organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of piperazine-1,4-diium bis­­(4-amino­benzene­sulfonate)

aDepartment of Physics, SRM University, Ramapuram Campus, Chennai 600 089, India, bDepartment of Physics, Alagappa University, Karaikudi 630 003, India, cDepartment of Physics, University College of Engineering, Panruti, Cuddalore 607 106, India, and dCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: sril35@gmail.com, mnpsy2004@yahoo.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 11 December 2015; accepted 19 December 2015; online 31 December 2015)

The asymmetric unit of the title salt, C4H12N22+·2C6H6NO3S, consists of half a piperazindiium dication, located about an inversion centre, and a 4-amino­benzene­sulfonate anion. The piperazine ring adopts a chair conformation. In the crystal, the cations and anions are linked via N—H⋯O and C—H⋯O hydrogen bonds, forming a three-dimensional framework. Within the framework there are C—H⋯π inter­actions and the N—H⋯O hydrogen bonds result in the formation of R44(22) and R34(13) ring motifs.

1. Related literature

For examples of the the numerous biological activities of piperazines and their various salts, see: Kaur et al. (2010[Kaur, K., Jain, M., Reddy, R. P. & Jain, R. (2010). Eur. J. Med. Chem. 45, 3245-3264.]); Eswaran et al. (2010[Eswaran, S., Adhikari, A. V., Chowdhury, I. H., Pal, N. K. & Thomas, K. D. (2010). Eur. J. Med. Chem. 45, 3374-3383.]); Chou et al. (2010[Chou, L. C., Tsai, M. T., Hsu, M. H., Wang, S. H., Way, T. D., Huang, C. H., Lin, H. Y., Qian, K., Dong, Y., Lee, K. H., Huang, L. J. & Kuo, S. C. (2010). J. Med. Chem. 53, 8047-8058.]); Chen et al. (2004[Chen, Y. L., Hung, H. M., Lu, C. M., Li, K. C. & Tzeng, C. C. (2004). Bioorg. Med. Chem. 12, 6539-6546.]); Shingalapur et al. (2009[Shingalapur, R. V., Hosamani, K. M. & Keri, R. S. (2009). Eur. J. Med. Chem. 44, 4244-4248.]); Shchekotikhin et al. (2005[Shchekotikhin, A. E., Shtil, A. A., Luzikov, Y. N., Bobrysheva, T. V., Buyanov, V. N. & Preobrazhenskaya, M. N. (2005). Bioorg. Med. Chem. 13, 2285-2291.]); Faist et al. (2012[Faist, J., Seebacher, W., Saf, R., Brun, R., Kaiser, M. & Weis, R. (2012). Eur. J. Med. Chem. 47, 510-519.]); Kulig et al. (2007[Kulig, K., Sapa, J., Maciag, D., Filipek, B. & Malawska, B. (2007). Arch. Pharm. Chem. Life Sci. 340, 466-475.]). For a related structure, see: Wei (2011[Wei, B. (2011). Acta Cryst. E67, o2811.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C4H12N22+·2C6H6NO3S

  • Mr = 432.52

  • Orthorhombic, P b c a

  • a = 10.1709 (4) Å

  • b = 8.4461 (3) Å

  • c = 21.5569 (9) Å

  • V = 1851.83 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 293 K

  • 0.25 × 0.22 × 0.19 mm

2.2. Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.920, Tmax = 0.939

  • 31521 measured reflections

  • 2731 independent reflections

  • 2130 reflections with I > 2σ(I)

  • Rint = 0.039

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.107

  • S = 1.03

  • 2731 reflections

  • 160 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.82 (3) 2.27 (3) 3.066 (2) 164 (2)
N1—H1B⋯O1ii 0.86 (3) 2.49 (3) 3.296 (3) 156 (2)
N2—H2A⋯O3 0.85 (3) 1.92 (3) 2.764 (2) 175 (2)
N2—H2B⋯O2iii 0.92 (3) 2.19 (2) 2.928 (2) 137 (2)
N2—H2B⋯O3iii 0.92 (3) 2.54 (2) 3.328 (2) 145 (2)
C7—H7A⋯O1iv 0.95 (2) 2.50 (2) 3.167 (2) 128 (2)
C6—H6⋯Cg1ii 0.93 2.92 3.753 (2) 149
Symmetry codes: (i) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iv) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Piperazine derivatives have wide range of applications in pharmaceuticals as anti­malarial (Kaur et al., 2010), anti-tuberculosis (Eswaran et al., 2010), anti­tumor (Chou et al., 2010), anti­cancer (Chen et al., 2004) and anti­viral (Shingalapur et al., 2009) agents. The piperazine nucleus is capable of binding to multiple receptors with high affinity and therefore piperazine has been classified as a privileged structure. In the last decade, a number of piperazine derivatives have been synthesized and evaluated for their cytotoxic activity (Shchekotikhin et al., 2005). The piperazine nucleus has been classified as a privileged structure and is frequently found in biologically active compounds across a number of different therapeutic areas (Faist et al., 2012). Some of these therapeutic areas include anti­microbial, anti-tubercular, anti­convulsant, anti­depressant, anti-inflammatory, cytotoxic, anti­malarial, anti­arrhythmic, anti­oxidant and anti­viral activities etc. possessed by the compounds having piperazine nucleus (Kulig et al., 2007). In view of the above said importance,the crystal structure of the title compound has been determined by crystallographic methods.

The molecular structure of the title salt is shown in Fig. 1. The crystallographic inversion centered piperazine ring adopts a chair conformation. The bond lengths N2—C7 and C4—S1 are comparable with the values observed in the related structure piperazine-1,4-diium naphthalene-1,5-di­sulfonate (Wei, 2011). In the anions atom S1 deviates from the benzene ring plane by -0.076 (1)Å. There is a short non-hydrogen contact involving atoms N2···O3 [2.764 Å] at x, y, z.

In the crystal, the N1—H1A···O2 and N1—H1B···O1 hydrogen bonds form an infinite chain leads to the formation of an R44(22) ring motif (Table 1 and Fig. 2). Similarly, the N2—H2···O hydrogen bonds in the molecular structure results in the formation of an R34(13) ring motif. These two motifs combine to form a hydrogen-bonded molecular ribbons running along b axis (Table 1 and Fig. 3). A C—H···π inter­action is also observed involving atom C6 in the benzene ring of the anion and the centroid of another anion ring with an H···centroid distance of 2.92 Å (Table 1). The molecular structure is stabilized by strong N—H···O hydrogen bonds which form infinite one dimensional chains. These various inter­actions result finally in the formation of a three-dimensional framework structure (Table 1 and Fig. 4).

Synthesis and crystallization top

The title compound was synthesized by slow evaporation at room temperature of an aqueous mixture of piperazine (1.43 g) and sulfanilic acid (2.88 g). Colourless transparent crystals were obtained in a period of 7 days. Single crystals suitable for X-ray diffraction studies were obtained by slow evaporation of a solution in ethyl acetate at room temperature.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. The NH2 and methyl­ene H atoms were located in difference Fourier maps and freely refined. The aromatic CH H atoms were fixed geometrically and treated as riding: C—H = 0.93 Å with Uiso(H) = 1.2Ueq(C)

Related literature top

For examples of the the numerous biological activities of piperazines and their various salts, see: Kaur et al. (2010); Eswaran et al. (2010); Chou et al. (2010); Chen et al. (2004); Shingalapur et al. (2009); Shchekotikhin et al. (2005); Faist et al. (2012); Kulig et al. (2007). For a related structure, see: Wei (2011).

Structure description top

Piperazine derivatives have wide range of applications in pharmaceuticals as anti­malarial (Kaur et al., 2010), anti-tuberculosis (Eswaran et al., 2010), anti­tumor (Chou et al., 2010), anti­cancer (Chen et al., 2004) and anti­viral (Shingalapur et al., 2009) agents. The piperazine nucleus is capable of binding to multiple receptors with high affinity and therefore piperazine has been classified as a privileged structure. In the last decade, a number of piperazine derivatives have been synthesized and evaluated for their cytotoxic activity (Shchekotikhin et al., 2005). The piperazine nucleus has been classified as a privileged structure and is frequently found in biologically active compounds across a number of different therapeutic areas (Faist et al., 2012). Some of these therapeutic areas include anti­microbial, anti-tubercular, anti­convulsant, anti­depressant, anti-inflammatory, cytotoxic, anti­malarial, anti­arrhythmic, anti­oxidant and anti­viral activities etc. possessed by the compounds having piperazine nucleus (Kulig et al., 2007). In view of the above said importance,the crystal structure of the title compound has been determined by crystallographic methods.

The molecular structure of the title salt is shown in Fig. 1. The crystallographic inversion centered piperazine ring adopts a chair conformation. The bond lengths N2—C7 and C4—S1 are comparable with the values observed in the related structure piperazine-1,4-diium naphthalene-1,5-di­sulfonate (Wei, 2011). In the anions atom S1 deviates from the benzene ring plane by -0.076 (1)Å. There is a short non-hydrogen contact involving atoms N2···O3 [2.764 Å] at x, y, z.

In the crystal, the N1—H1A···O2 and N1—H1B···O1 hydrogen bonds form an infinite chain leads to the formation of an R44(22) ring motif (Table 1 and Fig. 2). Similarly, the N2—H2···O hydrogen bonds in the molecular structure results in the formation of an R34(13) ring motif. These two motifs combine to form a hydrogen-bonded molecular ribbons running along b axis (Table 1 and Fig. 3). A C—H···π inter­action is also observed involving atom C6 in the benzene ring of the anion and the centroid of another anion ring with an H···centroid distance of 2.92 Å (Table 1). The molecular structure is stabilized by strong N—H···O hydrogen bonds which form infinite one dimensional chains. These various inter­actions result finally in the formation of a three-dimensional framework structure (Table 1 and Fig. 4).

For examples of the the numerous biological activities of piperazines and their various salts, see: Kaur et al. (2010); Eswaran et al. (2010); Chou et al. (2010); Chen et al. (2004); Shingalapur et al. (2009); Shchekotikhin et al. (2005); Faist et al. (2012); Kulig et al. (2007). For a related structure, see: Wei (2011).

Synthesis and crystallization top

The title compound was synthesized by slow evaporation at room temperature of an aqueous mixture of piperazine (1.43 g) and sulfanilic acid (2.88 g). Colourless transparent crystals were obtained in a period of 7 days. Single crystals suitable for X-ray diffraction studies were obtained by slow evaporation of a solution in ethyl acetate at room temperature.

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 2. The NH2 and methyl­ene H atoms were located in difference Fourier maps and freely refined. The aromatic CH H atoms were fixed geometrically and treated as riding: C—H = 0.93 Å with Uiso(H) = 1.2Ueq(C)

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title salt, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level. The unlabelled atoms of the cation are related to the labelled atoms by inversion symmetry (- x + 2, - y, - z + 1).
[Figure 2] Fig. 2. A partial view of the crystal packing of the title salt, viewed along the a axis. Hydrogen-bonded chains (dashed lines) run along the a and c axes (see Table 1).
[Figure 3] Fig. 3. Crystal packing of the title salt, viewed along the b axis, illustrating the formation of the hydrogen-bonded (dashed lines) molecular ribbons running along the b axis direction (see Table 1). For the sake of clarity, H atoms not involved in hydrogen bonds have been omitted.
[Figure 4] Fig. 4. A view along the a axis of the crystal packing of the title salt. The hydrogen bonds are shown as dashed lines (Table 1), and H atoms not involved in these interactions have been omitted for clarity.
Piperazine-1,4-diium bis(4-aminobenzenesulfonate) top
Crystal data top
C4H12N22+·2C6H6NO3SF(000) = 912
Mr = 432.52Dx = 1.551 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2731 reflections
a = 10.1709 (4) Åθ = 2.8–30.8°
b = 8.4461 (3) ŵ = 0.33 mm1
c = 21.5569 (9) ÅT = 293 K
V = 1851.83 (12) Å3Block, white crystalline
Z = 40.25 × 0.22 × 0.19 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2731 independent reflections
Radiation source: fine-focus sealed tube2130 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ω and φ scansθmax = 30.8°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1414
Tmin = 0.920, Tmax = 0.939k = 1210
31521 measured reflectionsl = 2930
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.0431P)2 + 1.5618P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2731 reflectionsΔρmax = 0.73 e Å3
160 parametersΔρmin = 0.42 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0332 (17)
Crystal data top
C4H12N22+·2C6H6NO3SV = 1851.83 (12) Å3
Mr = 432.52Z = 4
Orthorhombic, PbcaMo Kα radiation
a = 10.1709 (4) ŵ = 0.33 mm1
b = 8.4461 (3) ÅT = 293 K
c = 21.5569 (9) Å0.25 × 0.22 × 0.19 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2731 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2130 reflections with I > 2σ(I)
Tmin = 0.920, Tmax = 0.939Rint = 0.039
31521 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.73 e Å3
2731 reflectionsΔρmin = 0.42 e Å3
160 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.65542 (16)0.21272 (19)0.21371 (7)0.0266 (3)
C20.72879 (17)0.09868 (19)0.24541 (8)0.0302 (3)
H20.79860.04900.22550.036*
C30.69927 (16)0.05863 (19)0.30585 (8)0.0290 (3)
H30.74890.01790.32620.035*
C40.59536 (15)0.13233 (18)0.33669 (7)0.0245 (3)
C50.52268 (16)0.24672 (19)0.30563 (8)0.0280 (3)
H50.45400.29760.32600.034*
C60.55133 (16)0.2859 (2)0.24479 (8)0.0292 (3)
H60.50090.36150.22440.035*
C70.97012 (19)0.0404 (2)0.43662 (8)0.0317 (4)
C80.8928 (2)0.0027 (2)0.54312 (9)0.0358 (4)
N10.68534 (18)0.2535 (2)0.15357 (7)0.0380 (4)
N20.89658 (17)0.11265 (18)0.48903 (7)0.0331 (3)
O10.5723 (2)0.09171 (16)0.41653 (7)0.0586 (5)
O20.41824 (14)0.1269 (2)0.42189 (6)0.0514 (4)
O30.63822 (14)0.16386 (17)0.45474 (6)0.0413 (3)
S10.55342 (4)0.07560 (5)0.412784 (18)0.02600 (14)
H2B0.934 (2)0.207 (3)0.5007 (11)0.046 (6)*
H1A0.744 (2)0.202 (3)0.1367 (11)0.042 (6)*
H7A0.971 (2)0.119 (3)0.4049 (11)0.042 (6)*
H1B0.635 (2)0.318 (3)0.1336 (11)0.047 (6)*
H8B0.853 (2)0.057 (3)0.5758 (11)0.046 (6)*
H2A0.819 (3)0.132 (3)0.4765 (11)0.046 (6)*
H7B0.924 (2)0.044 (3)0.4239 (10)0.033 (5)*
H8A0.842 (2)0.089 (3)0.5299 (10)0.045 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0248 (7)0.0274 (7)0.0278 (7)0.0045 (6)0.0003 (6)0.0017 (6)
C20.0275 (8)0.0283 (7)0.0349 (8)0.0040 (6)0.0058 (6)0.0030 (6)
C30.0274 (8)0.0261 (7)0.0336 (8)0.0045 (6)0.0003 (6)0.0024 (6)
C40.0249 (7)0.0222 (7)0.0266 (7)0.0019 (6)0.0005 (6)0.0004 (6)
C50.0258 (7)0.0261 (7)0.0319 (8)0.0030 (6)0.0040 (6)0.0009 (6)
C60.0258 (8)0.0300 (8)0.0318 (8)0.0030 (6)0.0009 (6)0.0064 (7)
C70.0423 (10)0.0247 (7)0.0282 (8)0.0012 (7)0.0005 (7)0.0003 (6)
C80.0379 (10)0.0366 (9)0.0328 (9)0.0006 (8)0.0060 (7)0.0005 (7)
N10.0366 (8)0.0500 (10)0.0275 (7)0.0068 (8)0.0036 (6)0.0022 (7)
N20.0366 (8)0.0265 (7)0.0362 (8)0.0072 (6)0.0033 (7)0.0028 (6)
O10.1135 (16)0.0226 (7)0.0395 (8)0.0040 (8)0.0162 (8)0.0038 (5)
O20.0303 (7)0.0879 (12)0.0361 (7)0.0069 (7)0.0056 (6)0.0168 (8)
O30.0462 (8)0.0451 (8)0.0327 (7)0.0063 (6)0.0078 (6)0.0035 (6)
S10.0292 (2)0.0235 (2)0.0252 (2)0.00047 (14)0.00009 (14)0.00065 (14)
Geometric parameters (Å, º) top
C1—N11.376 (2)C7—H7A0.95 (2)
C1—C61.397 (2)C7—H7B0.90 (2)
C1—C21.397 (2)C8—N21.491 (2)
C2—C31.379 (2)C8—C7i1.506 (3)
C2—H20.9300C8—H8B0.93 (2)
C3—C41.395 (2)C8—H8A0.98 (2)
C3—H30.9300N1—H1A0.82 (3)
C4—C51.389 (2)N1—H1B0.86 (3)
C4—S11.7614 (16)N2—H2B0.92 (3)
C5—C61.384 (2)N2—H2A0.85 (3)
C5—H50.9300O1—S11.4285 (14)
C6—H60.9300O2—S11.4548 (15)
C7—N21.486 (2)O3—S11.4553 (13)
C7—C8i1.506 (3)S1—O31.4553 (13)
N1—C1—C6120.59 (16)N2—C8—C7i110.69 (15)
N1—C1—C2121.04 (16)N2—C8—H8B107.1 (15)
C6—C1—C2118.37 (15)C7i—C8—H8B107.5 (15)
C3—C2—C1121.00 (15)N2—C8—H8A106.3 (13)
C3—C2—H2119.5C7i—C8—H8A112.6 (14)
C1—C2—H2119.5H8B—C8—H8A113 (2)
C2—C3—C4120.37 (15)C1—N1—H1A116.5 (16)
C2—C3—H3119.8C1—N1—H1B119.8 (16)
C4—C3—H3119.8H1A—N1—H1B123 (2)
C5—C4—C3118.95 (15)C7—N2—C8110.61 (14)
C5—C4—S1120.62 (12)C7—N2—H2B111.1 (15)
C3—C4—S1120.39 (12)C8—N2—H2B109.7 (15)
C6—C5—C4120.74 (15)C7—N2—H2A107.8 (16)
C6—C5—H5119.6C8—N2—H2A110.2 (16)
C4—C5—H5119.6H2B—N2—H2A107 (2)
C5—C6—C1120.56 (15)O1—S1—O2114.48 (12)
C5—C6—H6119.7O1—S1—O3113.06 (10)
C1—C6—H6119.7O2—S1—O3108.89 (10)
N2—C7—C8i110.17 (15)O1—S1—O3113.06 (10)
N2—C7—H7A105.4 (14)O2—S1—O3108.89 (10)
C8i—C7—H7A111.3 (14)O1—S1—C4106.80 (8)
N2—C7—H7B107.0 (14)O2—S1—C4105.87 (8)
C8i—C7—H7B112.6 (14)O3—S1—C4107.21 (8)
H7A—C7—H7B110.0 (19)O3—S1—C4107.21 (8)
N1—C1—C2—C3179.55 (16)O3—O3—S1—O10.00 (18)
C6—C1—C2—C30.2 (2)O3—O3—S1—O20.00 (18)
C1—C2—C3—C40.3 (3)O3—O3—S1—C40.0 (2)
C2—C3—C4—C50.2 (2)C5—C4—S1—O1140.98 (15)
C2—C3—C4—S1177.43 (13)C3—C4—S1—O136.62 (17)
C3—C4—C5—C60.9 (2)C5—C4—S1—O218.58 (16)
S1—C4—C5—C6176.76 (13)C3—C4—S1—O2159.02 (14)
C4—C5—C6—C11.0 (3)C5—C4—S1—O397.55 (15)
N1—C1—C6—C5178.90 (16)C3—C4—S1—O384.85 (15)
C2—C1—C6—C50.5 (2)C5—C4—S1—O397.55 (15)
C8i—C7—N2—C857.3 (2)C3—C4—S1—O384.85 (15)
C7i—C8—N2—C757.6 (2)
Symmetry code: (i) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2ii0.82 (3)2.27 (3)3.066 (2)164 (2)
N1—H1B···O1iii0.86 (3)2.49 (3)3.296 (3)156 (2)
N2—H2A···O30.85 (3)1.92 (3)2.764 (2)175 (2)
N2—H2B···O2iv0.92 (3)2.19 (2)2.928 (2)137 (2)
N2—H2B···O3iv0.92 (3)2.54 (2)3.328 (2)145 (2)
C7—H7A···O1v0.95 (2)2.50 (2)3.167 (2)128 (2)
C6—H6···Cg1iii0.932.923.753 (2)149
Symmetry codes: (ii) x+1/2, y, z+1/2; (iii) x+1, y+1/2, z+1/2; (iv) x+1/2, y+1/2, z+1; (v) x+3/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.82 (3)2.27 (3)3.066 (2)164 (2)
N1—H1B···O1ii0.86 (3)2.49 (3)3.296 (3)156 (2)
N2—H2A···O30.85 (3)1.92 (3)2.764 (2)175 (2)
N2—H2B···O2iii0.92 (3)2.19 (2)2.928 (2)137 (2)
N2—H2B···O3iii0.92 (3)2.54 (2)3.328 (2)145 (2)
C7—H7A···O1iv0.95 (2)2.50 (2)3.167 (2)128 (2)
C6—H6···Cg1ii0.932.923.753 (2)149
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x+1/2, y+1/2, z+1; (iv) x+3/2, y+1/2, z.
 

Acknowledgements

The authors are grateful to the TBI, Department of Biophysics, University of Madras, for providing the single-crystal X-ray diffraction facility.

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Y. L., Hung, H. M., Lu, C. M., Li, K. C. & Tzeng, C. C. (2004). Bioorg. Med. Chem. 12, 6539–6546.  Web of Science CrossRef PubMed CAS Google Scholar
First citationChou, L. C., Tsai, M. T., Hsu, M. H., Wang, S. H., Way, T. D., Huang, C. H., Lin, H. Y., Qian, K., Dong, Y., Lee, K. H., Huang, L. J. & Kuo, S. C. (2010). J. Med. Chem. 53, 8047–8058.  Web of Science CrossRef CAS PubMed Google Scholar
First citationEswaran, S., Adhikari, A. V., Chowdhury, I. H., Pal, N. K. & Thomas, K. D. (2010). Eur. J. Med. Chem. 45, 3374–3383.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationFaist, J., Seebacher, W., Saf, R., Brun, R., Kaiser, M. & Weis, R. (2012). Eur. J. Med. Chem. 47, 510–519.  CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKaur, K., Jain, M., Reddy, R. P. & Jain, R. (2010). Eur. J. Med. Chem. 45, 3245–3264.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKulig, K., Sapa, J., Maciag, D., Filipek, B. & Malawska, B. (2007). Arch. Pharm. Chem. Life Sci. 340, 466–475.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationShchekotikhin, A. E., Shtil, A. A., Luzikov, Y. N., Bobrysheva, T. V., Buyanov, V. N. & Preobrazhenskaya, M. N. (2005). Bioorg. Med. Chem. 13, 2285–2291.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShingalapur, R. V., Hosamani, K. M. & Keri, R. S. (2009). Eur. J. Med. Chem. 44, 4244–4248.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWei, B. (2011). Acta Cryst. E67, o2811.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds