organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 1-(5-amino-2H-tetra­zol-2-yl)-2-methyl­propan-2-ol

aDepartment of Chemistry, Chonnam National University, Gwangju 500-757, Republic of Korea
*Correspondence e-mail: leespy@jnu.ac.kr

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 5 December 2015; accepted 10 December 2015; online 16 December 2015)

The title compound, C5H11N5O, crystallized with two independent mol­ecules in the asymmetric unit. The two mol­ecules differ in the orientation of the 2-methyl­propan-2-ol unit, with the hy­droxy H atoms pointing in opposite directions. In the crystal, mol­ecules are linked via O—H⋯O and N—H⋯O hydrogen bonds, forming ribbons propagating along [10-1]. The ribbons are linked via N—H⋯N hydrogen bonds, forming a three-dimensional structure.

1. Related literature

For the crystal structure of 5-amino­tetra­zole monohydrate, see: Britts & Karle (1967[Britts, K. & Karle, I. L. (1967). Acta Cryst. 22, 308-312.]); and for that of 5-amino­tetra­zole, see: Fujihisa et al. (2011[Fujihisa, H., Honda, K., Obata, S., Yamawaki, H., Takeya, S., Gotoh, Y. & Matsunaga, T. (2011). CrystEngComm, 13, 99-102.]). For the crystal structures of alkali salts of 5-amino­tetra­zole, see: Ernst et al. (2007[Ernst, V., Klapötke, T. M. & Stierstorfer, J. (2007). Z. Anorg. Allg. Chem. 633, 879-887.]). For the crystal structure of 5-azido-1H-tetra­zole, a highly explosive compound, see: Stierstorfer et al. (2008[Stierstorfer, J., Klapötke, T. M., Hammerl, A. & Chapman, R. D. (2008). Z. Anorg. Allg. Chem. 634, 1051-1057.]). For some examples of the use of 5-amino­tetra­zole in the synthesis of metal–organic frameworks, see: Karaghiosoff et al. (2009[Karaghiosoff, K., Klapötke, T. M. & Miró Sabaté, C. (2009). Chem. Eur. J. 15, 1164-1176.]); Liu et al. (2013[Liu, Z.-Y., Zou, H.-A., Hou, Z.-J., Yang, E.-C. & Zhao, X.-J. (2013). Dalton Trans. 42, 15716-15725.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C5H11N5O

  • Mr = 157.19

  • Triclinic, [P \overline 1]

  • a = 8.2472 (19) Å

  • b = 9.731 (2) Å

  • c = 10.087 (2) Å

  • α = 90.30 (1)°

  • β = 96.228 (10)°

  • γ = 96.259 (10)°

  • V = 799.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.12 × 0.10 × 0.08 mm

2.2. Data collection

  • Bruker SMART 1K CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.90, Tmax = 0.95

  • 11190 measured reflections

  • 2953 independent reflections

  • 2148 reflections with I > 2σ(I)

  • Rint = 0.047

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.122

  • S = 1.06

  • 2953 reflections

  • 227 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯O2i 0.91 (3) 2.04 (3) 2.946 (2) 171 (2)
N1—H1A⋯O2ii 0.92 (2) 2.53 (2) 3.243 (2) 135 (2)
N1—H1A⋯N9ii 0.92 (2) 2.58 (2) 3.287 (3) 134 (2)
N1—H1B⋯N10iii 0.84 (2) 2.24 (2) 3.082 (2) 173 (2)
O2—H2O⋯N2ii 0.82 (3) 2.14 (3) 2.930 (2) 162 (3)
N6—H6A⋯O1iv 0.93 (2) 2.22 (2) 3.114 (3) 161 (2)
N6—H6B⋯N5v 0.82 (2) 2.41 (2) 3.213 (2) 167 (2)
Symmetry codes: (i) x, y+1, z; (ii) -x+1, -y+1, -z+2; (iii) x, y, z+1; (iv) -x, -y+1, -z+1; (v) x, y, z-1.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL2014 and PLATON.

Supporting information


Comments top

Tetra­zole compounds are useful building blocks for the construction of high dimensional metal-organic frameworks, and they have provided various binding modes toward metal centers (Karaghiosoff et al., 2009; Liu et al., 2013). The title compound was easily prepared by the reaction of 5-amino­tetra­zole and iso-butyl­ene oxide, and introduces an hydroxyl group which we hope will be useful as an additional coordination center.

The title compound, Fig. 1, crystallized with two independent molecules(A and B) in the asymmetric unit. The two molecules differ in the orientation of the 2-methyl­propan-2-ol unit, with the hydroxyl H atoms pointing in opposite directions (Fig. 2).

In the crystal, molecules are linked via O—H···O and N—H···O hydrogen bonds (Table 1) forming ribbons propagating along direction [101]. The ribbons are linked via N—H···N hydrogen bonds forming a three-dimensional structure (Table 1 and Fig. 3).

Synthesis and crystallization top

The title compound was synthesized by heating 5-amino­tetra­zole with an excess amount of iso-butyl­ene oxide, without solvent, at 333 K. Crystals were obtained on cooling the reaction mixture.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. The OH and NH2 H atoms were located in difference Fourier maps and freely refined. The C-bound H atoms were positioned geometrically and refined using a riding model: C—H = 0.96-0.97 Å with Uiso(H) = 1.5Ueq(C-methyl) and 1.2Ueq(C) for other H atoms.

Related literature top

For the crystal structure of 5-aminotetrazole monohydrate, see: Britts & Karle (1967); and for that of 5-aminotetrazole, see: Fujihisa et al. (2011). For the crystal structures of alkali salts of 5-aminotetrazole, see: Ernst et al. (2007). For the crystal structure of 5-azido-1H-tetrazole, a highly explosive compound, see: Stierstorfer et al. (2008). For some examples of the use of 5-aminotetrazole in the synthesis of metal–organic frameworks, see: Karaghiosoff et al. (2009); Liu et al. (2013).

Structure description top

Tetra­zole compounds are useful building blocks for the construction of high dimensional metal-organic frameworks, and they have provided various binding modes toward metal centers (Karaghiosoff et al., 2009; Liu et al., 2013). The title compound was easily prepared by the reaction of 5-amino­tetra­zole and iso-butyl­ene oxide, and introduces an hydroxyl group which we hope will be useful as an additional coordination center.

The title compound, Fig. 1, crystallized with two independent molecules(A and B) in the asymmetric unit. The two molecules differ in the orientation of the 2-methyl­propan-2-ol unit, with the hydroxyl H atoms pointing in opposite directions (Fig. 2).

In the crystal, molecules are linked via O—H···O and N—H···O hydrogen bonds (Table 1) forming ribbons propagating along direction [101]. The ribbons are linked via N—H···N hydrogen bonds forming a three-dimensional structure (Table 1 and Fig. 3).

For the crystal structure of 5-aminotetrazole monohydrate, see: Britts & Karle (1967); and for that of 5-aminotetrazole, see: Fujihisa et al. (2011). For the crystal structures of alkali salts of 5-aminotetrazole, see: Ernst et al. (2007). For the crystal structure of 5-azido-1H-tetrazole, a highly explosive compound, see: Stierstorfer et al. (2008). For some examples of the use of 5-aminotetrazole in the synthesis of metal–organic frameworks, see: Karaghiosoff et al. (2009); Liu et al. (2013).

Synthesis and crystallization top

The title compound was synthesized by heating 5-amino­tetra­zole with an excess amount of iso-butyl­ene oxide, without solvent, at 333 K. Crystals were obtained on cooling the reaction mixture.

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 2. The OH and NH2 H atoms were located in difference Fourier maps and freely refined. The C-bound H atoms were positioned geometrically and refined using a riding model: C—H = 0.96-0.97 Å with Uiso(H) = 1.5Ueq(C-methyl) and 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the two independent molecules (A and B) of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view of the molecular overlap of molecules A (black) and B (red); calculated using the AutoMolfit routine in PLATON (Spek, 2009).
[Figure 3] Fig. 3. A view along the c axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines (see Table 1). H atoms not involved in hydrogen bonding have been omitted for clarity.
1-(5-Amino-2H-tetrazol-2-yl)-2-methylpropan-2-ol top
Crystal data top
C5H11N5OZ = 4
Mr = 157.19F(000) = 336
Triclinic, P1Dx = 1.305 Mg m3
a = 8.2472 (19) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.731 (2) ÅCell parameters from 4382 reflections
c = 10.087 (2) Åθ = 2.0–29.9°
α = 90.30 (1)°µ = 0.10 mm1
β = 96.228 (10)°T = 296 K
γ = 96.259 (10)°Block, colourless
V = 799.8 (3) Å30.12 × 0.10 × 0.08 mm
Data collection top
Bruker SMART 1K CCD
diffractometer
2953 independent reflections
Radiation source: fine-focus sealed tube2148 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
profile data from ω scansθmax = 25.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
h = 99
Tmin = 0.90, Tmax = 0.95k = 1111
11190 measured reflectionsl = 1212
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.050H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.122 w = 1/[σ2(Fo2) + (0.0588P)2 + 0.018P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2953 reflectionsΔρmax = 0.17 e Å3
227 parametersΔρmin = 0.19 e Å3
Crystal data top
C5H11N5Oγ = 96.259 (10)°
Mr = 157.19V = 799.8 (3) Å3
Triclinic, P1Z = 4
a = 8.2472 (19) ÅMo Kα radiation
b = 9.731 (2) ŵ = 0.10 mm1
c = 10.087 (2) ÅT = 296 K
α = 90.30 (1)°0.12 × 0.10 × 0.08 mm
β = 96.228 (10)°
Data collection top
Bruker SMART 1K CCD
diffractometer
2953 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
2148 reflections with I > 2σ(I)
Tmin = 0.90, Tmax = 0.95Rint = 0.047
11190 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.17 e Å3
2953 reflectionsΔρmin = 0.19 e Å3
227 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.28249 (16)0.86314 (15)0.81161 (14)0.0536 (4)
H1O0.270 (3)0.952 (3)0.789 (3)0.101 (9)*
N10.4219 (2)0.6570 (2)1.28100 (17)0.0530 (5)
H1A0.527 (3)0.690 (2)1.315 (2)0.063 (7)*
H1B0.378 (2)0.592 (2)1.3251 (19)0.048 (6)*
N20.48661 (17)0.69286 (15)1.05833 (15)0.0405 (4)
N30.40258 (18)0.64638 (14)0.94250 (14)0.0383 (4)
N40.26829 (19)0.56520 (15)0.95690 (15)0.0463 (4)
N50.25930 (18)0.55592 (16)1.08764 (15)0.0458 (4)
C10.3924 (2)0.63485 (18)1.14668 (18)0.0376 (4)
C20.4501 (2)0.68157 (18)0.80986 (18)0.0456 (5)
H2A0.38100.62230.74400.055*
H2B0.56240.66220.80620.055*
C30.4370 (2)0.83230 (18)0.77215 (18)0.0432 (5)
C40.5765 (2)0.9290 (2)0.8434 (2)0.0572 (6)
H4A0.56511.02230.81650.086*
H4B0.67940.90340.82080.086*
H4C0.57320.92260.93800.086*
C50.4359 (3)0.8413 (2)0.6213 (2)0.0730 (7)
H5A0.34470.78150.57860.110*
H5B0.53630.81330.59570.110*
H5C0.42600.93480.59450.110*
O20.24050 (17)0.15721 (15)0.77069 (15)0.0509 (4)
H2O0.301 (4)0.198 (3)0.831 (3)0.131 (13)*
N60.0533 (3)0.3192 (2)0.24056 (16)0.0523 (5)
H6A0.054 (3)0.283 (2)0.214 (2)0.065 (7)*
H6B0.093 (2)0.377 (2)0.191 (2)0.057 (7)*
N70.00343 (18)0.29922 (16)0.46818 (14)0.0436 (4)
N80.09725 (18)0.34753 (14)0.57877 (14)0.0382 (4)
N90.23381 (19)0.42091 (16)0.55631 (15)0.0505 (4)
N100.23478 (19)0.42088 (17)0.42439 (15)0.0516 (5)
C60.0940 (2)0.34662 (18)0.37369 (17)0.0377 (4)
C70.0495 (2)0.32626 (18)0.71339 (17)0.0416 (5)
H7A0.06490.34160.71260.050*
H7B0.11380.39520.77290.050*
C80.0714 (2)0.18313 (18)0.76967 (17)0.0386 (4)
C90.0260 (3)0.1839 (2)0.9121 (2)0.0652 (7)
H9A0.05040.09920.95420.098*
H9B0.08910.19230.91080.098*
H9C0.08810.26070.96100.098*
C100.0294 (3)0.0686 (2)0.6850 (2)0.0573 (6)
H10A0.01330.06300.60050.086*
H10B0.14160.08800.67100.086*
H10C0.02370.01780.72980.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0434 (8)0.0474 (9)0.0716 (10)0.0081 (7)0.0097 (7)0.0127 (7)
N10.0503 (12)0.0632 (12)0.0421 (11)0.0055 (10)0.0018 (9)0.0068 (9)
N20.0397 (9)0.0411 (9)0.0389 (9)0.0004 (7)0.0010 (7)0.0029 (7)
N30.0432 (9)0.0329 (8)0.0379 (9)0.0030 (7)0.0023 (7)0.0032 (7)
N40.0500 (10)0.0425 (9)0.0436 (10)0.0031 (8)0.0008 (7)0.0055 (7)
N50.0436 (10)0.0482 (10)0.0436 (10)0.0011 (8)0.0021 (7)0.0076 (7)
C10.0356 (10)0.0374 (10)0.0395 (11)0.0052 (8)0.0015 (8)0.0049 (8)
C20.0558 (12)0.0436 (11)0.0389 (11)0.0073 (9)0.0095 (9)0.0002 (9)
C30.0446 (11)0.0401 (11)0.0454 (11)0.0035 (9)0.0083 (9)0.0069 (9)
C40.0513 (13)0.0492 (13)0.0705 (15)0.0013 (10)0.0098 (11)0.0077 (11)
C50.0948 (19)0.0761 (17)0.0485 (13)0.0069 (14)0.0111 (13)0.0190 (12)
O20.0433 (8)0.0501 (9)0.0586 (10)0.0054 (7)0.0015 (7)0.0067 (7)
N60.0598 (12)0.0577 (12)0.0362 (10)0.0039 (10)0.0007 (9)0.0061 (8)
N70.0432 (9)0.0492 (10)0.0355 (9)0.0032 (7)0.0013 (7)0.0030 (7)
N80.0410 (9)0.0374 (9)0.0347 (9)0.0003 (7)0.0010 (7)0.0052 (7)
N90.0506 (10)0.0563 (11)0.0403 (10)0.0081 (8)0.0015 (8)0.0093 (8)
N100.0489 (10)0.0637 (11)0.0390 (9)0.0062 (8)0.0027 (8)0.0102 (8)
C60.0413 (11)0.0361 (10)0.0357 (10)0.0051 (8)0.0030 (8)0.0059 (8)
C70.0529 (12)0.0379 (11)0.0348 (10)0.0059 (9)0.0078 (9)0.0018 (8)
C80.0396 (11)0.0383 (11)0.0380 (10)0.0031 (8)0.0056 (8)0.0049 (8)
C90.0835 (17)0.0633 (15)0.0513 (13)0.0076 (12)0.0191 (12)0.0159 (11)
C100.0582 (14)0.0447 (12)0.0648 (14)0.0055 (10)0.0005 (11)0.0037 (10)
Geometric parameters (Å, º) top
O1—C31.437 (2)O2—C81.443 (2)
O1—H1O0.91 (3)O2—H2O0.82 (3)
N1—C11.362 (2)N6—C61.366 (2)
N1—H1A0.92 (2)N6—H6A0.93 (2)
N1—H1B0.844 (19)N6—H6B0.82 (2)
N2—C11.333 (2)N7—C61.328 (2)
N2—N31.342 (2)N7—N81.339 (2)
N3—N41.310 (2)N8—N91.308 (2)
N3—C21.466 (2)N8—C71.464 (2)
N4—N51.332 (2)N9—N101.332 (2)
N5—C11.349 (2)N10—C61.347 (2)
C2—C31.529 (3)C7—C81.528 (2)
C2—H2A0.9700C7—H7A0.9700
C2—H2B0.9700C7—H7B0.9700
C3—C41.518 (3)C8—C101.515 (3)
C3—C51.524 (3)C8—C91.524 (2)
C4—H4A0.9600C9—H9A0.9600
C4—H4B0.9600C9—H9B0.9600
C4—H4C0.9600C9—H9C0.9600
C5—H5A0.9600C10—H10A0.9600
C5—H5B0.9600C10—H10B0.9600
C5—H5C0.9600C10—H10C0.9600
C3—O1—H1O107.4 (15)C8—O2—H2O113 (2)
C1—N1—H1A117.3 (13)C6—N6—H6A116.9 (13)
C1—N1—H1B113.0 (14)C6—N6—H6B114.9 (15)
H1A—N1—H1B114.2 (18)H6A—N6—H6B115.5 (19)
C1—N2—N3101.66 (14)C6—N7—N8101.56 (14)
N4—N3—N2113.70 (14)N9—N8—N7114.12 (14)
N4—N3—C2121.24 (15)N9—N8—C7122.32 (15)
N2—N3—C2125.06 (14)N7—N8—C7123.51 (14)
N3—N4—N5106.41 (14)N8—N9—N10105.90 (15)
N4—N5—C1105.97 (13)N9—N10—C6106.18 (14)
N2—C1—N5112.25 (16)N7—C6—N10112.23 (16)
N2—C1—N1124.33 (17)N7—C6—N6124.23 (18)
N5—C1—N1123.35 (16)N10—C6—N6123.49 (16)
N3—C2—C3114.27 (14)N8—C7—C8114.86 (14)
N3—C2—H2A108.7N8—C7—H7A108.6
C3—C2—H2A108.7C8—C7—H7A108.6
N3—C2—H2B108.7N8—C7—H7B108.6
C3—C2—H2B108.7C8—C7—H7B108.6
H2A—C2—H2B107.6H7A—C7—H7B107.5
O1—C3—C4110.33 (16)O2—C8—C10106.22 (15)
O1—C3—C5110.39 (16)O2—C8—C9109.55 (15)
C4—C3—C5111.14 (16)C10—C8—C9112.03 (15)
O1—C3—C2105.38 (14)O2—C8—C7109.61 (13)
C4—C3—C2111.81 (16)C10—C8—C7112.28 (15)
C5—C3—C2107.60 (16)C9—C8—C7107.14 (15)
C3—C4—H4A109.5C8—C9—H9A109.5
C3—C4—H4B109.5C8—C9—H9B109.5
H4A—C4—H4B109.5H9A—C9—H9B109.5
C3—C4—H4C109.5C8—C9—H9C109.5
H4A—C4—H4C109.5H9A—C9—H9C109.5
H4B—C4—H4C109.5H9B—C9—H9C109.5
C3—C5—H5A109.5C8—C10—H10A109.5
C3—C5—H5B109.5C8—C10—H10B109.5
H5A—C5—H5B109.5H10A—C10—H10B109.5
C3—C5—H5C109.5C8—C10—H10C109.5
H5A—C5—H5C109.5H10A—C10—H10C109.5
H5B—C5—H5C109.5H10B—C10—H10C109.5
C1—N2—N3—N40.60 (19)C6—N7—N8—N91.0 (2)
C1—N2—N3—C2178.59 (15)C6—N7—N8—C7178.36 (15)
N2—N3—N4—N50.2 (2)N7—N8—N9—N101.1 (2)
C2—N3—N4—N5178.98 (14)C7—N8—N9—N10178.47 (14)
N3—N4—N5—C10.23 (19)N8—N9—N10—C60.6 (2)
N3—N2—C1—N50.74 (19)N8—N7—C6—N100.5 (2)
N3—N2—C1—N1176.40 (17)N8—N7—C6—N6177.00 (17)
N4—N5—C1—N20.6 (2)N9—N10—C6—N70.1 (2)
N4—N5—C1—N1176.53 (17)N9—N10—C6—N6177.61 (17)
N4—N3—C2—C3110.47 (19)N9—N8—C7—C8104.44 (19)
N2—N3—C2—C368.7 (2)N7—N8—C7—C878.4 (2)
N3—C2—C3—O144.3 (2)N8—C7—C8—O257.7 (2)
N3—C2—C3—C475.5 (2)N8—C7—C8—C1060.1 (2)
N3—C2—C3—C5162.14 (16)N8—C7—C8—C9176.52 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O2i0.91 (3)2.04 (3)2.946 (2)171 (2)
N1—H1A···O2ii0.92 (2)2.53 (2)3.243 (2)135 (2)
N1—H1A···N9ii0.92 (2)2.58 (2)3.287 (3)134 (2)
N1—H1B···N10iii0.84 (2)2.24 (2)3.082 (2)173 (2)
O2—H2O···N2ii0.82 (3)2.14 (3)2.930 (2)162 (3)
N6—H6A···O1iv0.93 (2)2.22 (2)3.114 (3)161 (2)
N6—H6B···N5v0.82 (2)2.41 (2)3.213 (2)167 (2)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+2; (iii) x, y, z+1; (iv) x, y+1, z+1; (v) x, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O2i0.91 (3)2.04 (3)2.946 (2)171 (2)
N1—H1A···O2ii0.92 (2)2.53 (2)3.243 (2)135 (2)
N1—H1A···N9ii0.92 (2)2.58 (2)3.287 (3)134 (2)
N1—H1B···N10iii0.84 (2)2.24 (2)3.082 (2)173 (2)
O2—H2O···N2ii0.82 (3)2.14 (3)2.930 (2)162 (3)
N6—H6A···O1iv0.93 (2)2.22 (2)3.114 (3)161 (2)
N6—H6B···N5v0.82 (2)2.41 (2)3.213 (2)167 (2)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+2; (iii) x, y, z+1; (iv) x, y+1, z+1; (v) x, y, z1.
 

Acknowledgements

This work was supported by a Chonnam National University research grant in 2014.

References

First citationBritts, K. & Karle, I. L. (1967). Acta Cryst. 22, 308–312.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationErnst, V., Klapötke, T. M. & Stierstorfer, J. (2007). Z. Anorg. Allg. Chem. 633, 879–887.  Web of Science CSD CrossRef CAS Google Scholar
First citationFujihisa, H., Honda, K., Obata, S., Yamawaki, H., Takeya, S., Gotoh, Y. & Matsunaga, T. (2011). CrystEngComm, 13, 99–102.  Web of Science CSD CrossRef CAS Google Scholar
First citationKaraghiosoff, K., Klapötke, T. M. & Miró Sabaté, C. (2009). Chem. Eur. J. 15, 1164–1176.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLiu, Z.-Y., Zou, H.-A., Hou, Z.-J., Yang, E.-C. & Zhao, X.-J. (2013). Dalton Trans. 42, 15716–15725.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStierstorfer, J., Klapötke, T. M., Hammerl, A. & Chapman, R. D. (2008). Z. Anorg. Allg. Chem. 634, 1051–1057.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds