organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of ethyl 2-(2-{1-[N-(4-bromo­phen­yl)-2-oxo-2-phenyl­acetamido]-2-tert-butyl­amino-2-oxo­ethyl}-1H-pyrrol-1-yl)acetate

aDepartment of Applied Chemistry, Graduate School of Engineering, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata-ku, Kitakyushu 804-8550, Japan, and bJapan Bruker AXS K.K.3-9, Moriya-cho Kanagawaku Yokohama 221-0022, Japan
*Correspondence e-mail: moriguch@che.kyutech.ac.jp

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 7 December 2015; accepted 9 December 2015; online 12 December 2015)

In the title compound, C28H30BrN3O5, there is an intra­molecular N—H⋯O hydrogen bond and an intra­molecular C—H⋯O hydrogen bond, both forming S(9) ring motifs. The planes of the 4-bromo­phenyl ring and the phenyl ring are inclined to that of the pyrrole ring by 48.05 (12) and 77.45 (14)°, respectively, and to one another by 56.25 (12)°. In the crystal, mol­ecules are linked via C—H⋯O hydrogen bonds and C—H⋯π inter­actions, forming slabs parallel to (10-1).

1. Related literature

For examples of the biological and pharmacological properties of pyrrole derivatives, see: Daidone et al. (1990[Daidone, G., Maggio, B. & Schillaci, D. (1990). Pharmazie, 45, 441-442.]); Davis et al. (2008[Davis, F. A., Bowen, K., Xu, H. & Velvadapu, V. (2008). Tetrahedron, 64, 4174-4182.]); Kaiser & Glenn (1972[Kaiser, D. G. & Glenn, E. M. (1972). J. Pharm. Sci. 61, 1908-1911.]); Meshram et al. (2010[Meshram, H. M., Prasad, B. R. V. & Kumar, D. A. (2010). Tetrahedron Lett. 51, 3477-3480.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C28H30BrN3O5

  • Mr = 568.46

  • Monoclinic, P 21 /n

  • a = 11.656 (3) Å

  • b = 17.997 (5) Å

  • c = 13.463 (4) Å

  • β = 97.351 (3)°

  • V = 2801.0 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.51 mm−1

  • T = 120 K

  • 0.45 × 0.45 × 0.30 mm

2.2. Data collection

  • Bruker APEXII KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.600, Tmax = 0.636

  • 25937 measured reflections

  • 4924 independent reflections

  • 3479 reflections with I > 2σ(I)

  • Rint = 0.075

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.086

  • S = 1.35

  • 4924 reflections

  • 338 parameters

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N1/C1–C4 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1⋯O1 0.86 2.13 2.970 (3) 164
C14—H24⋯O3 0.93 2.57 3.199 (3) 148
C8—H8B⋯O4i 0.96 2.55 3.432 (3) 154
C17—H17⋯O3ii 0.93 2.34 3.269 (3) 176
C7—H7ACg1iii 0.97 2.86 3.697 (3) 151
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z; (iii) -x+2, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comments top

Pyrrole and its derivatives are important classes of heterocyclic compounds because of their important biological and pharmacological properties. They have been shown to have important biological properties, such as anti­bacterial (Daidone et al., 1990), anti inflammatory (Kaiser & Glenn, 1972), anti­tumor (Meshram et al., 2010), and immune suppressant activities (Davis et al., 2008). Pyrrole analogs are important components in naturally occurring bio molecules such as heme, chloro­phyll, vitamin B12 and pyrrole alkaloids isolated from marine sources. Highly functionalised pyrroles are found in drug molecules such as Atorvastatin, Ketorolac and Sunitinib. Thus, the elucidation of the crystal structures of pyrrole derivatives has attracted much attention. Here, we report on the crystal structure of the racemic title compound, synthesized by a four component one pot reaction, involving pyrrole-1-acetic acid-2-formyl ethyl ester, 4-bromo aniline, phenyl glyoxylic acid and tert-butyl isocyanide.

In the title compound, Fig. 1, there is an intra­molecular N—H···O hydrogen bonding forming an S(9) ring motif. There is also intra­molecular C—H···O hydrogen bonding which also forms an S(9) ring motif. The 4-bromo­phenyl ring and the phenyl ring are inclined to the pyrrole ring by 48.05 (12) and 77.45 (14) °, respectively, and to one another by 56.25 (12) °.

In the crystal, molecules are linked via C—H···O hydrogen bonds and C—H···π inter­actions forming slabs parallel to (101); see Table 1 and Fig. 2.

Synthesis and crystallization top

The reaction scheme for the synthesis of the title compound is illustrated in Fig. 3. A mixture of pyrrole-1-acetic acid-2-formyl ethyl­ester (2 mmol), 4-bromo­aniline (2 mmol), phenyl­glyoxylic acid (2.2 mmol) and τ-butyl-isocyanide (2 mmol) were taken in 10 ml of MeOH and stirred at room temperature for 18 h. The volatiles were removed under reduced pressure and the pure product was isolated by column chromatography, using 30% EtOAc/Hexane, as a white coloured solid. Colourless prismatic crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation of a methanol solution at room temperature. The compound crystalized in the racemic form. Spectroscopic data: LCMS: MH+, 568. IR (νmax, KBr, cm-1) 3144, 1740, 1730, 1725; 1H NMR (500 MHz, CDCl3, δH) 7.99 (2 H, d), 7.57 (1 H, m), 7.44-7.47 (3 H, m), 7.14 (2 H, m), 6.8 (1 H, s), 6.61 (1 H, m), 6.14 (1 H, d), 6.09 (1 H, s), 5.99 (1 H, m), 5.65 (1 H, m), 4.74 (2 H, s), 4.29 (2 H, q), 1.36 (9 H, s), 1.33 (3 H, t).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. The H atoms were included in calculated positions and treated as riding atoms: N—H = 0.86 Å, C—H = 0.93 - 0.98 Å with Uiso(H) = 1.5Ueq(C-methyl) and 1.2Ueq(N,C) for other H atoms.

Related literature top

For examples of the biological and pharmacological properties of pyrrole derivatives, see: Daidone et al. (1990); Davis et al. (2008); Kaiser & Glenn (1972); Meshram et al. (2010).

Structure description top

Pyrrole and its derivatives are important classes of heterocyclic compounds because of their important biological and pharmacological properties. They have been shown to have important biological properties, such as anti­bacterial (Daidone et al., 1990), anti inflammatory (Kaiser & Glenn, 1972), anti­tumor (Meshram et al., 2010), and immune suppressant activities (Davis et al., 2008). Pyrrole analogs are important components in naturally occurring bio molecules such as heme, chloro­phyll, vitamin B12 and pyrrole alkaloids isolated from marine sources. Highly functionalised pyrroles are found in drug molecules such as Atorvastatin, Ketorolac and Sunitinib. Thus, the elucidation of the crystal structures of pyrrole derivatives has attracted much attention. Here, we report on the crystal structure of the racemic title compound, synthesized by a four component one pot reaction, involving pyrrole-1-acetic acid-2-formyl ethyl ester, 4-bromo aniline, phenyl glyoxylic acid and tert-butyl isocyanide.

In the title compound, Fig. 1, there is an intra­molecular N—H···O hydrogen bonding forming an S(9) ring motif. There is also intra­molecular C—H···O hydrogen bonding which also forms an S(9) ring motif. The 4-bromo­phenyl ring and the phenyl ring are inclined to the pyrrole ring by 48.05 (12) and 77.45 (14) °, respectively, and to one another by 56.25 (12) °.

In the crystal, molecules are linked via C—H···O hydrogen bonds and C—H···π inter­actions forming slabs parallel to (101); see Table 1 and Fig. 2.

For examples of the biological and pharmacological properties of pyrrole derivatives, see: Daidone et al. (1990); Davis et al. (2008); Kaiser & Glenn (1972); Meshram et al. (2010).

Synthesis and crystallization top

The reaction scheme for the synthesis of the title compound is illustrated in Fig. 3. A mixture of pyrrole-1-acetic acid-2-formyl ethyl­ester (2 mmol), 4-bromo­aniline (2 mmol), phenyl­glyoxylic acid (2.2 mmol) and τ-butyl-isocyanide (2 mmol) were taken in 10 ml of MeOH and stirred at room temperature for 18 h. The volatiles were removed under reduced pressure and the pure product was isolated by column chromatography, using 30% EtOAc/Hexane, as a white coloured solid. Colourless prismatic crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation of a methanol solution at room temperature. The compound crystalized in the racemic form. Spectroscopic data: LCMS: MH+, 568. IR (νmax, KBr, cm-1) 3144, 1740, 1730, 1725; 1H NMR (500 MHz, CDCl3, δH) 7.99 (2 H, d), 7.57 (1 H, m), 7.44-7.47 (3 H, m), 7.14 (2 H, m), 6.8 (1 H, s), 6.61 (1 H, m), 6.14 (1 H, d), 6.09 (1 H, s), 5.99 (1 H, m), 5.65 (1 H, m), 4.74 (2 H, s), 4.29 (2 H, q), 1.36 (9 H, s), 1.33 (3 H, t).

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 2. The H atoms were included in calculated positions and treated as riding atoms: N—H = 0.86 Å, C—H = 0.93 - 0.98 Å with Uiso(H) = 1.5Ueq(C-methyl) and 1.2Ueq(N,C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure and atom labelling for the title compound, with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing of the title compound, viewed along the b axis, with the hydrogen bonds shown as dashed lines (see Table 1). H atoms not involved in these reactions have been omitted for clarity.
[Figure 3] Fig. 3. Reaction scheme for the synthesis of the title compound.
Ethyl 2-(2-{1-[N-(4-bromophenyl)-2-oxo-2-phenylacetamido]-2-tert-butylamino-2-oxoethyl]-1H-pyrrol-1-yl)acetate top
Crystal data top
C28H30BrN3O5F(000) = 1176
Mr = 568.46Dx = 1.348 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.656 (3) ÅCell parameters from 5570 reflections
b = 17.997 (5) Åθ = 2.5–24.6°
c = 13.463 (4) ŵ = 1.51 mm1
β = 97.351 (3)°T = 120 K
V = 2801.0 (14) Å3Prism, colourless
Z = 40.45 × 0.45 × 0.30 mm
Data collection top
Bruker APEXII KappaCCD
diffractometer
4924 independent reflections
Radiation source: fine focus sealed tube3479 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.075
Detector resolution: 16.6666 pixels mm-1θmax = 25.0°, θmin = 1.9°
ω scansh = 1313
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 2121
Tmin = 0.600, Tmax = 0.636l = 1515
25937 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H-atom parameters constrained
S = 1.35 w = 1/[σ2(Fo2) + (0.P)2]
where P = (Fo2 + 2Fc2)/3
4924 reflections(Δ/σ)max = 0.001
338 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C28H30BrN3O5V = 2801.0 (14) Å3
Mr = 568.46Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.656 (3) ŵ = 1.51 mm1
b = 17.997 (5) ÅT = 120 K
c = 13.463 (4) Å0.45 × 0.45 × 0.30 mm
β = 97.351 (3)°
Data collection top
Bruker APEXII KappaCCD
diffractometer
4924 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3479 reflections with I > 2σ(I)
Tmin = 0.600, Tmax = 0.636Rint = 0.075
25937 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.086H-atom parameters constrained
S = 1.35Δρmax = 0.56 e Å3
4924 reflectionsΔρmin = 0.38 e Å3
338 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.68091 (3)0.706481 (17)0.18700 (2)0.07029 (14)
C10.8525 (2)0.53075 (13)0.23135 (16)0.0383 (6)
C20.7777 (2)0.58868 (14)0.23617 (17)0.0468 (6)
H20.69790.58710.21910.056*
C30.8433 (3)0.65126 (15)0.27172 (18)0.0552 (7)
H30.81490.69850.28230.066*
C40.9549 (3)0.62980 (15)0.28746 (17)0.0533 (7)
H41.0170.660.31140.064*
C51.0655 (2)0.51222 (14)0.27953 (17)0.0467 (7)
H5A1.13210.54490.29070.056*
H5B1.07270.4830.22010.056*
C61.0659 (2)0.46056 (14)0.36869 (17)0.0432 (6)
C71.1807 (2)0.38299 (17)0.4809 (2)0.0665 (8)
H7B1.1240.34360.46840.08*
H7A1.16670.40910.54120.08*
C81.2984 (2)0.35156 (16)0.4935 (2)0.0660 (8)
H8A1.31450.33060.43120.099*
H8B1.3040.31350.54390.099*
H8C1.35340.39010.51370.099*
C90.82955 (19)0.45262 (13)0.19813 (15)0.0356 (6)
H90.89580.42210.22560.043*
C100.7211 (2)0.42272 (13)0.23900 (17)0.0403 (6)
C110.6458 (2)0.39249 (15)0.40046 (18)0.0527 (7)
C120.7029 (3)0.39672 (19)0.50841 (19)0.0840 (11)
H12A0.76710.36290.51790.126*
H12B0.64770.38350.55260.126*
H12C0.72990.44640.52290.126*
C130.5479 (3)0.44855 (17)0.3815 (2)0.0737 (9)
H13A0.57860.49790.39120.111*
H13B0.49270.43980.42740.111*
H13C0.51060.44340.31410.111*
C140.6037 (3)0.31320 (15)0.3773 (2)0.0644 (8)
H14A0.57040.310.30840.097*
H14B0.54640.30030.41960.097*
H14C0.66780.27950.38930.097*
C150.78195 (19)0.50735 (12)0.02338 (15)0.0328 (5)
C160.6698 (2)0.51517 (13)0.02031 (16)0.0377 (6)
H160.61420.48080.0070.045*
C170.6393 (2)0.57413 (14)0.08427 (17)0.0446 (6)
H170.56370.57920.11540.054*
C180.7226 (2)0.62508 (14)0.10092 (16)0.0436 (6)
C190.8354 (2)0.61903 (14)0.05585 (17)0.0449 (6)
H190.89030.65450.06730.054*
C200.8652 (2)0.55931 (13)0.00659 (16)0.0394 (6)
H200.94080.5540.03730.047*
C210.80952 (19)0.37438 (14)0.05223 (17)0.0389 (6)
C220.7777 (2)0.36402 (13)0.06085 (17)0.0405 (6)
C230.6628 (2)0.33239 (13)0.09648 (17)0.0387 (6)
C240.5853 (2)0.31256 (14)0.03116 (19)0.0481 (7)
H240.60410.32020.03730.058*
C250.4805 (2)0.28161 (16)0.0678 (2)0.0592 (8)
H250.42840.26860.02390.071*
C260.4525 (3)0.26983 (16)0.1685 (2)0.0647 (8)
H260.38240.24760.19260.078*
C270.5275 (3)0.29064 (18)0.2337 (2)0.0677 (9)
H270.50770.28360.30220.081*
C280.6322 (2)0.32200 (16)0.19809 (19)0.0563 (7)
H280.68270.33630.24270.068*
N10.96215 (18)0.55629 (11)0.26258 (13)0.0420 (5)
N20.73697 (18)0.41127 (12)0.33778 (14)0.0479 (6)
H10.80650.41520.36760.058*
N30.81423 (15)0.44477 (10)0.08742 (13)0.0355 (5)
O10.98294 (16)0.44578 (10)0.40912 (12)0.0541 (5)
O21.17079 (15)0.43440 (10)0.39589 (12)0.0526 (5)
O30.63055 (14)0.41228 (10)0.18436 (11)0.0493 (4)
O40.83230 (15)0.31985 (9)0.10509 (12)0.0515 (5)
O50.85012 (15)0.37803 (10)0.11564 (12)0.0549 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0898 (3)0.04937 (19)0.0697 (2)0.01077 (17)0.00284 (17)0.02204 (15)
C10.0429 (16)0.0387 (14)0.0316 (13)0.0043 (13)0.0016 (11)0.0022 (11)
C20.0557 (18)0.0452 (16)0.0384 (14)0.0001 (14)0.0023 (12)0.0015 (12)
C30.081 (2)0.0364 (16)0.0478 (16)0.0010 (16)0.0084 (15)0.0010 (13)
C40.076 (2)0.0399 (16)0.0429 (15)0.0219 (15)0.0035 (14)0.0025 (12)
C50.0469 (17)0.0518 (17)0.0394 (14)0.0152 (14)0.0023 (12)0.0049 (12)
C60.0448 (18)0.0438 (16)0.0380 (14)0.0120 (14)0.0066 (13)0.0004 (12)
C70.057 (2)0.066 (2)0.0742 (19)0.0068 (16)0.0008 (15)0.0323 (17)
C80.062 (2)0.0514 (18)0.082 (2)0.0002 (16)0.0024 (15)0.0152 (16)
C90.0368 (15)0.0379 (14)0.0306 (13)0.0007 (11)0.0022 (10)0.0003 (10)
C100.0466 (17)0.0356 (14)0.0382 (15)0.0044 (12)0.0031 (12)0.0032 (11)
C110.068 (2)0.0486 (17)0.0437 (15)0.0187 (15)0.0173 (13)0.0089 (13)
C120.124 (3)0.088 (3)0.0425 (17)0.040 (2)0.0212 (17)0.0081 (16)
C130.091 (3)0.0553 (19)0.084 (2)0.0089 (18)0.0465 (18)0.0154 (17)
C140.081 (2)0.0512 (18)0.0652 (19)0.0157 (16)0.0241 (16)0.0086 (14)
C150.0346 (15)0.0345 (13)0.0283 (12)0.0014 (11)0.0009 (10)0.0007 (10)
C160.0365 (16)0.0388 (14)0.0369 (13)0.0008 (11)0.0021 (11)0.0005 (11)
C170.0414 (16)0.0472 (16)0.0431 (14)0.0068 (13)0.0027 (11)0.0003 (13)
C180.0522 (18)0.0384 (15)0.0399 (14)0.0056 (13)0.0043 (12)0.0055 (12)
C190.0489 (18)0.0400 (15)0.0468 (15)0.0070 (13)0.0095 (12)0.0016 (12)
C200.0353 (15)0.0421 (15)0.0399 (14)0.0011 (12)0.0012 (11)0.0001 (12)
C210.0340 (15)0.0404 (15)0.0406 (14)0.0002 (12)0.0011 (11)0.0007 (12)
C220.0484 (17)0.0330 (14)0.0398 (14)0.0060 (12)0.0040 (12)0.0015 (11)
C230.0409 (16)0.0335 (14)0.0399 (14)0.0058 (12)0.0020 (12)0.0076 (11)
C240.0498 (18)0.0460 (17)0.0472 (16)0.0023 (13)0.0007 (13)0.0084 (12)
C250.0486 (18)0.0570 (19)0.071 (2)0.0040 (15)0.0058 (15)0.0129 (15)
C260.0471 (19)0.059 (2)0.083 (2)0.0073 (15)0.0148 (17)0.0252 (17)
C270.056 (2)0.089 (2)0.0525 (18)0.0081 (18)0.0132 (16)0.0246 (17)
C280.0539 (19)0.068 (2)0.0448 (16)0.0059 (15)0.0004 (13)0.0126 (14)
N10.0485 (14)0.0392 (12)0.0361 (11)0.0104 (11)0.0027 (9)0.0031 (9)
N20.0511 (14)0.0567 (14)0.0351 (12)0.0170 (11)0.0024 (9)0.0014 (10)
N30.0380 (12)0.0343 (11)0.0326 (10)0.0010 (9)0.0020 (8)0.0003 (9)
O10.0468 (12)0.0684 (13)0.0452 (10)0.0127 (10)0.0012 (9)0.0141 (9)
O20.0476 (12)0.0515 (11)0.0571 (11)0.0090 (9)0.0007 (9)0.0161 (9)
O30.0387 (11)0.0630 (12)0.0442 (10)0.0074 (9)0.0022 (8)0.0044 (8)
O40.0670 (13)0.0364 (10)0.0467 (10)0.0033 (9)0.0097 (9)0.0027 (8)
O50.0546 (12)0.0659 (13)0.0456 (10)0.0043 (10)0.0113 (9)0.0064 (9)
Geometric parameters (Å, º) top
Br1—C181.893 (2)C13—H13A0.96
C1—C21.365 (3)C13—H13B0.96
C1—N11.373 (3)C13—H13C0.96
C1—C91.489 (3)C14—H14A0.96
C2—C31.410 (3)C14—H14B0.96
C2—H20.93C14—H14C0.96
C3—C41.347 (4)C15—C161.370 (3)
C3—H30.93C15—C201.387 (3)
C4—N11.370 (3)C15—N31.439 (3)
C4—H40.93C16—C171.384 (3)
C5—N11.436 (3)C16—H160.93
C5—C61.518 (3)C17—C181.375 (3)
C5—H5A0.97C17—H170.93
C5—H5B0.97C18—C191.380 (3)
C6—O11.198 (3)C19—C201.381 (3)
C6—O21.318 (3)C19—H190.93
C7—O21.465 (3)C20—H200.93
C7—C81.473 (4)C21—O41.221 (3)
C7—H7B0.97C21—N31.351 (3)
C7—H7A0.97C21—C221.532 (3)
C8—H8A0.96C22—O51.216 (3)
C8—H8B0.96C22—C231.477 (3)
C8—H8C0.96C23—C281.382 (3)
C9—N31.485 (3)C23—C241.386 (3)
C9—C101.539 (3)C24—C251.375 (4)
C9—H90.98C24—H240.93
C10—O31.221 (3)C25—C261.371 (4)
C10—N21.335 (3)C25—H250.93
C11—N21.479 (3)C26—C271.368 (4)
C11—C131.520 (4)C26—H260.93
C11—C121.521 (4)C27—C281.373 (4)
C11—C141.528 (3)C27—H270.93
C12—H12A0.96C28—H280.93
C12—H12B0.96N2—H10.86
C12—H12C0.96
C2—C1—N1107.7 (2)H13B—C13—H13C109.5
C2—C1—C9130.1 (2)C11—C14—H14A109.5
N1—C1—C9122.2 (2)C11—C14—H14B109.5
C1—C2—C3107.7 (2)H14A—C14—H14B109.5
C1—C2—H2126.1C11—C14—H14C109.5
C3—C2—H2126.1H14A—C14—H14C109.5
C4—C3—C2107.2 (3)H14B—C14—H14C109.5
C4—C3—H3126.4C16—C15—C20120.6 (2)
C2—C3—H3126.4C16—C15—N3120.0 (2)
C3—C4—N1109.1 (2)C20—C15—N3119.4 (2)
C3—C4—H4125.5C15—C16—C17120.1 (2)
N1—C4—H4125.5C15—C16—H16120.0
N1—C5—C6112.4 (2)C17—C16—H16120.0
N1—C5—H5A109.1C18—C17—C16118.8 (2)
C6—C5—H5A109.1C18—C17—H17120.6
N1—C5—H5B109.1C16—C17—H17120.6
C6—C5—H5B109.1C17—C18—C19121.9 (2)
H5A—C5—H5B107.9C17—C18—Br1118.99 (19)
O1—C6—O2124.6 (2)C19—C18—Br1119.08 (19)
O1—C6—C5125.1 (2)C18—C19—C20118.7 (2)
O2—C6—C5110.3 (2)C18—C19—H19120.7
O2—C7—C8108.2 (2)C20—C19—H19120.7
O2—C7—H7B110.1C19—C20—C15119.8 (2)
C8—C7—H7B110.1C19—C20—H20120.1
O2—C7—H7A110.1C15—C20—H20120.1
C8—C7—H7A110.1O4—C21—N3123.6 (2)
H7B—C7—H7A108.4O4—C21—C22119.2 (2)
C7—C8—H8A109.5N3—C21—C22117.2 (2)
C7—C8—H8B109.5O5—C22—C23123.6 (2)
H8A—C8—H8B109.5O5—C22—C21118.6 (2)
C7—C8—H8C109.5C23—C22—C21117.6 (2)
H8A—C8—H8C109.5C28—C23—C24119.1 (2)
H8B—C8—H8C109.5C28—C23—C22118.8 (2)
N3—C9—C1112.66 (18)C24—C23—C22122.1 (2)
N3—C9—C10109.08 (17)C25—C24—C23119.9 (2)
C1—C9—C10110.28 (18)C25—C24—H24120.1
N3—C9—H9108.2C23—C24—H24120.1
C1—C9—H9108.2C26—C25—C24120.4 (3)
C10—C9—H9108.2C26—C25—H25119.8
O3—C10—N2125.1 (2)C24—C25—H25119.8
O3—C10—C9121.6 (2)C27—C26—C25120.1 (3)
N2—C10—C9113.2 (2)C27—C26—H26119.9
N2—C11—C13109.4 (2)C25—C26—H26119.9
N2—C11—C12106.0 (2)C26—C27—C28120.0 (3)
C13—C11—C12110.7 (2)C26—C27—H27120.0
N2—C11—C14109.4 (2)C28—C27—H27120.0
C13—C11—C14111.8 (2)C27—C28—C23120.5 (3)
C12—C11—C14109.4 (2)C27—C28—H28119.8
C11—C12—H12A109.5C23—C28—H28119.8
C11—C12—H12B109.5C4—N1—C1108.3 (2)
H12A—C12—H12B109.5C4—N1—C5124.8 (2)
C11—C12—H12C109.5C1—N1—C5126.4 (2)
H12A—C12—H12C109.5C10—N2—C11125.8 (2)
H12B—C12—H12C109.5C10—N2—H1117.1
C11—C13—H13A109.5C11—N2—H1117.1
C11—C13—H13B109.5C21—N3—C15121.87 (18)
H13A—C13—H13B109.5C21—N3—C9115.81 (18)
C11—C13—H13C109.5C15—N3—C9121.04 (17)
H13A—C13—H13C109.5C6—O2—C7114.86 (19)
N1—C1—C2—C30.3 (3)C23—C24—C25—C260.4 (4)
C9—C1—C2—C3179.3 (2)C24—C25—C26—C271.7 (4)
C1—C2—C3—C40.1 (3)C25—C26—C27—C281.3 (5)
C2—C3—C4—N10.4 (3)C26—C27—C28—C230.4 (4)
N1—C5—C6—O114.3 (3)C24—C23—C28—C271.7 (4)
N1—C5—C6—O2165.40 (19)C22—C23—C28—C27178.0 (3)
C2—C1—C9—N379.9 (3)C3—C4—N1—C10.6 (3)
N1—C1—C9—N399.0 (2)C3—C4—N1—C5173.0 (2)
C2—C1—C9—C1042.2 (3)C2—C1—N1—C40.5 (2)
N1—C1—C9—C10138.9 (2)C9—C1—N1—C4179.64 (19)
N3—C9—C10—O315.8 (3)C2—C1—N1—C5172.8 (2)
C1—C9—C10—O3108.4 (2)C9—C1—N1—C58.0 (3)
N3—C9—C10—N2165.23 (19)C6—C5—N1—C4103.3 (3)
C1—C9—C10—N270.6 (3)C6—C5—N1—C167.8 (3)
C20—C15—C16—C171.9 (3)O3—C10—N2—C117.5 (4)
N3—C15—C16—C17178.1 (2)C9—C10—N2—C11171.4 (2)
C15—C16—C17—C181.5 (3)C13—C11—N2—C1052.2 (3)
C16—C17—C18—C190.0 (4)C12—C11—N2—C10171.6 (2)
C16—C17—C18—Br1179.23 (17)C14—C11—N2—C1070.6 (3)
C17—C18—C19—C201.0 (4)O4—C21—N3—C15177.3 (2)
Br1—C18—C19—C20179.78 (17)C22—C21—N3—C154.8 (3)
C18—C19—C20—C150.5 (3)O4—C21—N3—C910.1 (3)
C16—C15—C20—C190.9 (3)C22—C21—N3—C9172.03 (19)
N3—C15—C20—C19179.1 (2)C16—C15—N3—C2164.9 (3)
O4—C21—C22—O5102.8 (3)C20—C15—N3—C21115.1 (2)
N3—C21—C22—O575.1 (3)C16—C15—N3—C9101.6 (2)
O4—C21—C22—C2373.0 (3)C20—C15—N3—C978.4 (3)
N3—C21—C22—C23109.1 (2)C1—C9—N3—C21171.0 (2)
O5—C22—C23—C284.0 (4)C10—C9—N3—C2166.2 (2)
C21—C22—C23—C28179.6 (2)C1—C9—N3—C1521.7 (3)
O5—C22—C23—C24175.7 (2)C10—C9—N3—C15101.1 (2)
C21—C22—C23—C240.1 (3)O1—C6—O2—C71.0 (3)
C28—C23—C24—C251.3 (4)C5—C6—O2—C7179.3 (2)
C22—C23—C24—C25178.4 (2)C8—C7—O2—C6172.8 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1/C1–C4 ring.
D—H···AD—HH···AD···AD—H···A
N2—H1···O10.862.132.970 (3)164
C14—H24···O30.932.573.199 (3)148
C8—H8B···O4i0.962.553.432 (3)154
C17—H17···O3ii0.932.343.269 (3)176
C7—H7A···Cg1iii0.972.863.697 (3)151
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y+1, z; (iii) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1/C1–C4 ring.
D—H···AD—HH···AD···AD—H···A
N2—H1···O10.862.132.970 (3)164
C14—H24···O30.932.573.199 (3)148
C8—H8B···O4i0.962.553.432 (3)154
C17—H17···O3ii0.932.343.269 (3)176
C7—H7A···Cg1iii0.972.863.697 (3)151
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y+1, z; (iii) x+2, y+1, z+1.
 

Acknowledgements

We are grateful to the Center for Instrumental Analysis, Kyushu Institute of Technology (KITCIA), for the X-ray analysis.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDaidone, G., Maggio, B. & Schillaci, D. (1990). Pharmazie, 45, 441–442.  CAS PubMed Web of Science Google Scholar
First citationDavis, F. A., Bowen, K., Xu, H. & Velvadapu, V. (2008). Tetrahedron, 64, 4174–4182.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKaiser, D. G. & Glenn, E. M. (1972). J. Pharm. Sci. 61, 1908–1911.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMeshram, H. M., Prasad, B. R. V. & Kumar, D. A. (2010). Tetrahedron Lett. 51, 3477–3480.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds