organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 5-(4-meth­­oxy­phen­yl)-3-(4-methyl­phen­yl)-4,5-di­hydro-1H-pyrazole-1-carbaldehyde

aSchool of Chemical Sciences, Universiti Sains Malaysia, 18000 Pulau Pinang, Malaysia, bDepartment of P.G. Studies in Chemistry, Alva's College, Moodbidri, Karnataka 574 227, India, and cDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Karnataka 574 227, India
*Correspondence e-mail: farook@usm.my

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 8 December 2015; accepted 9 December 2015; online 31 December 2015)

In the title compound, C18H18N2O2, the pyrazole ring has a twisted conformation on the CH—CH2 bond. The tolyl ring and the 4-meth­oxy­phenyl ring are inclined to the mean plane of the pyrazole ring by 4.40 (9) and 86.22 (9)°, respectively, while the two aromatic rings are inclined to one another by 88.75 (9)°. In the crystal, mol­ecules are linked via bifurcated C—H⋯(O,O) hydrogen bonds and C—H⋯π inter­actions, forming sheets lying parallel to the ab plane.

1. Related literature

For examples of the numerous pharmacological activities of pyrazoles, see: Samshuddin et al. (2012[Samshuddin, S., Narayana, B., Sarojini, B. K., Khan, M. T. H., Yathirajan, H. S., Raj, C. G. D. & Raghavendra, R. (2012). Med. Chem. Res. 21, 2012-2022.]); Sarojini et al. (2010[Sarojini, B. K., Vidyagayatri, M., Darshanraj, C. G., Bharath, B. R. & Manjunatha, H. (2010). Lett. Drug. Des. Discov. 7, 214-224.]). For the use of 1,3,5-triaryl-2-pyrazolines as scintillation solutes, see: Wiley et al. (1958[Wiley, R. H., Jarboe, C. H., Hayes, F. N., Hansbury, E., Nielsen, J. T., Callahan, P. X. & Sellars, M. (1958). J. Org. Chem. 23, 732-738.]); and as fluorescent agents, see: Lu et al. (1999[Lu, Z.-Y., Zhu, W.-G., Jiang, Q. & Xie, M.-G. (1999). Chin. Chem. Lett. 10, 679-682.]). For the crystal structures of pyrazoline-derived chalcones, see: Jasinski et al. (2012[Jasinski, J. P., Golen, J. A., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2012). Crystals, 2, 1108-1115.]); Baktır et al. (2011[Baktır, Z., Akkurt, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011). Acta Cryst. E67, o1292-o1293.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C18H18N2O2

  • Mr = 294.34

  • Monoclinic, C c

  • a = 12.0839 (9) Å

  • b = 6.4197 (5) Å

  • c = 19.7427 (18) Å

  • β = 104.8264 (12)°

  • V = 1480.5 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.41 × 0.23 × 0.11 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2010[Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.919, Tmax = 0.965

  • 14663 measured reflections

  • 4301 independent reflections

  • 4070 reflections with I > 2σ(I)

  • Rint = 0.023

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.097

  • S = 1.05

  • 4301 reflections

  • 201 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯O2i 0.95 2.39 3.207 (2) 144
C14—H14A⋯O2ii 0.95 2.57 3.477 (2) 160
C15—H15ACg2iii 0.95 2.78 3.661 (2) 154
Symmetry codes: (i) x, y+1, z; (ii) [x+{\script{1\over 2}}, y+{\script{3\over 2}}, z]; (iii) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: SHELXTL (Sheldrick 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Pyrazoline derivatives exhibit numerous pharmacological activities including anti­oxidant, anti­amoebic, anti-inflammatory, analgesic, anti­microbial, anti­depressant and anti­cancer activities (Sarojini et al., 2010; Samshuddin et al., 2012). Many 1,3,5-tri­aryl-2-pyrazolines have also been used as scintillation solutes (Wiley et al., 1958) and as fluorescent agents (Lu et al., 1999).

The crystal structures of some pyrazolines containing an N-alkyl chain, viz. 3,5-bis­(4-fluoro­phenyl)-4,5-di­hydro-1H-pyrazole-1 carbaldehyde (Baktır et al., 2011), 3,5-bis­(4-fluoro­phenyl)-4,5-di­hydro- 1H-pyrazole-1-carboxamide and 3,5-bis­(4-fluoro­phenyl)-4,5-di­hydro- 1H-pyrazole-1-carbo­thio­amide (Jasinski et al., 2012) have been reported. In view of the importance of pyrazolines, the title compound was synthesized and we report herein on its crystal structure.

The molecular structure of the title compound is illustrated in Fig. 1. The pyrazole ring has a twisted conformation on bond C7—C8. The toluyl ring and the 4-meth­oxy­phenyl ring are inclined to the mean plane of the pyrazole ring by 4.40 (9) and 86.22 (9) °, respectively. The two aromatic rings are inclined to one another by 88.75 (9) °.

In the crystal, molecules are linked via C—H···O hydrogen bonds and C—H···π inter­actions forming sheets lying parallel to the ab plane (Table 1 and Fig. 2).

Synthesis and crystallization top

A mixture of (2E)-3-(4-meth­oxy­phenyl)-1-(4-methyl­phenyl)­prop-2-en-1-one (2.52 g, 0.01 mol) and hydrazine hydrate (1 ml) in 30 ml formic acid was refluxed for 6 h. The reaction mixture was cooled and poured into 50 ml ice-cold water. The precipitate was collected by filtration and purified by recrystallization from ethanol. Single crystals were grown from toluene by slow evaporation of the solvent (yield: 75 %; m.p. 479-482 K).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. The hydrogen atoms were fixed geometrically (C—H = 0.95–1.00 Å) and allowed to ride on their parent atoms with Uiso(H) = 1.5Ueq(C-methyl) and 1.2Ueq(C) for other H atoms.

Related literature top

For examples of the numerous pharmacological activities of pyrazoles, see: Samshuddin et al. (2012); Sarojini et al. (2010). For the use of 1,3,5-triaryl-2-pyrazolines as scintillation solutes, see: Wiley et al. (1958); and as fluorescent agents, see: Lu et al. (1999). For the crystal structures of pyrazoline-derived chalcones, see: Jasinski et al. (2012); Baktır et al. (2011).

Structure description top

Pyrazoline derivatives exhibit numerous pharmacological activities including anti­oxidant, anti­amoebic, anti-inflammatory, analgesic, anti­microbial, anti­depressant and anti­cancer activities (Sarojini et al., 2010; Samshuddin et al., 2012). Many 1,3,5-tri­aryl-2-pyrazolines have also been used as scintillation solutes (Wiley et al., 1958) and as fluorescent agents (Lu et al., 1999).

The crystal structures of some pyrazolines containing an N-alkyl chain, viz. 3,5-bis­(4-fluoro­phenyl)-4,5-di­hydro-1H-pyrazole-1 carbaldehyde (Baktır et al., 2011), 3,5-bis­(4-fluoro­phenyl)-4,5-di­hydro- 1H-pyrazole-1-carboxamide and 3,5-bis­(4-fluoro­phenyl)-4,5-di­hydro- 1H-pyrazole-1-carbo­thio­amide (Jasinski et al., 2012) have been reported. In view of the importance of pyrazolines, the title compound was synthesized and we report herein on its crystal structure.

The molecular structure of the title compound is illustrated in Fig. 1. The pyrazole ring has a twisted conformation on bond C7—C8. The toluyl ring and the 4-meth­oxy­phenyl ring are inclined to the mean plane of the pyrazole ring by 4.40 (9) and 86.22 (9) °, respectively. The two aromatic rings are inclined to one another by 88.75 (9) °.

In the crystal, molecules are linked via C—H···O hydrogen bonds and C—H···π inter­actions forming sheets lying parallel to the ab plane (Table 1 and Fig. 2).

For examples of the numerous pharmacological activities of pyrazoles, see: Samshuddin et al. (2012); Sarojini et al. (2010). For the use of 1,3,5-triaryl-2-pyrazolines as scintillation solutes, see: Wiley et al. (1958); and as fluorescent agents, see: Lu et al. (1999). For the crystal structures of pyrazoline-derived chalcones, see: Jasinski et al. (2012); Baktır et al. (2011).

Synthesis and crystallization top

A mixture of (2E)-3-(4-meth­oxy­phenyl)-1-(4-methyl­phenyl)­prop-2-en-1-one (2.52 g, 0.01 mol) and hydrazine hydrate (1 ml) in 30 ml formic acid was refluxed for 6 h. The reaction mixture was cooled and poured into 50 ml ice-cold water. The precipitate was collected by filtration and purified by recrystallization from ethanol. Single crystals were grown from toluene by slow evaporation of the solvent (yield: 75 %; m.p. 479-482 K).

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 2. The hydrogen atoms were fixed geometrically (C—H = 0.95–1.00 Å) and allowed to ride on their parent atoms with Uiso(H) = 1.5Ueq(C-methyl) and 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick 2008); software used to prepare material for publication: SHELXTL (Sheldrick 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50 % probability level.
[Figure 2] Fig. 2. A view along the ab axis of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines (see Table 1).
5-(4-Methoxyphenyl)-3-(4-methylphenyl)-4,5-dihydro-1H-pyrazole-1-carbaldehyde top
Crystal data top
C18H18N2O2F(000) = 624
Mr = 294.34Dx = 1.321 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
a = 12.0839 (9) ÅCell parameters from 6705 reflections
b = 6.4197 (5) Åθ = 3.5–30.2°
c = 19.7427 (18) ŵ = 0.09 mm1
β = 104.8264 (12)°T = 100 K
V = 1480.5 (2) Å3Block, colourless
Z = 40.41 × 0.23 × 0.11 mm
Data collection top
Bruker APEXII CCD
diffractometer
4070 reflections with I > 2σ(I)
φ and ω scansRint = 0.023
Absorption correction: multi-scan
(SADABS; Bruker, 2010)
θmax = 30.2°, θmin = 2.1°
Tmin = 0.919, Tmax = 0.965h = 1717
14663 measured reflectionsk = 99
4301 independent reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0604P)2 + 0.3156P]
where P = (Fo2 + 2Fc2)/3
4301 reflections(Δ/σ)max < 0.001
201 parametersΔρmax = 0.28 e Å3
2 restraintsΔρmin = 0.19 e Å3
Crystal data top
C18H18N2O2V = 1480.5 (2) Å3
Mr = 294.34Z = 4
Monoclinic, CcMo Kα radiation
a = 12.0839 (9) ŵ = 0.09 mm1
b = 6.4197 (5) ÅT = 100 K
c = 19.7427 (18) Å0.41 × 0.23 × 0.11 mm
β = 104.8264 (12)°
Data collection top
Bruker APEXII CCD
diffractometer
4301 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2010)
4070 reflections with I > 2σ(I)
Tmin = 0.919, Tmax = 0.965Rint = 0.023
14663 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0362 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.05Δρmax = 0.28 e Å3
4301 reflectionsΔρmin = 0.19 e Å3
201 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.20348 (12)0.4331 (2)0.35129 (8)0.0248 (3)
O20.54286 (12)0.1313 (2)0.56436 (8)0.0229 (3)
N10.64240 (13)0.1726 (2)0.58103 (8)0.0167 (3)
N20.68881 (12)0.3318 (2)0.62747 (8)0.0164 (3)
C10.49214 (15)0.4726 (3)0.46209 (9)0.0179 (3)
H1A0.53930.57820.48840.022*
C20.38193 (16)0.5207 (3)0.42425 (9)0.0189 (3)
H2A0.35430.65910.42460.023*
C30.31110 (15)0.3672 (3)0.38556 (9)0.0186 (3)
C40.35270 (16)0.1650 (3)0.38360 (9)0.0199 (4)
H4A0.30590.06030.35660.024*
C50.46443 (15)0.1188 (3)0.42203 (9)0.0187 (3)
H5A0.49300.01870.42080.022*
C60.53452 (15)0.2698 (3)0.46190 (9)0.0168 (3)
C70.65113 (15)0.2100 (3)0.50826 (9)0.0171 (3)
H7A0.68150.08380.48940.021*
C80.74108 (15)0.3870 (3)0.52205 (10)0.0191 (3)
H8A0.81740.33450.52040.023*
H8B0.71820.50120.48760.023*
C90.74102 (14)0.4580 (3)0.59498 (9)0.0153 (3)
C100.79896 (14)0.6448 (2)0.62925 (9)0.0151 (3)
C110.79596 (15)0.6957 (3)0.69768 (9)0.0178 (3)
H11A0.75530.60910.72200.021*
C120.85202 (15)0.8719 (3)0.73026 (10)0.0191 (3)
H12A0.84870.90490.77660.023*
C130.91324 (14)1.0015 (3)0.69604 (10)0.0181 (3)
C140.91505 (14)0.9520 (3)0.62759 (9)0.0180 (3)
H14A0.95541.03940.60330.022*
C150.85852 (14)0.7760 (3)0.59414 (9)0.0171 (3)
H15A0.86040.74510.54740.020*
C160.12863 (18)0.2852 (4)0.30873 (12)0.0300 (4)
H16A0.05510.35190.28710.045*
H16B0.11630.16820.33780.045*
H16C0.16310.23400.27200.045*
C170.58798 (15)0.0120 (3)0.60245 (10)0.0191 (3)
H17A0.58440.00990.65000.023*
C180.97566 (17)1.1908 (3)0.73207 (11)0.0236 (4)
H18A1.04841.20640.71920.035*
H18B0.99061.17400.78290.035*
H18C0.92851.31510.71740.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0198 (6)0.0266 (7)0.0257 (7)0.0009 (5)0.0014 (5)0.0011 (5)
O20.0226 (6)0.0158 (6)0.0292 (7)0.0031 (5)0.0044 (5)0.0006 (5)
N10.0171 (7)0.0156 (6)0.0168 (7)0.0029 (5)0.0032 (5)0.0016 (5)
N20.0152 (6)0.0153 (6)0.0171 (7)0.0010 (5)0.0015 (5)0.0010 (5)
C10.0205 (8)0.0170 (7)0.0171 (8)0.0034 (6)0.0063 (6)0.0027 (6)
C20.0227 (8)0.0171 (7)0.0177 (8)0.0006 (6)0.0068 (6)0.0008 (6)
C30.0182 (8)0.0226 (8)0.0154 (7)0.0009 (6)0.0050 (6)0.0007 (6)
C40.0205 (9)0.0202 (8)0.0177 (8)0.0050 (6)0.0028 (7)0.0028 (6)
C50.0213 (8)0.0164 (7)0.0185 (8)0.0016 (6)0.0051 (7)0.0024 (6)
C60.0183 (8)0.0171 (7)0.0154 (8)0.0030 (6)0.0051 (6)0.0022 (6)
C70.0158 (7)0.0180 (8)0.0176 (8)0.0022 (6)0.0045 (6)0.0028 (6)
C80.0166 (7)0.0212 (8)0.0202 (8)0.0049 (6)0.0063 (6)0.0034 (6)
C90.0131 (7)0.0156 (7)0.0163 (8)0.0002 (6)0.0022 (6)0.0016 (6)
C100.0120 (7)0.0139 (7)0.0182 (8)0.0003 (5)0.0019 (6)0.0005 (6)
C110.0187 (8)0.0173 (7)0.0180 (8)0.0017 (6)0.0058 (6)0.0006 (6)
C120.0193 (8)0.0186 (8)0.0189 (8)0.0005 (6)0.0040 (7)0.0018 (6)
C130.0163 (8)0.0148 (7)0.0216 (8)0.0001 (6)0.0017 (6)0.0016 (6)
C140.0164 (8)0.0163 (7)0.0217 (8)0.0016 (6)0.0055 (7)0.0005 (6)
C150.0165 (7)0.0173 (7)0.0180 (8)0.0009 (6)0.0057 (6)0.0001 (6)
C160.0212 (9)0.0341 (10)0.0294 (11)0.0026 (8)0.0031 (8)0.0018 (8)
C170.0172 (8)0.0163 (7)0.0233 (9)0.0007 (6)0.0043 (7)0.0036 (6)
C180.0242 (9)0.0168 (8)0.0280 (10)0.0041 (6)0.0035 (7)0.0046 (7)
Geometric parameters (Å, º) top
O1—C31.370 (2)C8—H8A0.9900
O1—C161.427 (2)C8—H8B0.9900
O2—C171.225 (2)C9—C101.464 (2)
N1—C171.348 (2)C10—C111.399 (2)
N1—N21.3916 (19)C10—C151.401 (2)
N1—C71.487 (2)C11—C121.389 (2)
N2—C91.294 (2)C11—H11A0.9500
C1—C21.385 (3)C12—C131.397 (2)
C1—C61.400 (2)C12—H12A0.9500
C1—H1A0.9500C13—C141.394 (3)
C2—C31.397 (2)C13—C181.509 (2)
C2—H2A0.9500C14—C151.396 (2)
C3—C41.396 (2)C14—H14A0.9500
C4—C51.401 (3)C15—H15A0.9500
C4—H4A0.9500C16—H16A0.9800
C5—C61.391 (2)C16—H16B0.9800
C5—H5A0.9500C16—H16C0.9800
C6—C71.520 (2)C17—H17A0.9500
C7—C81.547 (2)C18—H18A0.9800
C7—H7A1.0000C18—H18B0.9800
C8—C91.510 (2)C18—H18C0.9800
C3—O1—C16117.61 (16)N2—C9—C8113.76 (14)
C17—N1—N2120.11 (15)C10—C9—C8124.81 (15)
C17—N1—C7126.02 (15)C11—C10—C15118.75 (15)
N2—N1—C7113.67 (13)C11—C10—C9120.65 (15)
C9—N2—N1107.38 (14)C15—C10—C9120.60 (16)
C2—C1—C6120.53 (16)C12—C11—C10120.46 (16)
C2—C1—H1A119.7C12—C11—H11A119.8
C6—C1—H1A119.7C10—C11—H11A119.8
C1—C2—C3120.51 (16)C11—C12—C13121.13 (16)
C1—C2—H2A119.7C11—C12—H12A119.4
C3—C2—H2A119.7C13—C12—H12A119.4
O1—C3—C4125.21 (16)C14—C13—C12118.34 (16)
O1—C3—C2115.02 (16)C14—C13—C18120.72 (16)
C4—C3—C2119.76 (16)C12—C13—C18120.95 (17)
C3—C4—C5119.09 (16)C13—C14—C15121.08 (16)
C3—C4—H4A120.5C13—C14—H14A119.5
C5—C4—H4A120.5C15—C14—H14A119.5
C6—C5—C4121.44 (16)C14—C15—C10120.23 (16)
C6—C5—H5A119.3C14—C15—H15A119.9
C4—C5—H5A119.3C10—C15—H15A119.9
C5—C6—C1118.65 (16)O1—C16—H16A109.5
C5—C6—C7120.08 (15)O1—C16—H16B109.5
C1—C6—C7121.11 (15)H16A—C16—H16B109.5
N1—C7—C6109.79 (14)O1—C16—H16C109.5
N1—C7—C899.73 (14)H16A—C16—H16C109.5
C6—C7—C8114.96 (15)H16B—C16—H16C109.5
N1—C7—H7A110.6O2—C17—N1123.94 (18)
C6—C7—H7A110.6O2—C17—H17A118.0
C8—C7—H7A110.6N1—C17—H17A118.0
C9—C8—C7102.57 (14)C13—C18—H18A109.5
C9—C8—H8A111.3C13—C18—H18B109.5
C7—C8—H8A111.3H18A—C18—H18B109.5
C9—C8—H8B111.3C13—C18—H18C109.5
C7—C8—H8B111.3H18A—C18—H18C109.5
H8A—C8—H8B109.2H18B—C18—H18C109.5
N2—C9—C10121.34 (15)
C17—N1—N2—C9176.47 (16)N1—C7—C8—C915.61 (17)
C7—N1—N2—C98.36 (18)C6—C7—C8—C9101.70 (17)
C6—C1—C2—C30.3 (3)N1—N2—C9—C10179.55 (14)
C16—O1—C3—C41.7 (3)N1—N2—C9—C83.61 (19)
C16—O1—C3—C2177.67 (17)C7—C8—C9—N213.1 (2)
C1—C2—C3—O1179.00 (16)C7—C8—C9—C10170.18 (15)
C1—C2—C3—C41.6 (3)N2—C9—C10—C112.2 (2)
O1—C3—C4—C5179.20 (17)C8—C9—C10—C11178.69 (17)
C2—C3—C4—C51.5 (3)N2—C9—C10—C15177.74 (16)
C3—C4—C5—C60.1 (3)C8—C9—C10—C151.3 (2)
C4—C5—C6—C11.2 (3)C15—C10—C11—C120.6 (2)
C4—C5—C6—C7174.34 (16)C9—C10—C11—C12179.34 (16)
C2—C1—C6—C51.1 (3)C10—C11—C12—C130.5 (3)
C2—C1—C6—C7174.42 (16)C11—C12—C13—C141.2 (3)
C17—N1—C7—C669.3 (2)C11—C12—C13—C18178.97 (17)
N2—N1—C7—C6105.52 (16)C12—C13—C14—C150.8 (3)
C17—N1—C7—C8169.58 (16)C18—C13—C14—C15179.34 (16)
N2—N1—C7—C815.59 (18)C13—C14—C15—C100.3 (3)
C5—C6—C7—N195.70 (18)C11—C10—C15—C141.0 (2)
C1—C6—C7—N179.7 (2)C9—C10—C15—C14178.97 (15)
C5—C6—C7—C8152.86 (16)N2—N1—C17—O2178.37 (16)
C1—C6—C7—C831.7 (2)C7—N1—C17—O23.8 (3)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C1—H1A···O2i0.952.393.207 (2)144
C14—H14A···O2ii0.952.573.477 (2)160
C15—H15A···Cg2iii0.952.783.661 (2)154
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y+3/2, z; (iii) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C1—H1A···O2i0.952.393.207 (2)144
C14—H14A···O2ii0.952.573.477 (2)160
C15—H15A···Cg2iii0.952.783.661 (2)154
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y+3/2, z; (iii) x+1/2, y+1/2, z.
 

Acknowledgements

SS thanks Alva's Education Foundation, Moodbidri, for providing research facilities. FA is grateful for USM research grants 1001/PKIMIA/846017 and 1001/PKIMIA/811269, which partially supported this research.

References

First citationBaktır, Z., Akkurt, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011). Acta Cryst. E67, o1292–o1293.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJasinski, J. P., Golen, J. A., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2012). Crystals, 2, 1108–1115.  Web of Science CrossRef CAS Google Scholar
First citationLu, Z.-Y., Zhu, W.-G., Jiang, Q. & Xie, M.-G. (1999). Chin. Chem. Lett. 10, 679–682.  CAS Google Scholar
First citationSamshuddin, S., Narayana, B., Sarojini, B. K., Khan, M. T. H., Yathirajan, H. S., Raj, C. G. D. & Raghavendra, R. (2012). Med. Chem. Res. 21, 2012–2022.  Web of Science CSD CrossRef CAS Google Scholar
First citationSarojini, B. K., Vidyagayatri, M., Darshanraj, C. G., Bharath, B. R. & Manjunatha, H. (2010). Lett. Drug. Des. Discov. 7, 214–224.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWiley, R. H., Jarboe, C. H., Hayes, F. N., Hansbury, E., Nielsen, J. T., Callahan, P. X. & Sellars, M. (1958). J. Org. Chem. 23, 732–738.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds