organic compounds
R,3S)-3-[(tert-butylsulfinyl)amino]-2-fluoro-3-phenylpropanoate
of methyl (2aDepartment of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai, People's Republic of China
*Correspondence e-mail: ya.li@sues.edu.cn
The title compound, C14H20FNO3S, contains two chiral carbon centres and the has been confirmed as (2R,3S). In the crystal, adjacent molecules are linked by weak C—H⋯O hydrogen bonds, generating zigzag chains along the a-axis direction.
Keywords: crystal structure; fluorine; amino acid; sulfoxide; N—H⋯O hydrogen bonding.
CCDC reference: 1441329
1. Related literature
For the use of of fluorinated β-amino acids in organic synthesis, see: Marsh (2014); Niemz & Tirrell (2001); Chiu et al. (2006). For their synthesis, see: Shang et al. (2015); Yoshinari et al. (2011); Duggan et al. (2010); Peddie & Abell (2012); Jing et al. (2011); Pan et al. (2010).
2. Experimental
2.1. Crystal data
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL.
Supporting information
CCDC reference: 1441329
https://doi.org/10.1107/S2056989015023580/su5256sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989015023580/su5256Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989015023580/su5256Isup3.cml
LiHMDS (1.5 ml, 1.0 mol/l in THF) was added to a solution of methyl fluoroacetate (138 mg, 1.5 mmol), (Rs)—N-benzylidene- 2-methylpropane-2-sulfinamide (209 mg, 1.0 mmol), N,N,N',N'-tetramethyl-ethane-1,2-diamine (0.3 ml), and THF (3 ml) at 203 K. The reaction mixture was stirred for 30 min, then saturated NH4Cl—H2O (5 ml) was added, and the quenched reaction mixture was extracted with ethyl acetate (3 × 20 ml). The combined organic layers were dried over anhydrous Na2SO4. The obtained compound was recrystallized from ethyl acetate/hexane (1:2) to give colorless crystals.
For the use of of fluorinated β-amino acids in organic synthesis, see: Marsh (2014); Niemz & Tirrell (2001); Chiu et al. (2006). For their synthesis, see: Shang et al. (2015); Yoshinari et al. (2011); Duggan et al. (2010); Peddie & Abell (2012); Jing et al. (2011); Pan et al. (2010).
LiHMDS (1.5 ml, 1.0 mol/l in THF) was added to a solution of methyl fluoroacetate (138 mg, 1.5 mmol), (Rs)—N-benzylidene- 2-methylpropane-2-sulfinamide (209 mg, 1.0 mmol), N,N,N',N'-tetramethyl-ethane-1,2-diamine (0.3 ml), and THF (3 ml) at 203 K. The reaction mixture was stirred for 30 min, then saturated NH4Cl—H2O (5 ml) was added, and the quenched reaction mixture was extracted with ethyl acetate (3 × 20 ml). The combined organic layers were dried over anhydrous Na2SO4. The obtained compound was recrystallized from ethyl acetate/hexane (1:2) to give colorless crystals.
detailsCrystal data, data collection and structure
details are summarized in Table 2. All the H atoms were placed at calculated positions and treated as riding atoms: N—H = 0.86 Å, C—H = 0.93-0.96 Å with Uiso(H) = 1.5Ueq(C-methyl and 1.2Ueq(N,C) for other H atoms.Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C14H20FNO3S | F(000) = 640 |
Mr = 301.37 | Dx = 1.270 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 3418 reflections |
a = 9.1809 (14) Å | θ = 2.2–25.5° |
b = 9.2384 (15) Å | µ = 0.22 mm−1 |
c = 18.577 (3) Å | T = 296 K |
V = 1575.7 (4) Å3 | Block, colorless |
Z = 4 | 0.13 × 0.11 × 0.07 mm |
Bruker APEXII CCD diffractometer | 2773 independent reflections |
Radiation source: fine-focus sealed tube | 2542 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.022 |
φ and ω scans | θmax = 25.0°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | h = −7→10 |
Tmin = 0.972, Tmax = 0.985 | k = −11→11 |
8176 measured reflections | l = −22→21 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.033 | w = 1/[σ2(Fo2) + (0.0505P)2 + 0.1714P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.088 | (Δ/σ)max < 0.001 |
S = 1.04 | Δρmax = 0.27 e Å−3 |
2773 reflections | Δρmin = −0.29 e Å−3 |
186 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0117 (16) |
Primary atom site location: structure-invariant direct methods | Absolute structure: Flack (1983), ???? Friedel pairs |
Secondary atom site location: difference Fourier map | Absolute structure parameter: 0.05 (8) |
C14H20FNO3S | V = 1575.7 (4) Å3 |
Mr = 301.37 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 9.1809 (14) Å | µ = 0.22 mm−1 |
b = 9.2384 (15) Å | T = 296 K |
c = 18.577 (3) Å | 0.13 × 0.11 × 0.07 mm |
Bruker APEXII CCD diffractometer | 2773 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | 2542 reflections with I > 2σ(I) |
Tmin = 0.972, Tmax = 0.985 | Rint = 0.022 |
8176 measured reflections |
R[F2 > 2σ(F2)] = 0.033 | H-atom parameters constrained |
wR(F2) = 0.088 | Δρmax = 0.27 e Å−3 |
S = 1.04 | Δρmin = −0.29 e Å−3 |
2773 reflections | Absolute structure: Flack (1983), ???? Friedel pairs |
186 parameters | Absolute structure parameter: 0.05 (8) |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.45246 (5) | 0.13512 (6) | 1.04644 (3) | 0.04566 (16) | |
C1 | 0.4525 (2) | 0.0513 (2) | 0.86771 (10) | 0.0454 (5) | |
C2 | 0.4258 (3) | 0.1407 (3) | 0.80959 (13) | 0.0645 (7) | |
H2 | 0.3412 | 0.1960 | 0.8085 | 0.077* | |
C3 | 0.5233 (3) | 0.1489 (4) | 0.75313 (14) | 0.0799 (8) | |
H3 | 0.5032 | 0.2089 | 0.7142 | 0.096* | |
C4 | 0.6486 (3) | 0.0701 (4) | 0.75394 (14) | 0.0790 (9) | |
H4 | 0.7134 | 0.0755 | 0.7156 | 0.095* | |
C5 | 0.6780 (3) | −0.0166 (3) | 0.81134 (15) | 0.0763 (8) | |
H5 | 0.7640 | −0.0698 | 0.8124 | 0.092* | |
C6 | 0.5812 (3) | −0.0262 (3) | 0.86807 (13) | 0.0614 (6) | |
H6 | 0.6029 | −0.0855 | 0.9070 | 0.074* | |
C7 | 0.3370 (2) | 0.0338 (2) | 0.92539 (10) | 0.0412 (4) | |
H7 | 0.2837 | 0.1254 | 0.9288 | 0.049* | |
C8 | 0.2285 (2) | −0.0833 (2) | 0.90203 (11) | 0.0485 (5) | |
H8 | 0.1834 | −0.0536 | 0.8566 | 0.058* | |
C9 | 0.1100 (2) | −0.1116 (2) | 0.95639 (13) | 0.0467 (5) | |
C10 | 0.3929 (3) | 0.0729 (3) | 1.13521 (12) | 0.0606 (6) | |
C11 | 0.4604 (4) | 0.1814 (4) | 1.18744 (15) | 0.0919 (10) | |
H11A | 0.4255 | 0.1626 | 1.2352 | 0.138* | |
H11B | 0.4337 | 0.2778 | 1.1734 | 0.138* | |
H11C | 0.5646 | 0.1720 | 1.1865 | 0.138* | |
C12 | 0.4469 (5) | −0.0790 (3) | 1.15008 (15) | 0.1004 (11) | |
H12A | 0.5481 | −0.0858 | 1.1376 | 0.151* | |
H12B | 0.3920 | −0.1468 | 1.1218 | 0.151* | |
H12C | 0.4347 | −0.1008 | 1.2002 | 0.151* | |
C13 | 0.2279 (3) | 0.0833 (4) | 1.13551 (16) | 0.0914 (10) | |
H13A | 0.1880 | 0.0102 | 1.1045 | 0.137* | |
H13B | 0.1989 | 0.1772 | 1.1186 | 0.137* | |
H13C | 0.1924 | 0.0692 | 1.1836 | 0.137* | |
C14 | −0.1016 (3) | −0.0130 (4) | 1.00859 (19) | 0.0961 (11) | |
H14A | −0.1445 | −0.1076 | 1.0052 | 0.144* | |
H14B | −0.1733 | 0.0589 | 0.9969 | 0.144* | |
H14C | −0.0670 | 0.0026 | 1.0567 | 0.144* | |
F1 | 0.30213 (17) | −0.21153 (14) | 0.89103 (8) | 0.0696 (4) | |
N1 | 0.38966 (18) | −0.00242 (17) | 0.99719 (8) | 0.0410 (4) | |
H1 | 0.3884 | −0.0897 | 1.0133 | 0.049* | |
O1 | 0.02014 (16) | −0.00250 (18) | 0.95826 (11) | 0.0748 (5) | |
O2 | 0.10015 (19) | −0.21952 (17) | 0.99189 (10) | 0.0648 (5) | |
O3 | 0.61290 (18) | 0.1341 (2) | 1.04867 (11) | 0.0792 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0395 (3) | 0.0456 (3) | 0.0519 (3) | −0.0028 (2) | 0.0025 (2) | −0.0062 (2) |
C1 | 0.0440 (11) | 0.0485 (11) | 0.0438 (11) | −0.0090 (10) | 0.0010 (10) | 0.0042 (9) |
C2 | 0.0517 (14) | 0.0817 (17) | 0.0600 (14) | −0.0088 (13) | −0.0025 (11) | 0.0254 (13) |
C3 | 0.0740 (19) | 0.111 (2) | 0.0545 (14) | −0.0187 (18) | 0.0034 (13) | 0.0315 (15) |
C4 | 0.0731 (19) | 0.101 (2) | 0.0632 (17) | −0.0250 (17) | 0.0232 (15) | 0.0080 (16) |
C5 | 0.0572 (15) | 0.0885 (19) | 0.0832 (18) | 0.0025 (15) | 0.0285 (13) | 0.0076 (16) |
C6 | 0.0578 (14) | 0.0670 (14) | 0.0595 (14) | 0.0055 (12) | 0.0115 (11) | 0.0130 (12) |
C7 | 0.0402 (10) | 0.0416 (10) | 0.0418 (10) | −0.0018 (8) | 0.0021 (8) | 0.0043 (9) |
C8 | 0.0455 (12) | 0.0540 (12) | 0.0458 (11) | −0.0051 (10) | 0.0000 (9) | 0.0011 (10) |
C9 | 0.0369 (10) | 0.0445 (11) | 0.0588 (12) | −0.0058 (8) | −0.0021 (10) | 0.0024 (11) |
C10 | 0.0636 (15) | 0.0741 (16) | 0.0440 (12) | −0.0009 (13) | 0.0036 (11) | −0.0078 (11) |
C11 | 0.094 (2) | 0.121 (2) | 0.0608 (16) | −0.006 (2) | −0.0073 (16) | −0.0322 (16) |
C12 | 0.152 (3) | 0.089 (2) | 0.0602 (16) | 0.007 (2) | −0.020 (2) | 0.0179 (15) |
C13 | 0.0664 (18) | 0.133 (3) | 0.0744 (18) | −0.0155 (18) | 0.0280 (15) | −0.0240 (18) |
C14 | 0.0490 (15) | 0.0811 (18) | 0.158 (3) | 0.0062 (14) | 0.0448 (19) | 0.019 (2) |
F1 | 0.0689 (9) | 0.0569 (8) | 0.0828 (10) | −0.0086 (7) | 0.0215 (7) | −0.0240 (7) |
N1 | 0.0477 (10) | 0.0368 (8) | 0.0385 (8) | −0.0010 (7) | 0.0006 (7) | 0.0035 (7) |
O1 | 0.0440 (9) | 0.0610 (10) | 0.1193 (15) | 0.0081 (8) | 0.0214 (10) | 0.0283 (10) |
O2 | 0.0621 (10) | 0.0489 (9) | 0.0835 (12) | −0.0020 (7) | 0.0163 (9) | 0.0133 (9) |
O3 | 0.0401 (8) | 0.0993 (14) | 0.0981 (13) | −0.0126 (9) | 0.0054 (9) | −0.0301 (12) |
S1—O3 | 1.4737 (17) | C8—H8 | 0.9800 |
S1—N1 | 1.6685 (17) | C9—O2 | 1.199 (2) |
S1—C10 | 1.830 (2) | C9—O1 | 1.303 (3) |
C1—C2 | 1.381 (3) | C10—C12 | 1.513 (4) |
C1—C6 | 1.381 (3) | C10—C13 | 1.518 (4) |
C1—C7 | 1.516 (3) | C10—C11 | 1.527 (4) |
C2—C3 | 1.381 (4) | C11—H11A | 0.9600 |
C2—H2 | 0.9300 | C11—H11B | 0.9600 |
C3—C4 | 1.361 (4) | C11—H11C | 0.9600 |
C3—H3 | 0.9300 | C12—H12A | 0.9600 |
C4—C5 | 1.361 (4) | C12—H12B | 0.9600 |
C4—H4 | 0.9300 | C12—H12C | 0.9600 |
C5—C6 | 1.382 (3) | C13—H13A | 0.9600 |
C5—H5 | 0.9300 | C13—H13B | 0.9600 |
C6—H6 | 0.9300 | C13—H13C | 0.9600 |
C7—N1 | 1.458 (2) | C14—O1 | 1.460 (3) |
C7—C8 | 1.533 (3) | C14—H14A | 0.9600 |
C7—H7 | 0.9800 | C14—H14B | 0.9600 |
C8—F1 | 1.379 (3) | C14—H14C | 0.9600 |
C8—C9 | 1.507 (3) | N1—H1 | 0.8600 |
O3—S1—N1 | 110.87 (10) | O1—C9—C8 | 109.95 (18) |
O3—S1—C10 | 105.74 (12) | C12—C10—C13 | 112.7 (3) |
N1—S1—C10 | 98.71 (10) | C12—C10—C11 | 111.1 (2) |
C2—C1—C6 | 117.7 (2) | C13—C10—C11 | 111.2 (2) |
C2—C1—C7 | 119.5 (2) | C12—C10—S1 | 111.0 (2) |
C6—C1—C7 | 122.66 (17) | C13—C10—S1 | 106.35 (19) |
C1—C2—C3 | 120.8 (3) | C11—C10—S1 | 104.17 (19) |
C1—C2—H2 | 119.6 | C10—C11—H11A | 109.5 |
C3—C2—H2 | 119.6 | C10—C11—H11B | 109.5 |
C4—C3—C2 | 120.6 (3) | H11A—C11—H11B | 109.5 |
C4—C3—H3 | 119.7 | C10—C11—H11C | 109.5 |
C2—C3—H3 | 119.7 | H11A—C11—H11C | 109.5 |
C3—C4—C5 | 119.4 (2) | H11B—C11—H11C | 109.5 |
C3—C4—H4 | 120.3 | C10—C12—H12A | 109.5 |
C5—C4—H4 | 120.3 | C10—C12—H12B | 109.5 |
C4—C5—C6 | 120.5 (3) | H12A—C12—H12B | 109.5 |
C4—C5—H5 | 119.8 | C10—C12—H12C | 109.5 |
C6—C5—H5 | 119.8 | H12A—C12—H12C | 109.5 |
C1—C6—C5 | 120.9 (2) | H12B—C12—H12C | 109.5 |
C1—C6—H6 | 119.5 | C10—C13—H13A | 109.5 |
C5—C6—H6 | 119.5 | C10—C13—H13B | 109.5 |
N1—C7—C1 | 116.05 (17) | H13A—C13—H13B | 109.5 |
N1—C7—C8 | 108.22 (16) | C10—C13—H13C | 109.5 |
C1—C7—C8 | 109.24 (16) | H13A—C13—H13C | 109.5 |
N1—C7—H7 | 107.7 | H13B—C13—H13C | 109.5 |
C1—C7—H7 | 107.7 | O1—C14—H14A | 109.5 |
C8—C7—H7 | 107.7 | O1—C14—H14B | 109.5 |
F1—C8—C9 | 107.71 (16) | H14A—C14—H14B | 109.5 |
F1—C8—C7 | 109.26 (18) | O1—C14—H14C | 109.5 |
C9—C8—C7 | 113.67 (17) | H14A—C14—H14C | 109.5 |
F1—C8—H8 | 108.7 | H14B—C14—H14C | 109.5 |
C9—C8—H8 | 108.7 | C7—N1—S1 | 116.21 (12) |
C7—C8—H8 | 108.7 | C7—N1—H1 | 121.9 |
O2—C9—O1 | 125.5 (2) | S1—N1—H1 | 121.9 |
O2—C9—C8 | 124.6 (2) | C9—O1—C14 | 116.76 (19) |
D—H···A | D—H | H···A | D···A | D—H···A |
C14—H14B···O3i | 0.96 | 2.79 | 3.045 (4) | 135 |
Symmetry code: (i) x−1, y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C14—H14B···O3i | 0.96 | 2.79 | 3.045 (4) | 135 |
Symmetry code: (i) x−1, y, z. |
Acknowledgements
Financial support by the Innovation Program of Shanghai University Students (cs1504006) is gratefully acknowledged.
References
Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chiu, H. P., Suzuki, Y., Gullickson, D., Ahmad, R., Kokona, B., Fairman, R. & Cheng, R. P. (2006). J. Am. Chem. Soc. 128, 15556–15557. Web of Science CrossRef PubMed CAS Google Scholar
Duggan, P. J., Johnston, M. & March, T. L. (2010). J. Org. Chem. 75, 7365–7372. Web of Science CSD CrossRef CAS PubMed Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Jing, Z.-T., Huang, Y.-G. & Qing, F.-L. (2011). Chin. Chem. Lett. 22, 919–922. Web of Science CSD CrossRef CAS Google Scholar
Marsh, E. N. G. (2014). Acc. Chem. Res. 47, 2878–2886. Web of Science CrossRef CAS PubMed Google Scholar
Niemz, A. & Tirrell, D. A. (2001). J. Am. Chem. Soc. 123, 7407–7413. Web of Science CrossRef PubMed CAS Google Scholar
Pan, Y., Zhao, Y., Ma, T., Yang, Y., Liu, H., Jiang, Z. & Tan, C.-H. (2010). Chem. Eur. J. 16, 779–782. Web of Science CrossRef PubMed CAS Google Scholar
Peddie, V. & Abell, A. D. (2012). Helv. Chim. Acta, 95, 2460–2473. Web of Science CrossRef CAS Google Scholar
Shang, H., Li, Y., Li, X. & Ren, X. (2015). J. Org. Chem. 80, 8739–8747. Web of Science CSD CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yoshinari, T., Gessier, F., Noti, C., Beck, A. K. & Seebach, D. (2011). Helv. Chim. Acta, 94, 1908–1942. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.