organic compounds
H-tetrazol-2-yl)-2-methylpropan-2-ol
of 1-(5-amino-2aDepartment of Chemistry, Chonnam National University, Gwangju 500-757, Republic of Korea
*Correspondence e-mail: leespy@jnu.ac.kr
The title compound, C5H11N5O, crystallized with two independent molecules in the The two molecules differ in the orientation of the 2-methylpropan-2-ol unit, with the hydroxy H atoms pointing in opposite directions. In the crystal, molecules are linked via O—H⋯O and N—H⋯O hydrogen bonds, forming ribbons propagating along [10-1]. The ribbons are linked via N—H⋯N hydrogen bonds, forming a three-dimensional structure.
CCDC reference: 1441577
1. Related literature
For the ); and for that of 5-aminotetrazole, see: Fujihisa et al. (2011). For the crystal structures of alkali salts of 5-aminotetrazole, see: Ernst et al. (2007). For the of 5-azido-1H-tetrazole, a highly explosive compound, see: Stierstorfer et al. (2008). For some examples of the use of 5-aminotetrazole in the synthesis of metal–organic frameworks, see: Karaghiosoff et al. (2009); Liu et al. (2013).
of 5-aminotetrazole monohydrate, see: Britts & Karle (19672. Experimental
2.1. Crystal data
|
2.3. Refinement
|
Data collection: APEX2 (Bruker, 2006); cell SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 and PLATON.
Supporting information
CCDC reference: 1441577
https://doi.org/10.1107/S2056989015023713/su5257sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989015023713/su5257Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989015023713/su5257Isup3.cml
Tetrazole compounds are useful building blocks for the construction of high dimensional metal-organic frameworks, and they have provided various binding modes toward metal centers (Karaghiosoff et al., 2009; Liu et al., 2013). The title compound was easily prepared by the reaction of 5-aminotetrazole and iso-butylene oxide, and introduces an hydroxyl group which we hope will be useful as an additional coordination center.
The title compound, Fig. 1, crystallized with two independent molecules(A and B) in the
The two molecules differ in the orientation of the 2-methylpropan-2-ol unit, with the hydroxyl H atoms pointing in opposite directions (Fig. 2).In the crystal, molecules are linked via O—H···O and N—H···O hydrogen bonds (Table 1) forming ribbons propagating along direction [101]. The ribbons are linked via N—H···N hydrogen bonds forming a three-dimensional structure (Table 1 and Fig. 3).
The title compound was synthesized by heating 5-aminotetrazole with an excess amount of iso-butylene oxide, without solvent, at 333 K. Crystals were obtained on cooling the reaction mixture.
Crystal data, data collection and structure
details are summarized in Table 2. The OH and NH2 H atoms were located in difference Fourier maps and freely refined. The C-bound H atoms were positioned geometrically and refined using a riding model: C—H = 0.96-0.97 Å with Uiso(H) = 1.5Ueq(C-methyl) and 1.2Ueq(C) for other H atoms.Tetrazole compounds are useful building blocks for the construction of high dimensional metal-organic frameworks, and they have provided various binding modes toward metal centers (Karaghiosoff et al., 2009; Liu et al., 2013). The title compound was easily prepared by the reaction of 5-aminotetrazole and iso-butylene oxide, and introduces an hydroxyl group which we hope will be useful as an additional coordination center.
The title compound, Fig. 1, crystallized with two independent molecules(A and B) in the
The two molecules differ in the orientation of the 2-methylpropan-2-ol unit, with the hydroxyl H atoms pointing in opposite directions (Fig. 2).In the crystal, molecules are linked via O—H···O and N—H···O hydrogen bonds (Table 1) forming ribbons propagating along direction [101]. The ribbons are linked via N—H···N hydrogen bonds forming a three-dimensional structure (Table 1 and Fig. 3).
For the
of 5-aminotetrazole monohydrate, see: Britts & Karle (1967); and for that of 5-aminotetrazole, see: Fujihisa et al. (2011). For the crystal structures of alkali salts of 5-aminotetrazole, see: Ernst et al. (2007). For the of 5-azido-1H-tetrazole, a highly explosive compound, see: Stierstorfer et al. (2008). For some examples of the use of 5-aminotetrazole in the synthesis of metal–organic frameworks, see: Karaghiosoff et al. (2009); Liu et al. (2013).The title compound was synthesized by heating 5-aminotetrazole with an excess amount of iso-butylene oxide, without solvent, at 333 K. Crystals were obtained on cooling the reaction mixture.
detailsCrystal data, data collection and structure
details are summarized in Table 2. The OH and NH2 H atoms were located in difference Fourier maps and freely refined. The C-bound H atoms were positioned geometrically and refined using a riding model: C—H = 0.96-0.97 Å with Uiso(H) = 1.5Ueq(C-methyl) and 1.2Ueq(C) for other H atoms.Data collection: APEX2 (Bruker, 2006); cell
SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).Fig. 1. The molecular structure of the two independent molecules (A and B) of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. | |
Fig. 2. A view of the molecular overlap of molecules A (black) and B (red); calculated using the AutoMolfit routine in PLATON (Spek, 2009). | |
Fig. 3. A view along the c axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines (see Table 1). H atoms not involved in hydrogen bonding have been omitted for clarity. |
C5H11N5O | Z = 4 |
Mr = 157.19 | F(000) = 336 |
Triclinic, P1 | Dx = 1.305 Mg m−3 |
a = 8.2472 (19) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.731 (2) Å | Cell parameters from 4382 reflections |
c = 10.087 (2) Å | θ = 2.0–29.9° |
α = 90.30 (1)° | µ = 0.10 mm−1 |
β = 96.228 (10)° | T = 296 K |
γ = 96.259 (10)° | Block, colourless |
V = 799.8 (3) Å3 | 0.12 × 0.10 × 0.08 mm |
Bruker SMART 1K CCD diffractometer | 2953 independent reflections |
Radiation source: fine-focus sealed tube | 2148 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.047 |
profile data from ω scans | θmax = 25.5°, θmin = 2.5° |
Absorption correction: multi-scan (SADABS; Bruker, 2006) | h = −9→9 |
Tmin = 0.90, Tmax = 0.95 | k = −11→11 |
11190 measured reflections | l = −12→12 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.050 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.122 | w = 1/[σ2(Fo2) + (0.0588P)2 + 0.018P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max < 0.001 |
2953 reflections | Δρmax = 0.17 e Å−3 |
227 parameters | Δρmin = −0.19 e Å−3 |
C5H11N5O | γ = 96.259 (10)° |
Mr = 157.19 | V = 799.8 (3) Å3 |
Triclinic, P1 | Z = 4 |
a = 8.2472 (19) Å | Mo Kα radiation |
b = 9.731 (2) Å | µ = 0.10 mm−1 |
c = 10.087 (2) Å | T = 296 K |
α = 90.30 (1)° | 0.12 × 0.10 × 0.08 mm |
β = 96.228 (10)° |
Bruker SMART 1K CCD diffractometer | 2953 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2006) | 2148 reflections with I > 2σ(I) |
Tmin = 0.90, Tmax = 0.95 | Rint = 0.047 |
11190 measured reflections |
R[F2 > 2σ(F2)] = 0.050 | 0 restraints |
wR(F2) = 0.122 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | Δρmax = 0.17 e Å−3 |
2953 reflections | Δρmin = −0.19 e Å−3 |
227 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.28249 (16) | 0.86314 (15) | 0.81161 (14) | 0.0536 (4) | |
H1O | 0.270 (3) | 0.952 (3) | 0.789 (3) | 0.101 (9)* | |
N1 | 0.4219 (2) | 0.6570 (2) | 1.28100 (17) | 0.0530 (5) | |
H1A | 0.527 (3) | 0.690 (2) | 1.315 (2) | 0.063 (7)* | |
H1B | 0.378 (2) | 0.592 (2) | 1.3251 (19) | 0.048 (6)* | |
N2 | 0.48661 (17) | 0.69286 (15) | 1.05833 (15) | 0.0405 (4) | |
N3 | 0.40258 (18) | 0.64638 (14) | 0.94250 (14) | 0.0383 (4) | |
N4 | 0.26829 (19) | 0.56520 (15) | 0.95690 (15) | 0.0463 (4) | |
N5 | 0.25930 (18) | 0.55592 (16) | 1.08764 (15) | 0.0458 (4) | |
C1 | 0.3924 (2) | 0.63485 (18) | 1.14668 (18) | 0.0376 (4) | |
C2 | 0.4501 (2) | 0.68157 (18) | 0.80986 (18) | 0.0456 (5) | |
H2A | 0.3810 | 0.6223 | 0.7440 | 0.055* | |
H2B | 0.5624 | 0.6622 | 0.8062 | 0.055* | |
C3 | 0.4370 (2) | 0.83230 (18) | 0.77215 (18) | 0.0432 (5) | |
C4 | 0.5765 (2) | 0.9290 (2) | 0.8434 (2) | 0.0572 (6) | |
H4A | 0.5651 | 1.0223 | 0.8165 | 0.086* | |
H4B | 0.6794 | 0.9034 | 0.8208 | 0.086* | |
H4C | 0.5732 | 0.9226 | 0.9380 | 0.086* | |
C5 | 0.4359 (3) | 0.8413 (2) | 0.6213 (2) | 0.0730 (7) | |
H5A | 0.3447 | 0.7815 | 0.5786 | 0.110* | |
H5B | 0.5363 | 0.8133 | 0.5957 | 0.110* | |
H5C | 0.4260 | 0.9348 | 0.5945 | 0.110* | |
O2 | 0.24050 (17) | 0.15721 (15) | 0.77069 (15) | 0.0509 (4) | |
H2O | 0.301 (4) | 0.198 (3) | 0.831 (3) | 0.131 (13)* | |
N6 | 0.0533 (3) | 0.3192 (2) | 0.24056 (16) | 0.0523 (5) | |
H6A | −0.054 (3) | 0.283 (2) | 0.214 (2) | 0.065 (7)* | |
H6B | 0.093 (2) | 0.377 (2) | 0.191 (2) | 0.057 (7)* | |
N7 | 0.00343 (18) | 0.29922 (16) | 0.46818 (14) | 0.0436 (4) | |
N8 | 0.09725 (18) | 0.34753 (14) | 0.57877 (14) | 0.0382 (4) | |
N9 | 0.23381 (19) | 0.42091 (16) | 0.55631 (15) | 0.0505 (4) | |
N10 | 0.23478 (19) | 0.42088 (17) | 0.42439 (15) | 0.0516 (5) | |
C6 | 0.0940 (2) | 0.34662 (18) | 0.37369 (17) | 0.0377 (4) | |
C7 | 0.0495 (2) | 0.32626 (18) | 0.71339 (17) | 0.0416 (5) | |
H7A | −0.0649 | 0.3416 | 0.7126 | 0.050* | |
H7B | 0.1138 | 0.3952 | 0.7729 | 0.050* | |
C8 | 0.0714 (2) | 0.18313 (18) | 0.76967 (17) | 0.0386 (4) | |
C9 | 0.0260 (3) | 0.1839 (2) | 0.9121 (2) | 0.0652 (7) | |
H9A | 0.0504 | 0.0992 | 0.9542 | 0.098* | |
H9B | −0.0891 | 0.1923 | 0.9108 | 0.098* | |
H9C | 0.0881 | 0.2607 | 0.9610 | 0.098* | |
C10 | −0.0294 (3) | 0.0686 (2) | 0.6850 (2) | 0.0573 (6) | |
H10A | 0.0133 | 0.0630 | 0.6005 | 0.086* | |
H10B | −0.1416 | 0.0880 | 0.6710 | 0.086* | |
H10C | −0.0237 | −0.0178 | 0.7298 | 0.086* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0434 (8) | 0.0474 (9) | 0.0716 (10) | 0.0081 (7) | 0.0097 (7) | 0.0127 (7) |
N1 | 0.0503 (12) | 0.0632 (12) | 0.0421 (11) | −0.0055 (10) | 0.0018 (9) | 0.0068 (9) |
N2 | 0.0397 (9) | 0.0411 (9) | 0.0389 (9) | 0.0004 (7) | 0.0010 (7) | 0.0029 (7) |
N3 | 0.0432 (9) | 0.0329 (8) | 0.0379 (9) | 0.0030 (7) | 0.0023 (7) | 0.0032 (7) |
N4 | 0.0500 (10) | 0.0425 (9) | 0.0436 (10) | −0.0031 (8) | 0.0008 (7) | 0.0055 (7) |
N5 | 0.0436 (10) | 0.0482 (10) | 0.0436 (10) | −0.0011 (8) | 0.0021 (7) | 0.0076 (7) |
C1 | 0.0356 (10) | 0.0374 (10) | 0.0395 (11) | 0.0052 (8) | 0.0015 (8) | 0.0049 (8) |
C2 | 0.0558 (12) | 0.0436 (11) | 0.0389 (11) | 0.0073 (9) | 0.0095 (9) | 0.0002 (9) |
C3 | 0.0446 (11) | 0.0401 (11) | 0.0454 (11) | 0.0035 (9) | 0.0083 (9) | 0.0069 (9) |
C4 | 0.0513 (13) | 0.0492 (13) | 0.0705 (15) | −0.0013 (10) | 0.0098 (11) | 0.0077 (11) |
C5 | 0.0948 (19) | 0.0761 (17) | 0.0485 (13) | 0.0069 (14) | 0.0111 (13) | 0.0190 (12) |
O2 | 0.0433 (8) | 0.0501 (9) | 0.0586 (10) | 0.0054 (7) | 0.0015 (7) | 0.0067 (7) |
N6 | 0.0598 (12) | 0.0577 (12) | 0.0362 (10) | −0.0039 (10) | 0.0007 (9) | 0.0061 (8) |
N7 | 0.0432 (9) | 0.0492 (10) | 0.0355 (9) | −0.0032 (7) | −0.0013 (7) | 0.0030 (7) |
N8 | 0.0410 (9) | 0.0374 (9) | 0.0347 (9) | 0.0003 (7) | 0.0010 (7) | 0.0052 (7) |
N9 | 0.0506 (10) | 0.0563 (11) | 0.0403 (10) | −0.0081 (8) | −0.0015 (8) | 0.0093 (8) |
N10 | 0.0489 (10) | 0.0637 (11) | 0.0390 (9) | −0.0062 (8) | 0.0027 (8) | 0.0102 (8) |
C6 | 0.0413 (11) | 0.0361 (10) | 0.0357 (10) | 0.0051 (8) | 0.0030 (8) | 0.0059 (8) |
C7 | 0.0529 (12) | 0.0379 (11) | 0.0348 (10) | 0.0059 (9) | 0.0078 (9) | 0.0018 (8) |
C8 | 0.0396 (11) | 0.0383 (11) | 0.0380 (10) | 0.0031 (8) | 0.0056 (8) | 0.0049 (8) |
C9 | 0.0835 (17) | 0.0633 (15) | 0.0513 (13) | 0.0076 (12) | 0.0191 (12) | 0.0159 (11) |
C10 | 0.0582 (14) | 0.0447 (12) | 0.0648 (14) | −0.0055 (10) | −0.0005 (11) | 0.0037 (10) |
O1—C3 | 1.437 (2) | O2—C8 | 1.443 (2) |
O1—H1O | 0.91 (3) | O2—H2O | 0.82 (3) |
N1—C1 | 1.362 (2) | N6—C6 | 1.366 (2) |
N1—H1A | 0.92 (2) | N6—H6A | 0.93 (2) |
N1—H1B | 0.844 (19) | N6—H6B | 0.82 (2) |
N2—C1 | 1.333 (2) | N7—C6 | 1.328 (2) |
N2—N3 | 1.342 (2) | N7—N8 | 1.339 (2) |
N3—N4 | 1.310 (2) | N8—N9 | 1.308 (2) |
N3—C2 | 1.466 (2) | N8—C7 | 1.464 (2) |
N4—N5 | 1.332 (2) | N9—N10 | 1.332 (2) |
N5—C1 | 1.349 (2) | N10—C6 | 1.347 (2) |
C2—C3 | 1.529 (3) | C7—C8 | 1.528 (2) |
C2—H2A | 0.9700 | C7—H7A | 0.9700 |
C2—H2B | 0.9700 | C7—H7B | 0.9700 |
C3—C4 | 1.518 (3) | C8—C10 | 1.515 (3) |
C3—C5 | 1.524 (3) | C8—C9 | 1.524 (2) |
C4—H4A | 0.9600 | C9—H9A | 0.9600 |
C4—H4B | 0.9600 | C9—H9B | 0.9600 |
C4—H4C | 0.9600 | C9—H9C | 0.9600 |
C5—H5A | 0.9600 | C10—H10A | 0.9600 |
C5—H5B | 0.9600 | C10—H10B | 0.9600 |
C5—H5C | 0.9600 | C10—H10C | 0.9600 |
C3—O1—H1O | 107.4 (15) | C8—O2—H2O | 113 (2) |
C1—N1—H1A | 117.3 (13) | C6—N6—H6A | 116.9 (13) |
C1—N1—H1B | 113.0 (14) | C6—N6—H6B | 114.9 (15) |
H1A—N1—H1B | 114.2 (18) | H6A—N6—H6B | 115.5 (19) |
C1—N2—N3 | 101.66 (14) | C6—N7—N8 | 101.56 (14) |
N4—N3—N2 | 113.70 (14) | N9—N8—N7 | 114.12 (14) |
N4—N3—C2 | 121.24 (15) | N9—N8—C7 | 122.32 (15) |
N2—N3—C2 | 125.06 (14) | N7—N8—C7 | 123.51 (14) |
N3—N4—N5 | 106.41 (14) | N8—N9—N10 | 105.90 (15) |
N4—N5—C1 | 105.97 (13) | N9—N10—C6 | 106.18 (14) |
N2—C1—N5 | 112.25 (16) | N7—C6—N10 | 112.23 (16) |
N2—C1—N1 | 124.33 (17) | N7—C6—N6 | 124.23 (18) |
N5—C1—N1 | 123.35 (16) | N10—C6—N6 | 123.49 (16) |
N3—C2—C3 | 114.27 (14) | N8—C7—C8 | 114.86 (14) |
N3—C2—H2A | 108.7 | N8—C7—H7A | 108.6 |
C3—C2—H2A | 108.7 | C8—C7—H7A | 108.6 |
N3—C2—H2B | 108.7 | N8—C7—H7B | 108.6 |
C3—C2—H2B | 108.7 | C8—C7—H7B | 108.6 |
H2A—C2—H2B | 107.6 | H7A—C7—H7B | 107.5 |
O1—C3—C4 | 110.33 (16) | O2—C8—C10 | 106.22 (15) |
O1—C3—C5 | 110.39 (16) | O2—C8—C9 | 109.55 (15) |
C4—C3—C5 | 111.14 (16) | C10—C8—C9 | 112.03 (15) |
O1—C3—C2 | 105.38 (14) | O2—C8—C7 | 109.61 (13) |
C4—C3—C2 | 111.81 (16) | C10—C8—C7 | 112.28 (15) |
C5—C3—C2 | 107.60 (16) | C9—C8—C7 | 107.14 (15) |
C3—C4—H4A | 109.5 | C8—C9—H9A | 109.5 |
C3—C4—H4B | 109.5 | C8—C9—H9B | 109.5 |
H4A—C4—H4B | 109.5 | H9A—C9—H9B | 109.5 |
C3—C4—H4C | 109.5 | C8—C9—H9C | 109.5 |
H4A—C4—H4C | 109.5 | H9A—C9—H9C | 109.5 |
H4B—C4—H4C | 109.5 | H9B—C9—H9C | 109.5 |
C3—C5—H5A | 109.5 | C8—C10—H10A | 109.5 |
C3—C5—H5B | 109.5 | C8—C10—H10B | 109.5 |
H5A—C5—H5B | 109.5 | H10A—C10—H10B | 109.5 |
C3—C5—H5C | 109.5 | C8—C10—H10C | 109.5 |
H5A—C5—H5C | 109.5 | H10A—C10—H10C | 109.5 |
H5B—C5—H5C | 109.5 | H10B—C10—H10C | 109.5 |
C1—N2—N3—N4 | −0.60 (19) | C6—N7—N8—N9 | 1.0 (2) |
C1—N2—N3—C2 | 178.59 (15) | C6—N7—N8—C7 | 178.36 (15) |
N2—N3—N4—N5 | 0.2 (2) | N7—N8—N9—N10 | −1.1 (2) |
C2—N3—N4—N5 | −178.98 (14) | C7—N8—N9—N10 | −178.47 (14) |
N3—N4—N5—C1 | 0.23 (19) | N8—N9—N10—C6 | 0.6 (2) |
N3—N2—C1—N5 | 0.74 (19) | N8—N7—C6—N10 | −0.5 (2) |
N3—N2—C1—N1 | −176.40 (17) | N8—N7—C6—N6 | 177.00 (17) |
N4—N5—C1—N2 | −0.6 (2) | N9—N10—C6—N7 | −0.1 (2) |
N4—N5—C1—N1 | 176.53 (17) | N9—N10—C6—N6 | −177.61 (17) |
N4—N3—C2—C3 | 110.47 (19) | N9—N8—C7—C8 | −104.44 (19) |
N2—N3—C2—C3 | −68.7 (2) | N7—N8—C7—C8 | 78.4 (2) |
N3—C2—C3—O1 | −44.3 (2) | N8—C7—C8—O2 | 57.7 (2) |
N3—C2—C3—C4 | 75.5 (2) | N8—C7—C8—C10 | −60.1 (2) |
N3—C2—C3—C5 | −162.14 (16) | N8—C7—C8—C9 | 176.52 (15) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1O···O2i | 0.91 (3) | 2.04 (3) | 2.946 (2) | 171 (2) |
N1—H1A···O2ii | 0.92 (2) | 2.53 (2) | 3.243 (2) | 135 (2) |
N1—H1A···N9ii | 0.92 (2) | 2.58 (2) | 3.287 (3) | 134 (2) |
N1—H1B···N10iii | 0.84 (2) | 2.24 (2) | 3.082 (2) | 173 (2) |
O2—H2O···N2ii | 0.82 (3) | 2.14 (3) | 2.930 (2) | 162 (3) |
N6—H6A···O1iv | 0.93 (2) | 2.22 (2) | 3.114 (3) | 161 (2) |
N6—H6B···N5v | 0.82 (2) | 2.41 (2) | 3.213 (2) | 167 (2) |
Symmetry codes: (i) x, y+1, z; (ii) −x+1, −y+1, −z+2; (iii) x, y, z+1; (iv) −x, −y+1, −z+1; (v) x, y, z−1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1O···O2i | 0.91 (3) | 2.04 (3) | 2.946 (2) | 171 (2) |
N1—H1A···O2ii | 0.92 (2) | 2.53 (2) | 3.243 (2) | 135 (2) |
N1—H1A···N9ii | 0.92 (2) | 2.58 (2) | 3.287 (3) | 134 (2) |
N1—H1B···N10iii | 0.84 (2) | 2.24 (2) | 3.082 (2) | 173 (2) |
O2—H2O···N2ii | 0.82 (3) | 2.14 (3) | 2.930 (2) | 162 (3) |
N6—H6A···O1iv | 0.93 (2) | 2.22 (2) | 3.114 (3) | 161 (2) |
N6—H6B···N5v | 0.82 (2) | 2.41 (2) | 3.213 (2) | 167 (2) |
Symmetry codes: (i) x, y+1, z; (ii) −x+1, −y+1, −z+2; (iii) x, y, z+1; (iv) −x, −y+1, −z+1; (v) x, y, z−1. |
Acknowledgements
This work was supported by a Chonnam National University research grant in 2014.
References
Britts, K. & Karle, I. L. (1967). Acta Cryst. 22, 308–312. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Ernst, V., Klapötke, T. M. & Stierstorfer, J. (2007). Z. Anorg. Allg. Chem. 633, 879–887. Web of Science CSD CrossRef CAS Google Scholar
Fujihisa, H., Honda, K., Obata, S., Yamawaki, H., Takeya, S., Gotoh, Y. & Matsunaga, T. (2011). CrystEngComm, 13, 99–102. Web of Science CSD CrossRef CAS Google Scholar
Karaghiosoff, K., Klapötke, T. M. & Miró Sabaté, C. (2009). Chem. Eur. J. 15, 1164–1176. Web of Science CSD CrossRef PubMed CAS Google Scholar
Liu, Z.-Y., Zou, H.-A., Hou, Z.-J., Yang, E.-C. & Zhao, X.-J. (2013). Dalton Trans. 42, 15716–15725. Web of Science CSD CrossRef CAS PubMed Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stierstorfer, J., Klapötke, T. M., Hammerl, A. & Chapman, R. D. (2008). Z. Anorg. Allg. Chem. 634, 1051–1057. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.