organic compounds
H-pyrazole-1-carbaldehyde
of 5-(4-methoxyphenyl)-3-(4-methylphenyl)-4,5-dihydro-1aSchool of Chemical Sciences, Universiti Sains Malaysia, 18000 Pulau Pinang, Malaysia, bDepartment of P.G. Studies in Chemistry, Alva's College, Moodbidri, Karnataka 574 227, India, and cDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Karnataka 574 227, India
*Correspondence e-mail: farook@usm.my
In the title compound, C18H18N2O2, the pyrazole ring has a twisted conformation on the CH—CH2 bond. The tolyl ring and the 4-methoxyphenyl ring are inclined to the mean plane of the pyrazole ring by 4.40 (9) and 86.22 (9)°, respectively, while the two aromatic rings are inclined to one another by 88.75 (9)°. In the crystal, molecules are linked via bifurcated C—H⋯(O,O) hydrogen bonds and C—H⋯π interactions, forming sheets lying parallel to the ab plane.
Keywords: crystal structure; pyrazole; hydrogen bonding.
CCDC reference: 1441491
1. Related literature
For examples of the numerous pharmacological activities of pyrazoles, see: Samshuddin et al. (2012); Sarojini et al. (2010). For the use of 1,3,5-triaryl-2-pyrazolines as scintillation solutes, see: Wiley et al. (1958); and as fluorescent agents, see: Lu et al. (1999). For the crystal structures of pyrazoline-derived see: Jasinski et al. (2012); Baktır et al. (2011).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
Data collection: APEX2 (Bruker, 2010); cell SAINT (Bruker, 2010); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick 2008); software used to prepare material for publication: SHELXTL.
Supporting information
CCDC reference: 1441491
https://doi.org/10.1107/S2056989015023658/su5259sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989015023658/su5259Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989015023658/su5259Isup3.cml
Pyrazoline derivatives exhibit numerous pharmacological activities including antioxidant, antiamoebic, anti-inflammatory, analgesic, antimicrobial, antidepressant and anticancer activities (Sarojini et al., 2010; Samshuddin et al., 2012). Many 1,3,5-triaryl-2-pyrazolines have also been used as scintillation solutes (Wiley et al., 1958) and as fluorescent agents (Lu et al., 1999).
The crystal structures of some pyrazolines containing an N-alkyl chain, viz. 3,5-bis(4-fluorophenyl)-4,5-dihydro-1H-pyrazole-1 carbaldehyde (Baktır et al., 2011), 3,5-bis(4-fluorophenyl)-4,5-dihydro- 1H-pyrazole-1-carboxamide and 3,5-bis(4-fluorophenyl)-4,5-dihydro- 1H-pyrazole-1-carbothioamide (Jasinski et al., 2012) have been reported. In view of the importance of pyrazolines, the title compound was synthesized and we report herein on its crystal structure.
The molecular structure of the title compound is illustrated in Fig. 1. The pyrazole ring has a twisted conformation on bond C7—C8. The toluyl ring and the 4-methoxyphenyl ring are inclined to the mean plane of the pyrazole ring by 4.40 (9) and 86.22 (9) °, respectively. The two aromatic rings are inclined to one another by 88.75 (9) °.
In the crystal, molecules are linked via C—H···O hydrogen bonds and C—H···π interactions forming sheets lying parallel to the ab plane (Table 1 and Fig. 2).
A mixture of (2E)-3-(4-methoxyphenyl)-1-(4-methylphenyl)prop-2-en-1-one (2.52 g, 0.01 mol) and hydrazine hydrate (1 ml) in 30 ml formic acid was refluxed for 6 h. The reaction mixture was cooled and poured into 50 ml ice-cold water. The precipitate was collected by filtration and purified by recrystallization from ethanol. Single crystals were grown from toluene by slow evaporation of the solvent (yield: 75 %; m.p. 479-482 K).
Pyrazoline derivatives exhibit numerous pharmacological activities including antioxidant, antiamoebic, anti-inflammatory, analgesic, antimicrobial, antidepressant and anticancer activities (Sarojini et al., 2010; Samshuddin et al., 2012). Many 1,3,5-triaryl-2-pyrazolines have also been used as scintillation solutes (Wiley et al., 1958) and as fluorescent agents (Lu et al., 1999).
The crystal structures of some pyrazolines containing an N-alkyl chain, viz. 3,5-bis(4-fluorophenyl)-4,5-dihydro-1H-pyrazole-1 carbaldehyde (Baktır et al., 2011), 3,5-bis(4-fluorophenyl)-4,5-dihydro- 1H-pyrazole-1-carboxamide and 3,5-bis(4-fluorophenyl)-4,5-dihydro- 1H-pyrazole-1-carbothioamide (Jasinski et al., 2012) have been reported. In view of the importance of pyrazolines, the title compound was synthesized and we report herein on its crystal structure.
The molecular structure of the title compound is illustrated in Fig. 1. The pyrazole ring has a twisted conformation on bond C7—C8. The toluyl ring and the 4-methoxyphenyl ring are inclined to the mean plane of the pyrazole ring by 4.40 (9) and 86.22 (9) °, respectively. The two aromatic rings are inclined to one another by 88.75 (9) °.
In the crystal, molecules are linked via C—H···O hydrogen bonds and C—H···π interactions forming sheets lying parallel to the ab plane (Table 1 and Fig. 2).
For examples of the numerous pharmacological activities of pyrazoles, see: Samshuddin et al. (2012); Sarojini et al. (2010). For the use of 1,3,5-triaryl-2-pyrazolines as scintillation solutes, see: Wiley et al. (1958); and as fluorescent agents, see: Lu et al. (1999). For the crystal structures of pyrazoline-derived
see: Jasinski et al. (2012); Baktır et al. (2011).A mixture of (2E)-3-(4-methoxyphenyl)-1-(4-methylphenyl)prop-2-en-1-one (2.52 g, 0.01 mol) and hydrazine hydrate (1 ml) in 30 ml formic acid was refluxed for 6 h. The reaction mixture was cooled and poured into 50 ml ice-cold water. The precipitate was collected by filtration and purified by recrystallization from ethanol. Single crystals were grown from toluene by slow evaporation of the solvent (yield: 75 %; m.p. 479-482 K).
detailsCrystal data, data collection and structure
details are summarized in Table 2. The hydrogen atoms were fixed geometrically (C—H = 0.95–1.00 Å) and allowed to ride on their parent atoms with Uiso(H) = 1.5Ueq(C-methyl) and 1.2Ueq(C) for other H atoms.Data collection: APEX2 (Bruker, 2010); cell
SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick 2008); software used to prepare material for publication: SHELXTL (Sheldrick 2008).Fig. 1. A view of the molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50 % probability level. | |
Fig. 2. A view along the ab axis of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines (see Table 1). |
C18H18N2O2 | F(000) = 624 |
Mr = 294.34 | Dx = 1.321 Mg m−3 |
Monoclinic, Cc | Mo Kα radiation, λ = 0.71073 Å |
a = 12.0839 (9) Å | Cell parameters from 6705 reflections |
b = 6.4197 (5) Å | θ = 3.5–30.2° |
c = 19.7427 (18) Å | µ = 0.09 mm−1 |
β = 104.8264 (12)° | T = 100 K |
V = 1480.5 (2) Å3 | Block, colourless |
Z = 4 | 0.41 × 0.23 × 0.11 mm |
Bruker APEXII CCD diffractometer | 4070 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.023 |
Absorption correction: multi-scan (SADABS; Bruker, 2010) | θmax = 30.2°, θmin = 2.1° |
Tmin = 0.919, Tmax = 0.965 | h = −17→17 |
14663 measured reflections | k = −9→9 |
4301 independent reflections | l = −27→27 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.036 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.097 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0604P)2 + 0.3156P] where P = (Fo2 + 2Fc2)/3 |
4301 reflections | (Δ/σ)max < 0.001 |
201 parameters | Δρmax = 0.28 e Å−3 |
2 restraints | Δρmin = −0.19 e Å−3 |
C18H18N2O2 | V = 1480.5 (2) Å3 |
Mr = 294.34 | Z = 4 |
Monoclinic, Cc | Mo Kα radiation |
a = 12.0839 (9) Å | µ = 0.09 mm−1 |
b = 6.4197 (5) Å | T = 100 K |
c = 19.7427 (18) Å | 0.41 × 0.23 × 0.11 mm |
β = 104.8264 (12)° |
Bruker APEXII CCD diffractometer | 4301 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2010) | 4070 reflections with I > 2σ(I) |
Tmin = 0.919, Tmax = 0.965 | Rint = 0.023 |
14663 measured reflections |
R[F2 > 2σ(F2)] = 0.036 | 2 restraints |
wR(F2) = 0.097 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.28 e Å−3 |
4301 reflections | Δρmin = −0.19 e Å−3 |
201 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.20348 (12) | 0.4331 (2) | 0.35129 (8) | 0.0248 (3) | |
O2 | 0.54286 (12) | −0.1313 (2) | 0.56436 (8) | 0.0229 (3) | |
N1 | 0.64240 (13) | 0.1726 (2) | 0.58103 (8) | 0.0167 (3) | |
N2 | 0.68881 (12) | 0.3318 (2) | 0.62747 (8) | 0.0164 (3) | |
C1 | 0.49214 (15) | 0.4726 (3) | 0.46209 (9) | 0.0179 (3) | |
H1A | 0.5393 | 0.5782 | 0.4884 | 0.022* | |
C2 | 0.38193 (16) | 0.5207 (3) | 0.42425 (9) | 0.0189 (3) | |
H2A | 0.3543 | 0.6591 | 0.4246 | 0.023* | |
C3 | 0.31110 (15) | 0.3672 (3) | 0.38556 (9) | 0.0186 (3) | |
C4 | 0.35270 (16) | 0.1650 (3) | 0.38360 (9) | 0.0199 (4) | |
H4A | 0.3059 | 0.0603 | 0.3566 | 0.024* | |
C5 | 0.46443 (15) | 0.1188 (3) | 0.42203 (9) | 0.0187 (3) | |
H5A | 0.4930 | −0.0187 | 0.4208 | 0.022* | |
C6 | 0.53452 (15) | 0.2698 (3) | 0.46190 (9) | 0.0168 (3) | |
C7 | 0.65113 (15) | 0.2100 (3) | 0.50826 (9) | 0.0171 (3) | |
H7A | 0.6815 | 0.0838 | 0.4894 | 0.021* | |
C8 | 0.74108 (15) | 0.3870 (3) | 0.52205 (10) | 0.0191 (3) | |
H8A | 0.8174 | 0.3345 | 0.5204 | 0.023* | |
H8B | 0.7182 | 0.5012 | 0.4876 | 0.023* | |
C9 | 0.74102 (14) | 0.4580 (3) | 0.59498 (9) | 0.0153 (3) | |
C10 | 0.79896 (14) | 0.6448 (2) | 0.62925 (9) | 0.0151 (3) | |
C11 | 0.79596 (15) | 0.6957 (3) | 0.69768 (9) | 0.0178 (3) | |
H11A | 0.7553 | 0.6091 | 0.7220 | 0.021* | |
C12 | 0.85202 (15) | 0.8719 (3) | 0.73026 (10) | 0.0191 (3) | |
H12A | 0.8487 | 0.9049 | 0.7766 | 0.023* | |
C13 | 0.91324 (14) | 1.0015 (3) | 0.69604 (10) | 0.0181 (3) | |
C14 | 0.91505 (14) | 0.9520 (3) | 0.62759 (9) | 0.0180 (3) | |
H14A | 0.9554 | 1.0394 | 0.6033 | 0.022* | |
C15 | 0.85852 (14) | 0.7760 (3) | 0.59414 (9) | 0.0171 (3) | |
H15A | 0.8604 | 0.7451 | 0.5474 | 0.020* | |
C16 | 0.12863 (18) | 0.2852 (4) | 0.30873 (12) | 0.0300 (4) | |
H16A | 0.0551 | 0.3519 | 0.2871 | 0.045* | |
H16B | 0.1163 | 0.1682 | 0.3378 | 0.045* | |
H16C | 0.1631 | 0.2340 | 0.2720 | 0.045* | |
C17 | 0.58798 (15) | 0.0120 (3) | 0.60245 (10) | 0.0191 (3) | |
H17A | 0.5844 | 0.0099 | 0.6500 | 0.023* | |
C18 | 0.97566 (17) | 1.1908 (3) | 0.73207 (11) | 0.0236 (4) | |
H18A | 1.0484 | 1.2064 | 0.7192 | 0.035* | |
H18B | 0.9906 | 1.1740 | 0.7829 | 0.035* | |
H18C | 0.9285 | 1.3151 | 0.7174 | 0.035* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0198 (6) | 0.0266 (7) | 0.0257 (7) | 0.0009 (5) | 0.0014 (5) | −0.0011 (5) |
O2 | 0.0226 (6) | 0.0158 (6) | 0.0292 (7) | −0.0031 (5) | 0.0044 (5) | −0.0006 (5) |
N1 | 0.0171 (7) | 0.0156 (6) | 0.0168 (7) | −0.0029 (5) | 0.0032 (5) | −0.0016 (5) |
N2 | 0.0152 (6) | 0.0153 (6) | 0.0171 (7) | −0.0010 (5) | 0.0015 (5) | −0.0010 (5) |
C1 | 0.0205 (8) | 0.0170 (7) | 0.0171 (8) | −0.0034 (6) | 0.0063 (6) | −0.0027 (6) |
C2 | 0.0227 (8) | 0.0171 (7) | 0.0177 (8) | 0.0006 (6) | 0.0068 (6) | −0.0008 (6) |
C3 | 0.0182 (8) | 0.0226 (8) | 0.0154 (7) | −0.0009 (6) | 0.0050 (6) | 0.0007 (6) |
C4 | 0.0205 (9) | 0.0202 (8) | 0.0177 (8) | −0.0050 (6) | 0.0028 (7) | −0.0028 (6) |
C5 | 0.0213 (8) | 0.0164 (7) | 0.0185 (8) | −0.0016 (6) | 0.0051 (7) | −0.0024 (6) |
C6 | 0.0183 (8) | 0.0171 (7) | 0.0154 (8) | −0.0030 (6) | 0.0051 (6) | −0.0022 (6) |
C7 | 0.0158 (7) | 0.0180 (8) | 0.0176 (8) | −0.0022 (6) | 0.0045 (6) | −0.0028 (6) |
C8 | 0.0166 (7) | 0.0212 (8) | 0.0202 (8) | −0.0049 (6) | 0.0063 (6) | −0.0034 (6) |
C9 | 0.0131 (7) | 0.0156 (7) | 0.0163 (8) | −0.0002 (6) | 0.0022 (6) | −0.0016 (6) |
C10 | 0.0120 (7) | 0.0139 (7) | 0.0182 (8) | 0.0003 (5) | 0.0019 (6) | −0.0005 (6) |
C11 | 0.0187 (8) | 0.0173 (7) | 0.0180 (8) | −0.0017 (6) | 0.0058 (6) | 0.0006 (6) |
C12 | 0.0193 (8) | 0.0186 (8) | 0.0189 (8) | −0.0005 (6) | 0.0040 (7) | −0.0018 (6) |
C13 | 0.0163 (8) | 0.0148 (7) | 0.0216 (8) | −0.0001 (6) | 0.0017 (6) | −0.0016 (6) |
C14 | 0.0164 (8) | 0.0163 (7) | 0.0217 (8) | −0.0016 (6) | 0.0055 (7) | 0.0005 (6) |
C15 | 0.0165 (7) | 0.0173 (7) | 0.0180 (8) | −0.0009 (6) | 0.0057 (6) | −0.0001 (6) |
C16 | 0.0212 (9) | 0.0341 (10) | 0.0294 (11) | −0.0026 (8) | −0.0031 (8) | −0.0018 (8) |
C17 | 0.0172 (8) | 0.0163 (7) | 0.0233 (9) | 0.0007 (6) | 0.0043 (7) | 0.0036 (6) |
C18 | 0.0242 (9) | 0.0168 (8) | 0.0280 (10) | −0.0041 (6) | 0.0035 (7) | −0.0046 (7) |
O1—C3 | 1.370 (2) | C8—H8A | 0.9900 |
O1—C16 | 1.427 (2) | C8—H8B | 0.9900 |
O2—C17 | 1.225 (2) | C9—C10 | 1.464 (2) |
N1—C17 | 1.348 (2) | C10—C11 | 1.399 (2) |
N1—N2 | 1.3916 (19) | C10—C15 | 1.401 (2) |
N1—C7 | 1.487 (2) | C11—C12 | 1.389 (2) |
N2—C9 | 1.294 (2) | C11—H11A | 0.9500 |
C1—C2 | 1.385 (3) | C12—C13 | 1.397 (2) |
C1—C6 | 1.400 (2) | C12—H12A | 0.9500 |
C1—H1A | 0.9500 | C13—C14 | 1.394 (3) |
C2—C3 | 1.397 (2) | C13—C18 | 1.509 (2) |
C2—H2A | 0.9500 | C14—C15 | 1.396 (2) |
C3—C4 | 1.396 (2) | C14—H14A | 0.9500 |
C4—C5 | 1.401 (3) | C15—H15A | 0.9500 |
C4—H4A | 0.9500 | C16—H16A | 0.9800 |
C5—C6 | 1.391 (2) | C16—H16B | 0.9800 |
C5—H5A | 0.9500 | C16—H16C | 0.9800 |
C6—C7 | 1.520 (2) | C17—H17A | 0.9500 |
C7—C8 | 1.547 (2) | C18—H18A | 0.9800 |
C7—H7A | 1.0000 | C18—H18B | 0.9800 |
C8—C9 | 1.510 (2) | C18—H18C | 0.9800 |
C3—O1—C16 | 117.61 (16) | N2—C9—C8 | 113.76 (14) |
C17—N1—N2 | 120.11 (15) | C10—C9—C8 | 124.81 (15) |
C17—N1—C7 | 126.02 (15) | C11—C10—C15 | 118.75 (15) |
N2—N1—C7 | 113.67 (13) | C11—C10—C9 | 120.65 (15) |
C9—N2—N1 | 107.38 (14) | C15—C10—C9 | 120.60 (16) |
C2—C1—C6 | 120.53 (16) | C12—C11—C10 | 120.46 (16) |
C2—C1—H1A | 119.7 | C12—C11—H11A | 119.8 |
C6—C1—H1A | 119.7 | C10—C11—H11A | 119.8 |
C1—C2—C3 | 120.51 (16) | C11—C12—C13 | 121.13 (16) |
C1—C2—H2A | 119.7 | C11—C12—H12A | 119.4 |
C3—C2—H2A | 119.7 | C13—C12—H12A | 119.4 |
O1—C3—C4 | 125.21 (16) | C14—C13—C12 | 118.34 (16) |
O1—C3—C2 | 115.02 (16) | C14—C13—C18 | 120.72 (16) |
C4—C3—C2 | 119.76 (16) | C12—C13—C18 | 120.95 (17) |
C3—C4—C5 | 119.09 (16) | C13—C14—C15 | 121.08 (16) |
C3—C4—H4A | 120.5 | C13—C14—H14A | 119.5 |
C5—C4—H4A | 120.5 | C15—C14—H14A | 119.5 |
C6—C5—C4 | 121.44 (16) | C14—C15—C10 | 120.23 (16) |
C6—C5—H5A | 119.3 | C14—C15—H15A | 119.9 |
C4—C5—H5A | 119.3 | C10—C15—H15A | 119.9 |
C5—C6—C1 | 118.65 (16) | O1—C16—H16A | 109.5 |
C5—C6—C7 | 120.08 (15) | O1—C16—H16B | 109.5 |
C1—C6—C7 | 121.11 (15) | H16A—C16—H16B | 109.5 |
N1—C7—C6 | 109.79 (14) | O1—C16—H16C | 109.5 |
N1—C7—C8 | 99.73 (14) | H16A—C16—H16C | 109.5 |
C6—C7—C8 | 114.96 (15) | H16B—C16—H16C | 109.5 |
N1—C7—H7A | 110.6 | O2—C17—N1 | 123.94 (18) |
C6—C7—H7A | 110.6 | O2—C17—H17A | 118.0 |
C8—C7—H7A | 110.6 | N1—C17—H17A | 118.0 |
C9—C8—C7 | 102.57 (14) | C13—C18—H18A | 109.5 |
C9—C8—H8A | 111.3 | C13—C18—H18B | 109.5 |
C7—C8—H8A | 111.3 | H18A—C18—H18B | 109.5 |
C9—C8—H8B | 111.3 | C13—C18—H18C | 109.5 |
C7—C8—H8B | 111.3 | H18A—C18—H18C | 109.5 |
H8A—C8—H8B | 109.2 | H18B—C18—H18C | 109.5 |
N2—C9—C10 | 121.34 (15) | ||
C17—N1—N2—C9 | 176.47 (16) | N1—C7—C8—C9 | −15.61 (17) |
C7—N1—N2—C9 | −8.36 (18) | C6—C7—C8—C9 | 101.70 (17) |
C6—C1—C2—C3 | 0.3 (3) | N1—N2—C9—C10 | 179.55 (14) |
C16—O1—C3—C4 | −1.7 (3) | N1—N2—C9—C8 | −3.61 (19) |
C16—O1—C3—C2 | 177.67 (17) | C7—C8—C9—N2 | 13.1 (2) |
C1—C2—C3—O1 | 179.00 (16) | C7—C8—C9—C10 | −170.18 (15) |
C1—C2—C3—C4 | −1.6 (3) | N2—C9—C10—C11 | −2.2 (2) |
O1—C3—C4—C5 | −179.20 (17) | C8—C9—C10—C11 | −178.69 (17) |
C2—C3—C4—C5 | 1.5 (3) | N2—C9—C10—C15 | 177.74 (16) |
C3—C4—C5—C6 | −0.1 (3) | C8—C9—C10—C15 | 1.3 (2) |
C4—C5—C6—C1 | −1.2 (3) | C15—C10—C11—C12 | −0.6 (2) |
C4—C5—C6—C7 | 174.34 (16) | C9—C10—C11—C12 | 179.34 (16) |
C2—C1—C6—C5 | 1.1 (3) | C10—C11—C12—C13 | −0.5 (3) |
C2—C1—C6—C7 | −174.42 (16) | C11—C12—C13—C14 | 1.2 (3) |
C17—N1—C7—C6 | 69.3 (2) | C11—C12—C13—C18 | −178.97 (17) |
N2—N1—C7—C6 | −105.52 (16) | C12—C13—C14—C15 | −0.8 (3) |
C17—N1—C7—C8 | −169.58 (16) | C18—C13—C14—C15 | 179.34 (16) |
N2—N1—C7—C8 | 15.59 (18) | C13—C14—C15—C10 | −0.3 (3) |
C5—C6—C7—N1 | −95.70 (18) | C11—C10—C15—C14 | 1.0 (2) |
C1—C6—C7—N1 | 79.7 (2) | C9—C10—C15—C14 | −178.97 (15) |
C5—C6—C7—C8 | 152.86 (16) | N2—N1—C17—O2 | 178.37 (16) |
C1—C6—C7—C8 | −31.7 (2) | C7—N1—C17—O2 | 3.8 (3) |
Cg2 is the centroid of the C1–C6 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1A···O2i | 0.95 | 2.39 | 3.207 (2) | 144 |
C14—H14A···O2ii | 0.95 | 2.57 | 3.477 (2) | 160 |
C15—H15A···Cg2iii | 0.95 | 2.78 | 3.661 (2) | 154 |
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y+3/2, z; (iii) x+1/2, y+1/2, z. |
Cg2 is the centroid of the C1–C6 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1A···O2i | 0.95 | 2.39 | 3.207 (2) | 144 |
C14—H14A···O2ii | 0.95 | 2.57 | 3.477 (2) | 160 |
C15—H15A···Cg2iii | 0.95 | 2.78 | 3.661 (2) | 154 |
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y+3/2, z; (iii) x+1/2, y+1/2, z. |
Acknowledgements
SS thanks Alva's Education Foundation, Moodbidri, for providing research facilities. FA is grateful for USM research grants 1001/PKIMIA/846017 and 1001/PKIMIA/811269, which partially supported this research.
References
Baktır, Z., Akkurt, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011). Acta Cryst. E67, o1292–o1293. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Jasinski, J. P., Golen, J. A., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2012). Crystals, 2, 1108–1115. Web of Science CrossRef CAS Google Scholar
Lu, Z.-Y., Zhu, W.-G., Jiang, Q. & Xie, M.-G. (1999). Chin. Chem. Lett. 10, 679–682. CAS Google Scholar
Samshuddin, S., Narayana, B., Sarojini, B. K., Khan, M. T. H., Yathirajan, H. S., Raj, C. G. D. & Raghavendra, R. (2012). Med. Chem. Res. 21, 2012–2022. Web of Science CSD CrossRef CAS Google Scholar
Sarojini, B. K., Vidyagayatri, M., Darshanraj, C. G., Bharath, B. R. & Manjunatha, H. (2010). Lett. Drug. Des. Discov. 7, 214–224. CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Wiley, R. H., Jarboe, C. H., Hayes, F. N., Hansbury, E., Nielsen, J. T., Callahan, P. X. & Sellars, M. (1958). J. Org. Chem. 23, 732–738. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.