organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of N′-[(E)-(1S,3R)-(3-iso­propyl-1-methyl-2-oxo­cyclo­pent­yl)methyl­­idene]-4-methyl­benzene­sulfono­hydrazide

aFakultät Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Strasse 6, 44221 Dortmund, Germany
*Correspondence e-mail: hans.preut@tu-dortmund.de

Edited by E. R. T. Tiekink, University of Malaya, Malaysia (Received 20 October 2015; accepted 27 October 2015; online 4 November 2015)

The title compound, C17H24N2O3S, was synthesized in order to determine the relative configuration of the corresponding β-keto aldehyde. In the U-shaped mol­ecule, the five-membered ring approximates an envelope, with the methyl­ene C atom adjacent to the quaternary C atom being the flap, and the methyl and isopropyl substituents lying to the same side of the ring. The dihedral angles between the four nearly coplanar atoms of the five-membered ring and the flap and the aromatic ring are 35.74 (15) and 55.72 (9)°, respectively. The bond angles around the S atom are in the range from 103.26 (12) to 120.65 (14)°. In the crystal, mol­ecules are linked via N—H⋯O hydrogen bonds, forming a chain along the a axis.

1. Related literature

For the synthesis of terpenoid-related buildings blocks, in particular cyclo­penta­noids, see: Helmboldt et al. (2006[Helmboldt, H., Köhler, D. & Hiersemann, M. (2006). Org. Lett. 8, 1573-1576.]); Gille et al. (2011[Gille, A., Rehbein, J. & Hiersemann, M. (2011). Org. Lett. 13, 2122-2125.]); Becker et al. (2013[Becker, J., Butt, L., von Kiedrowski, V., Mischler, E., Quentin, F. & Hiersemann, M. (2013). Org. Lett. 15, 5982-5985.]); Tymann et al. (2014[Tymann, D., Klüppel, A., Hiller, W. & Hiersemann, M. (2014). Org. Lett. 16, 4062-4065.]). For the crystal structure of the corresponding trans-diastereomer, see: Tymann et al. (2015[Tymann, D., Dragon, D. C., Golz, C., Preut, H., Strohmann, C. & Hiersemann, M. (2015). Acta Cryst. E71, o99-o100.]). For a review on cyclo­penta­noids by ring contraction, see: Silva (2002[Silva, L. F. Jr (2002). Tetrahedron, 58, 9137-9161.]). For a solid-acid catalysed rearrangement of cyclic α,β-ep­oxy ketones, see: Elings et al. (2000[Elings, J. A., Lempers, H. B. & Sheldon, R. A. (2000). Eur. J. Org. Chem. pp. 1905-1911.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C17H24N2O3S

  • Mr = 336.44

  • Orthorhombic, P 21 21 21

  • a = 9.4918 (7) Å

  • b = 13.2348 (12) Å

  • c = 14.6691 (12) Å

  • V = 1842.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 173 K

  • 0.31 × 0.25 × 0.23 mm

2.2. Data collection

  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.98, Tmax = 1.00

  • 15093 measured reflections

  • 4215 independent reflections

  • 3526 reflections with I > 2σ(I)

  • Rint = 0.046

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.093

  • S = 1.05

  • 4215 reflections

  • 216 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.33 e Å−3

  • Absolute structure: Flack x determined using 1277 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004[Parsons, S. & Flack, H. (2004). Acta Cryst. A60, s61.])

  • Absolute structure parameter: −0.02 (4)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O3i 0.86 (3) 2.00 (4) 2.836 (3) 164 (3)
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z].

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis CCD; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Prompted by our efforts in natural product synthesis, we seek access to cyclopentyl units. Herein, we chose a ring contraction strategy of a cyclic epoxy ketone. A Brønsted-acid promoted semi-pinacol rearrangement of trans-piperitone oxide afforded cis-3-isopropyl-1-methyl-2-oxocyclopentane-1-carbaldehyde (II) along with 2-hydroxypiperitone. A condensation of (II) with p-toulenesulfonyl hydrazide afforded the title compound, (I).

Related literature top

For the synthesis of terpenoid-related buildings blocks, in particular cyclopentanoids, see: Helmboldt et al. (2006); Gille et al. (2011); Becker et al. (2013); Tymann et al. (2014). For the crystal structure of the corresponding trans-diastereomer, see: Tymann et al. (2015). For a review on cyclopentanoids by ring contraction, see: Silva (2002). For a solid-acid catalysed rearrangement of cyclic α,β-epoxy ketones, see: Elings et al. (2000).

Experimental top

A sealable glass pressure tube was charged with a solution of cis-3-isopropyl-1-methyl-2-oxocyclopentane-1-carbaldehyde (II) (C10H16O2, M = 168.23 g/mol, [α]D20 = -107.4 (c 0.059, CHCl3), 40 mg, 0.238 mmol, 1.0 eq) and p-toluenesulfonyl hydrazide (C7H10N2O2S, M = 186.23 g/mol, 62 mg, 0.333 mmol, 1.4 eq) in methanol (3 ml, 12.6 ml/mmol). The tube was sealed with a Teflon screw cap and stirred for 75 min at ambient temperature. Next, the reaction mixture was concentrated in vacuo and loaded onto silica gel with CH2Cl2 for flash chromatography (cyclohexane/ethyl acetate 10/1) to deliver the title compound (I) (C17H24N2O3S, M = 336.45 g/mol, 56 mg, 0.166 mmol, 70%) as a white solid and as an apparent mixture of double bond isomers (ratio = 95:5). Subsequent recrystallization of (I) from n-pentane/Et2O provided colourless crystals of the E-configured double bond isomer of (I). The ratio of isomers was determined by integration of the 1H NMR signals at 0.35 p.p.m. (d, J = 6.9 Hz, 3H) and 0.47 p.p.m. (d, J = 6.9 Hz, 3H). Characterization data are reported for the major compound from the mixture of double bond isomers. Rf 0.41 (cyclohexane/ethyl acetate 2/1); m.p. 388–391 K; 1H NMR (CDCl3, 500 MHz) δ 0.47 (d, J = 6.9 Hz, 3H), 0.85 (d, J = 6.9 Hz, 3H), 1.16 (s, 3H), 1.48–1.59 (m, 2H), 1.82–1.95 (m, 2H), 2.11 (td, J = 9.4 Hz, J = 5.0 Hz, 1H), 2.42 (s, 3H), 2.49–2.53 (m, 1H), 6.88 (s, 1H), 7.30 (d, J = 8.0 Hz, 2H), 7.78 (d, J = 8.0 Hz, 2H), 7.89 (s, 1H). 13C NMR (CDCl3, 126 MHz) δ 18.4 (CH3), 20.8 (CH3), 21.2 (CH2), 21.5 (CH3), 21.9 (CH3), 27.8 (CH), 31.6 (CH2), 53.8 (C), 54.7 (CH), 128.0 (2x CH), 129.6 (2x CH), 135.1 (C), 144.2 (C), 150.6 (CH), 219.1 (C). IR ν 3415 (w), 3126 (s), 2960 (s), 22870 (s), 1725 (s), 1600 (m), 1455 (s), 1360 (s), 1330 (m), 1170 (s), 1095 (m), 1050 (s), 940 (m) 820 (s); Anal. Calcd. for C17H24N2O3S: C, 60.7, H, 7.2, N, 8.3. Found: C, 60.6, H, 7.3, N, 8.3.

Refinement top

H-atoms attached to C, except those in CH3, were placed in calculated positions (C—H = 0.95 - 1.00 Å and Uiso(H) = 1.2 Ueq(C)). All CH3 hydrogen atoms, which were taken from a Fourier map (AFIX 137), were allowed to rotate but not to tip (C—H = 0.98 Å and Uiso(H) = 1.5 Ueq(C)). The H-atom at N was taken from a Fourier map and refined isotropically.

Structure description top

Prompted by our efforts in natural product synthesis, we seek access to cyclopentyl units. Herein, we chose a ring contraction strategy of a cyclic epoxy ketone. A Brønsted-acid promoted semi-pinacol rearrangement of trans-piperitone oxide afforded cis-3-isopropyl-1-methyl-2-oxocyclopentane-1-carbaldehyde (II) along with 2-hydroxypiperitone. A condensation of (II) with p-toulenesulfonyl hydrazide afforded the title compound, (I).

For the synthesis of terpenoid-related buildings blocks, in particular cyclopentanoids, see: Helmboldt et al. (2006); Gille et al. (2011); Becker et al. (2013); Tymann et al. (2014). For the crystal structure of the corresponding trans-diastereomer, see: Tymann et al. (2015). For a review on cyclopentanoids by ring contraction, see: Silva (2002). For a solid-acid catalysed rearrangement of cyclic α,β-epoxy ketones, see: Elings et al. (2000).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis CCD (Oxford Diffraction, 2008); data reduction: CrysAlis CCD (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the labelling of all non-H atoms. Displacement ellipsoids are shown at the 50% probability level.
N'-[(E)-(1S,3R)-(3-Isopropyl-1-methyl-2-oxocyclopentyl)methylidene]-4-methylbenzenesulfonohydrazide top
Crystal data top
C17H24N2O3SDx = 1.213 Mg m3
Mr = 336.44Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 3585 reflections
a = 9.4918 (7) Åθ = 2.6–27.1°
b = 13.2348 (12) ŵ = 0.19 mm1
c = 14.6691 (12) ÅT = 173 K
V = 1842.8 (3) Å3Block, colourless
Z = 40.31 × 0.25 × 0.23 mm
F(000) = 720
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
4215 independent reflections
Radiation source: Enhance (Mo) X-ray Source3526 reflections with I > 2σ(I)
Detector resolution: 16.0560 pixels mm-1Rint = 0.046
φ and ω scansθmax = 28.0°, θmin = 2.6°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
h = 1212
Tmin = 0.98, Tmax = 1.00k = 1516
15093 measured reflectionsl = 1918
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.093 w = 1/[σ2(Fo2) + (0.0401P)2 + 0.1494P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
4215 reflectionsΔρmax = 0.22 e Å3
216 parametersΔρmin = 0.33 e Å3
0 restraintsAbsolute structure: Flack x determined using 1277 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (4)
Crystal data top
C17H24N2O3SV = 1842.8 (3) Å3
Mr = 336.44Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.4918 (7) ŵ = 0.19 mm1
b = 13.2348 (12) ÅT = 173 K
c = 14.6691 (12) Å0.31 × 0.25 × 0.23 mm
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
4215 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
3526 reflections with I > 2σ(I)
Tmin = 0.98, Tmax = 1.00Rint = 0.046
15093 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.093Δρmax = 0.22 e Å3
S = 1.05Δρmin = 0.33 e Å3
4215 reflectionsAbsolute structure: Flack x determined using 1277 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004)
216 parametersAbsolute structure parameter: 0.02 (4)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.57466 (7)0.53116 (6)0.08855 (5)0.02777 (17)
O10.45052 (19)0.57619 (18)0.05053 (14)0.0389 (6)
O20.5837 (2)0.42449 (16)0.10068 (15)0.0411 (5)
O31.1776 (2)0.72234 (15)0.00066 (13)0.0309 (5)
N10.6994 (2)0.5647 (2)0.01656 (15)0.0241 (5)
N20.8352 (2)0.53514 (19)0.04375 (14)0.0226 (5)
C10.7064 (4)0.7294 (3)0.4507 (2)0.0510 (10)
H1A0.69580.67890.49900.077*
H1B0.64090.78540.46140.077*
H1C0.80330.75500.45060.077*
C20.6745 (3)0.6814 (2)0.35949 (19)0.0333 (7)
C30.7286 (3)0.5861 (3)0.3378 (2)0.0358 (8)
H30.78800.55260.38030.043*
C40.6978 (3)0.5398 (2)0.25650 (18)0.0308 (6)
H40.73410.47450.24330.037*
C50.6127 (3)0.5896 (2)0.19358 (18)0.0259 (6)
C60.5606 (3)0.6853 (2)0.21212 (19)0.0303 (7)
H60.50520.71990.16810.036*
C70.5902 (3)0.7302 (2)0.2954 (2)0.0329 (7)
H70.55260.79500.30890.039*
C80.9350 (3)0.5757 (2)0.00108 (18)0.0240 (6)
H80.91280.62280.04780.029*
C91.0880 (3)0.5513 (2)0.01786 (18)0.0251 (6)
C101.1497 (3)0.6526 (2)0.05022 (18)0.0227 (6)
C111.1652 (3)0.6526 (2)0.15308 (17)0.0247 (6)
H111.26800.64400.16590.030*
C121.1208 (3)0.7517 (2)0.1995 (2)0.0320 (7)
H121.18140.80670.17390.038*
C131.1488 (4)0.7473 (3)0.3020 (2)0.0475 (9)
H13A1.08470.69840.33020.071*
H13B1.13320.81420.32880.071*
H13C1.24640.72640.31270.071*
C140.9673 (3)0.7800 (3)0.1793 (2)0.0416 (8)
H14A0.90470.72750.20340.062*
H14B0.95380.78580.11330.062*
H14C0.94510.84480.20840.062*
C151.0931 (3)0.5542 (2)0.18366 (19)0.0306 (7)
H15A1.14060.52540.23790.037*
H15B0.99270.56610.19840.037*
C161.1078 (3)0.4835 (2)0.1014 (2)0.0304 (7)
H16A1.20190.45120.10060.036*
H16B1.03490.43000.10300.036*
C171.1573 (3)0.5148 (2)0.0706 (2)0.0359 (7)
H17A1.25820.50390.06020.054*
H17B1.14470.56600.11830.054*
H17C1.11350.45130.09000.054*
H1N0.690 (3)0.627 (3)0.001 (2)0.040 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0189 (3)0.0290 (4)0.0354 (4)0.0034 (3)0.0053 (3)0.0060 (3)
O10.0171 (10)0.0542 (15)0.0455 (12)0.0008 (10)0.0003 (9)0.0093 (11)
O20.0389 (11)0.0293 (12)0.0549 (14)0.0106 (10)0.0121 (11)0.0049 (10)
O30.0323 (10)0.0271 (12)0.0334 (11)0.0043 (9)0.0072 (9)0.0008 (10)
N10.0182 (11)0.0256 (14)0.0286 (13)0.0020 (10)0.0006 (9)0.0015 (10)
N20.0177 (10)0.0213 (12)0.0286 (11)0.0023 (10)0.0013 (9)0.0062 (10)
C10.077 (3)0.047 (2)0.0290 (17)0.009 (2)0.0018 (17)0.0017 (16)
C20.0404 (17)0.0341 (19)0.0255 (15)0.0055 (15)0.0097 (13)0.0052 (12)
C30.0395 (17)0.039 (2)0.0291 (16)0.0024 (15)0.0036 (13)0.0138 (14)
C40.0358 (15)0.0263 (16)0.0302 (15)0.0065 (14)0.0113 (12)0.0071 (13)
C50.0204 (13)0.0296 (17)0.0278 (14)0.0006 (11)0.0080 (11)0.0012 (12)
C60.0249 (15)0.0327 (17)0.0334 (16)0.0049 (14)0.0025 (12)0.0005 (12)
C70.0352 (16)0.0260 (17)0.0375 (16)0.0031 (14)0.0084 (14)0.0025 (13)
C80.0219 (13)0.0253 (15)0.0247 (13)0.0015 (12)0.0019 (11)0.0030 (11)
C90.0180 (12)0.0243 (16)0.0329 (14)0.0006 (12)0.0038 (11)0.0059 (11)
C100.0126 (12)0.0245 (16)0.0310 (14)0.0022 (11)0.0036 (11)0.0035 (12)
C110.0159 (12)0.0303 (17)0.0279 (14)0.0000 (12)0.0005 (11)0.0016 (12)
C120.0323 (16)0.0319 (18)0.0319 (16)0.0016 (13)0.0042 (12)0.0074 (13)
C130.054 (2)0.057 (3)0.0313 (17)0.0063 (18)0.0011 (16)0.0120 (16)
C140.0392 (18)0.042 (2)0.0434 (19)0.0141 (16)0.0068 (15)0.0046 (15)
C150.0272 (14)0.0316 (17)0.0330 (15)0.0023 (13)0.0008 (12)0.0076 (12)
C160.0210 (13)0.0226 (16)0.0475 (18)0.0017 (11)0.0010 (12)0.0028 (13)
C170.0256 (14)0.041 (2)0.0417 (17)0.0039 (14)0.0063 (13)0.0178 (14)
Geometric parameters (Å, º) top
S—O21.426 (2)C9—C161.531 (4)
S—O11.433 (2)C9—C171.534 (4)
S—N11.648 (2)C9—C101.538 (4)
S—C51.761 (3)C10—C111.516 (4)
O3—C101.216 (3)C11—C121.537 (4)
N1—N21.405 (3)C11—C151.539 (4)
N1—H1N0.86 (3)C11—H111.0000
N2—C81.272 (3)C12—C131.528 (4)
C1—C21.511 (4)C12—C141.533 (4)
C1—H1A0.9800C12—H121.0000
C1—H1B0.9800C13—H13A0.9800
C1—H1C0.9800C13—H13B0.9800
C2—C71.393 (4)C13—H13C0.9800
C2—C31.399 (5)C14—H14A0.9800
C3—C41.372 (4)C14—H14B0.9800
C3—H30.9500C14—H14C0.9800
C4—C51.392 (4)C15—C161.533 (4)
C4—H40.9500C15—H15A0.9900
C5—C61.387 (4)C15—H15B0.9900
C6—C71.387 (4)C16—H16A0.9900
C6—H60.9500C16—H16B0.9900
C7—H70.9500C17—H17A0.9800
C8—C91.514 (3)C17—H17B0.9800
C8—H80.9500C17—H17C0.9800
O2—S—O1120.65 (14)O3—C10—C9123.7 (2)
O2—S—N1107.67 (13)C11—C10—C9110.1 (2)
O1—S—N1103.26 (12)C10—C11—C12114.4 (2)
O2—S—C5108.25 (14)C10—C11—C15104.3 (2)
O1—S—C5109.04 (13)C12—C11—C15118.2 (2)
N1—S—C5107.17 (12)C10—C11—H11106.4
N2—N1—S113.73 (18)C12—C11—H11106.4
N2—N1—H1N116 (2)C15—C11—H11106.4
S—N1—H1N111 (2)C13—C12—C14111.3 (3)
C8—N2—N1114.7 (2)C13—C12—C11110.8 (3)
C2—C1—H1A109.5C14—C12—C11112.6 (3)
C2—C1—H1B109.5C13—C12—H12107.3
H1A—C1—H1B109.5C14—C12—H12107.3
C2—C1—H1C109.5C11—C12—H12107.3
H1A—C1—H1C109.5C12—C13—H13A109.5
H1B—C1—H1C109.5C12—C13—H13B109.5
C7—C2—C3118.4 (3)H13A—C13—H13B109.5
C7—C2—C1121.2 (3)C12—C13—H13C109.5
C3—C2—C1120.5 (3)H13A—C13—H13C109.5
C4—C3—C2121.5 (3)H13B—C13—H13C109.5
C4—C3—H3119.3C12—C14—H14A109.5
C2—C3—H3119.3C12—C14—H14B109.5
C3—C4—C5119.2 (3)H14A—C14—H14B109.5
C3—C4—H4120.4C12—C14—H14C109.5
C5—C4—H4120.4H14A—C14—H14C109.5
C6—C5—C4120.6 (3)H14B—C14—H14C109.5
C6—C5—S120.0 (2)C16—C15—C11104.3 (2)
C4—C5—S119.4 (2)C16—C15—H15A110.9
C5—C6—C7119.5 (3)C11—C15—H15A110.9
C5—C6—H6120.3C16—C15—H15B110.9
C7—C6—H6120.3C11—C15—H15B110.9
C6—C7—C2120.8 (3)H15A—C15—H15B108.9
C6—C7—H7119.6C9—C16—C15105.1 (2)
C2—C7—H7119.6C9—C16—H16A110.7
N2—C8—C9122.0 (3)C15—C16—H16A110.7
N2—C8—H8119.0C9—C16—H16B110.7
C9—C8—H8119.0C15—C16—H16B110.7
C8—C9—C16112.9 (2)H16A—C16—H16B108.8
C8—C9—C17108.9 (2)C9—C17—H17A109.5
C16—C9—C17116.1 (2)C9—C17—H17B109.5
C8—C9—C10103.6 (2)H17A—C17—H17B109.5
C16—C9—C10102.6 (2)C9—C17—H17C109.5
C17—C9—C10111.9 (2)H17A—C17—H17C109.5
O3—C10—C11126.2 (3)H17B—C17—H17C109.5
O2—S—N1—N255.9 (2)N2—C8—C9—C17124.3 (3)
O1—S—N1—N2175.41 (19)N2—C8—C9—C10116.4 (3)
C5—S—N1—N260.3 (2)C8—C9—C10—O376.0 (3)
S—N1—N2—C8167.6 (2)C16—C9—C10—O3166.3 (2)
C7—C2—C3—C41.5 (4)C17—C9—C10—O341.2 (4)
C1—C2—C3—C4178.1 (3)C8—C9—C10—C11102.3 (2)
C2—C3—C4—C51.1 (4)C16—C9—C10—C1115.4 (3)
C3—C4—C5—C60.7 (4)C17—C9—C10—C11140.5 (2)
C3—C4—C5—S179.2 (2)O3—C10—C11—C1240.3 (4)
O2—S—C5—C6155.0 (2)C9—C10—C11—C12137.9 (2)
O1—S—C5—C622.0 (3)O3—C10—C11—C15171.0 (3)
N1—S—C5—C689.2 (2)C9—C10—C11—C157.3 (3)
O2—S—C5—C426.5 (2)C10—C11—C12—C13176.4 (2)
O1—S—C5—C4159.5 (2)C15—C11—C12—C1360.2 (3)
N1—S—C5—C489.3 (2)C10—C11—C12—C1458.2 (3)
C4—C5—C6—C72.1 (4)C15—C11—C12—C1465.2 (3)
S—C5—C6—C7179.4 (2)C10—C11—C15—C1627.2 (3)
C5—C6—C7—C21.7 (4)C12—C11—C15—C16155.5 (2)
C3—C2—C7—C60.0 (4)C8—C9—C16—C1578.7 (3)
C1—C2—C7—C6179.6 (3)C17—C9—C16—C15154.5 (2)
N1—N2—C8—C9179.0 (2)C10—C9—C16—C1532.2 (2)
N2—C8—C9—C166.2 (4)C11—C15—C16—C937.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O3i0.86 (3)2.00 (4)2.836 (3)164 (3)
Symmetry code: (i) x1/2, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O3i0.86 (3)2.00 (4)2.836 (3)164 (3)
Symmetry code: (i) x1/2, y+3/2, z.
 

Acknowledgements

Financial support obtained from the Beilstein Institut is greatly acknowledged.

References

First citationBecker, J., Butt, L., von Kiedrowski, V., Mischler, E., Quentin, F. & Hiersemann, M. (2013). Org. Lett. 15, 5982–5985.  Web of Science CrossRef CAS PubMed Google Scholar
First citationElings, J. A., Lempers, H. B. & Sheldon, R. A. (2000). Eur. J. Org. Chem. pp. 1905–1911.  CrossRef Google Scholar
First citationGille, A., Rehbein, J. & Hiersemann, M. (2011). Org. Lett. 13, 2122–2125.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHelmboldt, H., Köhler, D. & Hiersemann, M. (2006). Org. Lett. 8, 1573–1576.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationParsons, S. & Flack, H. (2004). Acta Cryst. A60, s61.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSilva, L. F. Jr (2002). Tetrahedron, 58, 9137–9161.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTymann, D., Dragon, D. C., Golz, C., Preut, H., Strohmann, C. & Hiersemann, M. (2015). Acta Cryst. E71, o99–o100.  CSD CrossRef IUCr Journals Google Scholar
First citationTymann, D., Klüppel, A., Hiller, W. & Hiersemann, M. (2014). Org. Lett. 16, 4062–4065.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds