 (5)C13—C11—N3—C123.9 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···I1i0.953.124.049 (3)168
C12—H12A···I1ii0.983.203.916 (3)131
C12—H12B···I10.983.224.172 (3)163
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···I1i0.953.124.049 (3)168
C12—H12A···I1ii0.983.203.916 (3)131
C12—H12B···I10.983.224.172 (3)163
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+1, y, z.
 

Acknowledgements

DCG would like to thank DGAPA–UNAM for a postdoctoral fellowship. The authors thank Dr Alma Arévalo for her technical assistance. This work was supported financially by CONACYT (178265) and DGAPA-PAPIIT-IN-210613, which is gratefully acknowledged

References

First citationAgilent (2013). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationArduengo, A. J., Goerlich, J. R. & Marshall, W. J. (1995). J. Am. Chem. Soc. 117, 11027–11028.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHohloch, S., Scheiffele, D. & Sarkar, B. (2013). Eur. J. Inorg. Chem. pp. 3956–3965.  Web of Science CSD CrossRef Google Scholar
First citationHohloch, S., Su, C. Y. & Sarkar, B. (2011). Eur. J. Inorg. Chem. pp. 3067–3075.  Web of Science CSD CrossRef Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMathew, P., Neels, A. & Albrecht, M. (2008). J. Am. Chem. Soc. 130, 13534–13535.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSaravanakumar, R., Ramkumar, V. & Sankararaman, S. (2011). Organometallics, 30, 1689–1694.  Web of Science CSD CrossRef CAS Google Scholar
First citationShaik, J. B., Ramkumar, V., Varghese, B. & Sankararaman, S. (2013). Beilstein J. Org. Chem. 9, 698–704.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds